首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
In a model experiment, which imitated the rhizosphere of rice, the effect of organic acids (oxalic acid, citric acid) and protons on the release of non-exchangeable NH4^ and the resin adsorption of N was studied in a paddy soil, typical for Zhejiang Province, China. Oxalic and citric acids under low pH conditions, in combination with proton secretion, favored the mobilization of NH4^ ions and increased resin adsorption of N. The release of non-exchangeable NH4^ was associated with less formation of iron oxides. These could coat clay minerals and thus hinder the diffusion of NH4^ ions out of the interlayer. Protons enhanced the release of NH4^ , and then they could enter the wedge zones of the clay minerals and displace non-exchangeable NH4^ ions.  相似文献   

2.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4^+-N + NO3^--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4^+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4^+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4^+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4^+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

3.
Two soils with relatively high(Soil 1)and low(Soil 2) ammonium fixation capacities were used in this study to examiune the effect of ammonium fixation on the determination of N mineralized from soil microbial biomass.Organism suspension was quantitatively introduced to Soil 1 at various rates.Both fumigation-incubation (FI) and fumigation-extraction (FE) methods were used to treat the soil.The amount of fixed NH4^ increased with increasing rate of organism-N addition.A close correlation was found between the amount of fixed ammonium and th rate of organism-m addition.The net increases of fixed NH4^ -N were equivalent to 38% and 12% of the added organism-N for FI and FE treatments,rspectively,in this specific soil.To provide isotopic evidence,^15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg^-1.In FI treatment,22 and 3mg N kg^-1 of labelled N were found in the fraction of fixed NH4^ -N in Soile 1 and 2 respectively;while in FE treatment,9 mg N kg^-1 of labelled N was found in the fraction of fixed NH4^ -N in Soil 1 only.There was no labelled N in the fraction of fixed NH4^ -N in Soil 2.In all of the unfumigated (check) soils,there was little or no labelled N in the fixed fractions,probably because the organism-N added was easily mineralized and nitrified.A mean of 0.64 for KN value,the fraction of N mineralized in the killed microbial biomass,as obtained with inclusion of the net increase of fixed NH4^ -N,The corresponding value calculated with exclusion of the net increase of ficed NH4^ -N was 0.46 ,It was concluded that ammonium fixation was a problem in deterination of KN,particularly for soils with a high ammonium fixation capacity, Results also showed that microbial biomass N measurement by FFE method was less affected by ammonium process than that by FI method.  相似文献   

4.
The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils.Variations in the natural ^15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH.The δ ^15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ ^15N of total N in the soils.A variation tendence was also found in the δ ^15N of amino-acid N in the hydrolysates of soils.The natural ^15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons,indicating that the increase of δ ^15N in the soil borizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ ^15N value of fixed ammonium in the soil.  相似文献   

5.
在土壤不受干扰条件下N矿化2/3规律研究   总被引:1,自引:0,他引:1  
G. SENEVIRATNE 《土壤圈》2008,18(2):149-153
It is reported in literature that globally, only about two-thirds of N in nutrient sources is available to plants and microbes in soils under undisturbed conditions. The present study explores this phenomenon and suggests a new theory to explain this. Diffusion of NH4^+ from microsite sources is considered here and analyzed for a capillary of the soil system. It has been found that 68% of NH4^+ diffused from the nutrient source is initially preserved in the proximity of the nutrient source, whereas, the remaining 32% is diffused away from the nutrient source and possibly immobilized in the nonexchangeable abiotic pools or lost. The NH4^+ that has been initially retained near the microsites is gradually released to the mineral pool. Thus, about two-thirds of NH4^+ released from microsites is available only to plants and microbes in the soil. This is a universal, natural mechanism of nutrient conservation for plant and microbial availabilities. The theory has important implications and applications in recommending N fertilizations in the forms of organic or mineral sources to plants grown across various soil textures, for which further studies are needed. Any deviations from this theory can mainly be attributed to various disturbances to the soil; for example, mechanical disturbances, nutrient leaching, and variations in pH and soil faunal activities. This theory may apply to other elements mineralized in the soils under undisturbed conditions, which must be investigated in future studies.  相似文献   

6.
共施磷酸二氢钙和硫酸铵对土壤中钾形态转化的影响   总被引:4,自引:0,他引:4  
Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use effciency. The influence of ammonium sulfate (AS), monocalcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use effciency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems.  相似文献   

7.
The dynamics of soil inorganic nitrogen (NH4^+ -N and NO3^- -N) and microbial biomass carbon (Cmic) and nitrogen (Nmic) under 30-year-old fenced Pinus sylvestris L. var. mongolica Litvin (SF), unfenced P. sylvestris L. var. mongolica Litvin (SUF), and unfenced Pinus densiflora Siebold et Zucc. (DUF) plantations in the Zhanggutai sandy soil of China were studied during Apr. to Oct. 2004 by the in situ closed-top core incubation method. All mentioned C and N indices in each stand type fluctuated over time. The ranges of inorganic N, Cmic, and Nmic contents in the three stand types were 0.7-2.6, 40.0-128.9, and 5.4-15.2 μg g^-1, respectively. The average contents of soil NH4^+ -N and Cmic under the three 30-year-old pine plantations were not different. However, soil NO3^ -N and total inorganic N contents decreased in the order of SUF ≥ SF ≥ DUF, the Nmic content was in the order of SF = SUF 〉 DUF, and the Cmic:Nmic ratio was in the order of SUF = DUF 〉 SF. Seasonal variations were observed in soil inorganic N, microbial biomass, and plant growth. These seasonal variations had certain correlations with microbe and plant N use in the soil, and their competition for NH4^+ -N was mostly regulated by soil N availability. The influence of tree species on inorganic N and Nmic were mainly because of differences in litter quality. Lack of gazing decreased the Cmic:Nmic ratio owing to decreased carbon output and increased the ability of soil to supply N. The soil N supply under the P. sylvestris var. mongolica plantation was lower than under the P. densiflora plantation.  相似文献   

8.
Ammonium fixation and adsorption experiments were conducted to study the effect of potassium on ammonium fixation into interlasyer of vermiculite and ammonium adsorption at the surface of vermiculite both in the binary (NH4^ -Ca^2 ) and ternary (NH4^ -Ca^2 ) ystems.In the ammonium fixation experiment,5 mmol NH4^ kg^-1 was added alone,or after,before of simultaneously with 5 mmol K^ kg^-1 to the vermiculite (Vermiculite:solution=1:1),and the incubation was conducted for 3 days under constant 20℃,In the adsorption experiment ,after addition of 10 mmol Ca^2 L^-1 as matrix ions ,either,NH4^ alone with a concentration series from 0.1 to 5.0 mmol NH4^ L^-1(binary exchange system of NH4^ and Ca^2 )of NH4^ together with 5 mmol K^ L^-1(ternary exchange system of NH4^ ,K^ and Ca^2 ) was added to vermiculte at a vermiculite to solution ratio of 1:10 for 24-h equlibrium.The results of the fixtion experiment showed that the presence of K^ increased NH4^ fixation for all the treatments,regardless of the addition orders.For ammonium adsorption a linear realtionship between activtiy ratios of NH4^ to Ca^2 and Mg^2 in the equilibrium solutions(ARNH4)and incereases of exchangeable NH4^ at the surface of vermiculite after 24 h equilibrium (△Ex-NH4^ )was shown for almost the whole concentration ranges tested.Compared With the binary system ,the slope of the curve of the ternary system was steeper,indicaitng a more intensive adsorption of NH4^ in the presence of K^ ,It was demonstrated that K^ did not reduce the ammonium fixation into the interlayer and ammonium adsorption at the surface of vermiculite ,which indicated that, under the experimental conditions of this study,K^ did neither occupy the sites for NH4^ -fixation in the interlayer nor the sites for NH4^ -adsorption at the surface of vermiculite.  相似文献   

9.
中国湖南省主要水稻土类型的氨固定   总被引:8,自引:3,他引:8  
The contents, affecting factors, seasonal changes and availability of fixed ammonium in major types ofpaddy soils derived from different parent materials in Hunan Province, China, were studied using the Silva-Bremner method by laboratory and pot experiments. Results showed that the content of fixed ammoniumin the plough horizons ranged from 88.3 mg kg-1 to 388.1 mg kg-1, with 273.2 ± 77.7 mg kg-1 on average,accounting for 11.2% of total soil N on average. Content of fixed ammonium decreased in the order of newlylacustrine clayey paddy soil > alluvial sandy paddy soil > purple clayey paddy soil > newly alluvial sandypaddy soil > yellow clayey paddy soil > reddish-yellow clayey paddy soil > granitic sandy paddy soil. Therewere four distribution patterns of fixed ammonium in the profiles to 1-m depth, i.e., increase with the depth,decrease with increasing depth, no distinct change with the depth, and abrupt increase or decrease in somehorizon. Percentage of fixed ammonium in total N increased with the depth in most of the soils. Fixationof NH4+ by soil was higher at 30 ℃ than at 20 ℃ and 40 ℃, and continuous submergence benefited thefixation of NH4+ in newly alluvial sandy paddy soil, purple clayey paddy soil and alluvial sandy paddy soil,while alternating wetting and drying contributed to the fixation of NH4+ in yellow clayey paddy soil mostly.Fixed ammonium content in the test paddy soils was significantly correlated with < 0.01 mm clay content(P < 0.05), but not with < 0.001 mm clay content, total N, organic N and organic matter. Fixed ammoniumcontent varied with rice growth stages. Application of N fertilizer promoted fixation of NH4+ by soil, and Nuptake by rice plant promoted release of fixed ammonium from the soil. Recently fixed ammonium in paddysoil after N fertilizer application was nearly 100% available to rice plant, while native fixed ammonium wasonly partly available, varying with the soil type and rice type.  相似文献   

10.
A red soil derived from Quaternary red clay was employed to study nutrient leaching with woil columns repacked in laboratory,The objective was to identify the effects of fertilization practices on leaching patterns and magnitudes of Ca^2 ,Mg^2 ,K^ ,NH4^ ,and NO3^-,The treatments were CK (as a control),CaCO3, CaSO4,MgCO3,Ca(H2PO4)2,urea,KCl,and multiple (a mixture of the above-mentioned fertilizers),The fertilizers were added to the bare surface of the soil columns,and then the columns were leached with 120 mL deionized water daily through peristaltic pumps over a period of 92 days.Leaching processes of NH4^ ,and NO3^- wer e only measured in CK,ured,and multiple treatments which were directly related to N leaching, Results showed that sole application of CaSO4,and Ca(H2PO4)2 scarcely hd any effect on the leching losses of Ca^2 ,Mg^2 ,and K^ ; the application of MgCO3 sthimulated the leaching of Mg^2 ;the application of CaCO3 promoted the leaching of Ca^2 ,Mg^2 and K^ ; urea treatment also promoted the leaching of K^ and NH4^ ,and NO3^- leaching mainly occurred at late stage of leaching process in particular;under KCl treatment,leaching of Ca^2 ,Mg^2 ,and K^ was promoted to a large extent;under multiple treatment, leaching of Ca^2 ,Mg^2 ,K^ ,NH4^ ,and NO3^- was all increased and NO3^- was mainly leached at the end of leaching process and still had a trend of increase.  相似文献   

11.
Four soils with a range of clay and silt contents were incubated for 5 a with 15N-labelled (NH4)SO4 and 14C-labelled hemicellulose and then fractionated according to particle size by ultrasonic dispersion and sedimentation. The distribution of labelled and native N between clay, silt and sand fractions was determined and elated to previous results on the C distributions. Between 29% and 48% of the added N was found in organic form. The 15N atom percentage excess decreased in the order: clay > whole soil > silt > sand. For both clay and silt, the enrichment factor for labelled and native N decreased with increasing fraction weight. Clay enrichment was higher for labelled than for native N, the converse being true for silt. The distribution of whole soil labelled organic N was: clay 77–91%, silt 4–11%, and sand <0.5%. Corresponding values for native N were 69–74%, 16–22%, and 1–2%, respectively. All soils had higher proportions of labelled than of native N in the clay, the converse was true for the silt. The C/N ratio of the native silt organic matter was higher and that of clay organic matter lower than whole soil C/N ratios. Differences between the C/N ratio distributions of native and labelled organic matter were small. The relative distribution of labelled N and C was very similar confirming that the turnover of C and N in soil organic matter is closely interrelated.  相似文献   

12.
To estimate the availability of nonexchangeable NH inf4 sup+ –N for soil microorganisms four incubation experiments were conducted under controlled conditions. The following results were obtained: Incorporating glucose as a source of readily oxidizable organic material favored the release of nonexchangeable NH inf4 sup+ –N. Mobilization of NH inf4 sup+ from the interlayers of the clay minerals was decreased by the application of K++, while Ca2+, which is supposed to expand the lattice of the clay minerals, had no influence on the release of NH inf4 sup+ . Soil temperature had no effect on microbiological mobilization of NH inf4 sup+ . It is assumed that, generally, the influence of nitrifying bacteria on the mobilization of nonexchangeable NH inf4 sup+ –N is negligible. However, in soils with abundant amounts of available carbon promoting the activity of heterotrophic soil microorganisms, the release of NH inf4 sup+ from clay minerals is favored under fallow conditions.  相似文献   

13.
Summary The turnover of interlayer NH inf4 sup+ in a loess-derived agricultural soil from the Shaanxi Province in China was studied. The concentration of 15N-labeled interlayer NH inf4 sup+ and total interlayer NH inf4 sup+ (labeled + unlabeled) in a soil grown with winter wheat was significantly higher at the beginning of the season (March) than when the crop was mature (June). In a further experiment with winter wheat it was shown that under field conditions the concentration of interlayer NH inf4 sup+ decreased significantly in the two upper soil layers (0–20 and 20–55 cm) during March and in the deeper soil layer (55–75 cm) during April. When the heading stage of wheat was reached, about 200 kg N ha-1 of interlayer NH inf4 sup+ had been released. During the following growth period (heading until flowering of wheat) the concentration of interlayer NH inf4 sup+ increased significantly in the upper soil layers. Fertilizer application in the form of 70 kg N ha-1 as urea led to a considerable increase in the nitrate concentration in the upper soil layer but had no influence on the level of interlayer NH inf4 sup+ concentration. It is concluded that interlayer NH inf4 sup+ takes part in the N cycle of the soil and that it contributes to the N nutrition of the crop. NH inf4 sup+ originating from the mineralization of soil organic N may be rapidly incorporated into the interlayer of clay minerals and later released, when the N demand of the crop is high.  相似文献   

14.
不同质地小麦根际土壤有机碳、氮含量及特性研究   总被引:3,自引:0,他引:3  
测定了两种不同质地土壤小麦根际土及非根际土中不同形态有机碳、氮的含量及特性。结果表明,粘壤土及砂质壤土两种不同质地土壤小麦根际土中有机碳、可溶性有机碳(WEOC),土壤全氮、可溶性有机氮(WEON)、游离氨基酸及硝态氮和铵态氮均显著高于非根际土;根际土及非根际土中WEON的含量均高于硝态氮及铵态氮含量,其在根-土界面氮素转化中的作用值得关注。不同质地土壤相比,粘壤土中各指标的含量均显著高于砂质壤土。根际土有机碳矿化累积量及矿化率均高于非根际土;培养期间粘壤土释放的CO2量明显低于沙质壤土,这可能与粘壤土粘粒含量高,对土壤有机碳的保护作用有关。  相似文献   

15.
The amount of interlayer NH 4 + -N and net mineralization of organic N were measured at periodic intervals, over a period of 10 months, in soil samples collected from a peach orchard which had been subjected to different rates of N fertilizer application. Two different groups of soil samples, designated sampling 1 and sampling 2 were collected. Soils of sampling 1 were collected from sites where the soil was heavily penetrated by tree roots and those of sampling 2 were collected from sites where the soil remained free from tree roots. In sampling 1, during the 10-month period, the concentration of interlayer NH 4 + -N showed significant variations, while in sampling 2 no significant variation was found. In sampling 1 the amount of NH 4 + -N released from the interlayers of the clay minerals were not influenced by the N fertilizer application rate. Changes in the interlayer NH 4 + -N concentrations were related to variation in net N mineralization and immobilization rates as well as to plant uptake N. It is concluded that, in our experiment, the dynamics of interlayer NH 4 + -N in soil were influenced by the spatial distribution of the tree roots and organic N mineralization, while N application influenced seasonal variation but not the total interlayer NH 4 + -N released during the experiment.  相似文献   

16.
The responses of three cultivars of Chinese cabbage (Brassica chinensis L.), one of the main vegetable crops in China, to different ratios of NH4+-N/NO3--N was investigated to find the optimal ratio of ammonium to nitrate for maximal growth and to explore ways of decreasing the nitrate content, increasing nitrogen use efficiency of Chinese cabbage, and determining distributions of nitrogen and carbon. Three cultivars of Chinese cabbage were hydroponically grown with three different NH4+-N/NO3--N ratios (0:100, 25:75 and 50:50). The optimal ratio of NH4+-N/NO3--N for maximal growth of Chinese cabbage was 25:75. The increase in the ratio of NH4+-N/NO3--N significantly decreased nitrate content in various tissues of Chinese cabbage in the order of petiole > leaf blade > root. The highest total nitrogen (N) content was found when the ratio of NH4+-N/NO3--N was 25:75, and N contents in plant tissues were significantly different, mostly being in the order of leaf blade > petiole > root. At the NH4+-N/NO3--N ratio of 25:75, the biomasses of Chinese cabbage cultivars 'Shanghaiqing', 'Liangbaiye 1' and 'Kangre 605' increased by 47%, 14% and 27%, respectively. The biomass, SPAD chlorophyll meter readings and carbon content of 'Shanghaiqing' were all higher than those of 'Liangbaiye 1', while nitrate and total nitrogen contents were lower. Thus, partial replacement of nitrate by ammonium could improve vegetable production by both increasing yields and decreasing nitrate content of the plants.  相似文献   

17.
三种硝化抑制剂在石灰性土壤中的应用效果比较   总被引:9,自引:1,他引:8  
刘涛  梁永超  褚贵新  马丹  刘倩  王健 《土壤》2011,43(5):758-762
在人工气候室内采用25℃黑暗培养法研究双氰胺(DCD)、3,4-二甲基吡唑磷酸(DMPP)及2-氯-6-三氯甲基吡啶(Nitrapyrin)在石灰性土壤中的硝化抑制效果。结果表明:施用DCD、DMPP、Nitrapyrin的土壤NH4+-N含量较单施硫酸铵的土壤(对照)分别提高228.45~244.85 mg/kg(砂土)、209.75~254.79 mg/kg(黏土),NO3--N含量较对照分别降低93.85%~94.99%(砂土)、91.82%~95.38%(黏土)。表观硝化率随培养进程增加缓慢,培养期间只增加了1.28%~2.09%(砂土)、2.72%~8.40%(黏土),而对照增加了86.00%(砂土)、80.89%(黏土)。3种硝化抑制剂均显著抑制了石灰性土壤中硫酸铵水解铵硝化作用的进行,并且在砂土中的硝化抑制率高于黏土,硝化抑制效果最好的为DMPP处理,0.54%Nitrapyrin处理次之但用量最小,0.27%Nitrapyrin和10.8%DCD处理抑制效果相对较弱。  相似文献   

18.
Ammonium fixation and the effects of soil moisture and application methods on fertilizer N recovery were investigatedin two soils of Shaanxi Province, China, a Luvisol and an Entisol, through two experiments performed in the laboratoryand in a glass shelter, respectively, by using ammonium bicarbonate (NH4HCO3). The laboratory closed incubationbox experiment was conducted using the Luvisol to study NH fixation rate at soil moisture levels of 10.1%, 22.7% and 35.3% water filled pore space (WFPS). The fixed NH -N increased dramatically to 51% and 66%, 67% and 74%,and 82% and 85% 1, 2 and 36 h after fertilizer incorporation at moisture levels of 10.1% and 22.7% WFPS and 35.3% WFPS, respectively. The rapid NH fixation rates at all moisture levels could help prevent NH losses from ammonia volatilization. In the glass shelter pot experiment, N fertilizer was applied by either banding (in a concentrated strip)or incorporating (thoroughly mixing) with the Entisol and the Luvisol. An average of 74.2% of the added N fertilizerwas recovered 26 days after application to the Luvisol, while only 61.4% could be recovered from the Entisol, due tohigher NH fixation capacity of the Luvisol. The amount of fixed NH decreased with increasing WFPS. The amountof fixed NH in the incorporated fertilizer treatment was, oll average, 10% higher than that in the banded treatment.Higher NH fixation rates could prevent N loss and thus increase N recovery. The results from the Luvisol showed lowernitrogen recovery as soil moisture level increased, which could be explained by the fact that most of the fixed NH wasstill not released when the soil moisture level was low. When the fertilizer was incorporated into the soil, the recovery ofN increased, compared with the banded treatment, by an average of 26.2% in the Luvisol and 11.2% in the Entisol, whichimplied that when farmers applied fertilizer, it would be best to mix it well with the soil.  相似文献   

19.
为明确科尔沁沙地引种樟子松人工林生态系统的C、N、P含量及化学计量特征,采用时空互代的方法,在章古台地区选取4种不同林龄(15,25,35,45年)、立地条件基本一致的樟子松人工林作为研究对象,比较针叶-凋落叶-土壤的C、N、P含量及化学计量比的差异,探讨它们随林龄的变化及其相互间的关系。结果表明:(1)C、N、P含量表现为针叶凋落叶土壤,C/N、C/P、N/P表现为凋落叶针叶土壤,且在3个库之间都有显著差异;(2)林龄对针叶-凋落叶-土壤的C、N、P及C/N、C/P有显著影响,均在35年生樟子松林中针叶-凋落叶-土壤的C、N、P含量最高;(3)相较于其他地区,针叶和凋落叶均表现出高C、P和低N的特征,具有较高的C/N、C/P和较低的N/P;(4)各林龄针叶N/P均小于14,表明该地区樟子松林整个生长过程始终受N的限制,但不同林龄间差异不显著;(5)针叶-凋落叶-土壤的C、N、P含量及其C/N、N/P之间存在显著的相关性,说明该樟子松林生态系统的C、N、P元素在针叶、凋落叶和土壤3个库之间存在运输转换,但其内在维持机制需要进一步深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号