首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The supplementation of vitamin E on broiler chicken diets is essential to the prevention of lipid oxidation reactions in the meat and improvement of meat quality. The objective of this study was to assess the effect of different doses of dietary vitamin E on breast meat quality of broiler chickens in the finishing period. Five doses of vitamin E were used (30, 90, 150, 210, and 270 mg/kg feed) in broilers'' diets from 42 to 54 d of age. A completely randomized design was conducted, followed by a split-plot, where the vitamin E dose was considered as the whole plot, and broilers’ age at slaughter was the subplot. Breast meat quality was assessed at 4 different ages (45, 48, 51, and 54 d old), using 50 birds per age, totaling 200 birds. Meat quality characteristics evaluated were: pH at 24 h post mortem, color (brightness, redness, and yellowness), water holding capacity, cooking loss, shear force, and lipid peroxidation. There was no interaction between age and dose of vitamin E for meat quality characteristics (P > 0.05). The age at slaughter had a quadratic effect (P < 0.05) on pH, brightness, redness, and water holding capacity. Although pH values were higher in the breast meat of older birds (51 and 52 d old), breast meat of younger birds (48 d) had a more reddish aspect. Shear force value was higher in breast meat of birds slaughtered at later ages (P < 0.01), as a linear age-effect was observed. Brightness increased linearly (P < 0.05) with higher vitamin doses, whereas treatments did not alter yellowness, cooking loss, and lipid peroxidation. In this study, increasing vitamin E doses in the finishing period increased the brightness of broiler breast meat, whereas slaughtering at later ages resulted in greater meat pH and shear force value.  相似文献   

2.
Two studies were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) as a probiotic on growth performance, amino acid digestibility and bacteria population in broiler chickens under a subclinical necrotic enteritis (NE) challenge and/or fed diets with different levels of crude protein (CP). Both studies consisted of a 2 × 2 factorial arrangement of treatments with 480 Ross 308 mix-sexed broiler chickens. In study 1, treatments included 1) NE challenge (+/−), and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/−). In study 2, all birds were under NE challenge, and treatments were 1) CP level (Standard/Reduced [2% less than standard]) and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/−). After inducing NE infection, blood samples were taken on d 16 for uric acid evaluation, and cecal samples were collected for bacterial enumeration. In both studies, ileal digesta was collected on d 35 for nutrient digestibility evaluation. In study 1, the NE challenge reduced body weight gain (BWG), supressed feed conversion ratio (FCR) and serum uric acid levels (P < 0.001). Supplementation of BA increased BWG (P < 0.001) and reduced FCR (P = 0.043) across dietary treatments, regardless of challenge. Bacillus (P = 0.030) and Ruminococcus (P = 0.029) genomic DNA copy numbers and concentration of butyrate (P = 0.017) were higher in birds fed the diets supplemented with BA. In study 2, reduced protein (RCP) diets decreased BWG (P = 0.010) and uric acid levels in serum (P < 0.001). Supplementation of BA improved BWG (P = 0.001) and FCR (P = 0.005) and increased Ruminococcus numbers (P = 0.018) and butyrate concentration (P = 0.033) in the ceca, regardless of dietary CP level. Further, addition of BA reduced Clostridium perfringens numbers only in birds fed with RCP diets (P = 0.039). At d 35, BA supplemented diets showed higher apparent ileal digestibility of cystine (P = 0.013), valine (P = 0.020), and lysine (P = 0.014). In conclusion, this study suggests positive effects of BA supplementation in broiler diets via modulating gut microflora and improving nutrient uptake.  相似文献   

3.
Bacterial autolysate, a down stream product of bacterial biomass grown on natural gas by mainly the methanotrophic bacteria Methylococcus capsulatus, was fed at 8% as is to broiler chickens from 1 to 35 days of age for studies of fatty acid composition, lipid oxidation and sensory quality of thigh meat stored frozen for 6 month at -18 °C or -80 °C. Lipid oxidation was measured by thiobarbituric acid reactive substances (TBARS) and volatile profile by dynamic headspace gas chromatography. Adding bacterial autolysate to diets did not affect the total content of saturated, monounsaturated or polyunsaturated fatty acids in thigh meat, but increased the levels of C14:0, C16:0, C18:0 and C16:1n-7 and reduced the levels of C18:1n-7, C18:2n-6 and C18:3n-3 fatty acids. Feeding of bacterial autolysate tended (p < 0.08) to reduce TBARS of meat samples. Contents of volatiles were generally low, but feeding of bacterial autolysate significantly reduced levels of butanal (p < 0.04) and tended to reduce levels of hexanal (p < 0.11), pentanal (p < 0.09), 1-penten-3-ol (p < 0.08) and butanone (p < 0.08). Bacterial autolysate had no effects on sensory quality parameters of meat related to odour and flavour. To conclude, adding bacterial autolysate to diets did not affect the relative proportion of saturated, monounsaturated or polyunsaturated fatty acids, but reduced content of volatiles in frozen-stored broiler meat. The reduced susceptibility to lipid oxidation in broiler meat may be related to antioxidant properties of the bacterial autolysate.  相似文献   

4.
1. Chicken breast meat is a lean meat due to its low content of intramuscular fat (IMF) resulting in an overall lower acceptability by consumers due to a decrease in juiciness, flavour and increased chewiness. Recently, studies performed in pigs suggested the possibility of increasing IMF by decreasing dietary crude protein (CP) content, an effect possibly mediated through an increased lipogenesis.

2. Dietary supplementation with lipids rich in omega 3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) may modulate an increase in the content of these fatty acids in meat from monogastric animals and, thus, promote the daily intake of n-3 LC-PUFA by humans.

3. LC-PUFA are very susceptible to oxidation, resulting in off-flavours that affect meat quality and consumers’ acceptability.

4. This trial was conducted to assess the effect of reducing dietary CP, from 21% to 17%, on chicken’s meat IMF content and, simultaneously, to evaluate if a complementary supplementation with a proprietary n-3 LC-PUFA source (DHA Gold?) could improve meat quality. These effects were assessed by measuring productive performance and meat quality, oxidative stability, sensory traits and fatty acid profile.

5. A reduction in CP content of broiler diets, from 21% to 17%, balanced for lysine, improved performance while it was not sufficient to increase IMF content in chicken meat. In contrast, DHA Gold? supplementation had a positive impact both in broiler productive parameters and in meat fatty acid profile.

6. In addition, incorporation of 7.4% of DHA Gold? in the diet promoted carcass yield but negatively affected chicken meat acceptability by consumers, due to a decrease of meat oxidative stability.

7. Overall the data suggest that neither a dietary supplementation with DHA Gold? nor a reduction in CP have a direct positive effect in the levels of IMF present in broiler meat.  相似文献   

5.
Exogenous β-glucanase (BGase) in barley-based feed has been shown to reduce digesta viscosity in chickens, and thereby improve performance. Less well studied is the potential for BGase to convert barley β-glucan into low molecular weight carbohydrates, which might influence digestive tract function and enteric disease. Coccidiosis-vaccinated broiler chickens were fed graded levels of hulless barley (HB) and BGase to determine their effects on β-glucan depolymerization and digestive tract characteristics. Broilers were fed high β-glucan HB (0%, 30% and 60% replacing wheat) and BGase (0%, 0.01% and 0.1%) in a 3 × 3 factorial arrangement. A total of 5,346 broilers were raised in litter floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to 1 pen in each of 9 rooms. The significance level was set at P ≤ 0.05. At both 11 and 33 d of broiler ages, peak molecular weight of β-glucan in ileal digesta decreased with increasing BGase for 30% and 60% HB. The maximum molecular weight for the smallest 10% β-glucan molecules (MW-10%) decreased with BGase at both ages for 30% and 60% HB; for birds fed 0% HB, only 0.1% BGase decreased MW-10%. The 0.1% BGase increased caecal short chain fatty acids (SCFA) compared to the 0.01% BGase at d 11 only for the 60% HB. Ileal pH increased with increasing HB and BGase at d 11 and 33. Caecal pH was lower for 0.1% BGase than 0% BGase for 60% HB at d 11. Relative mRNA expression of interleukin 6 (IL-6) and IL-8 in the ileum increased with 0.1% BGase at d 11 and 33, respectively, whereas expression of ileal mucin 2 (MUC2) decreased with 0.1% BGase at d 33. In the caeca, interactions between HB and BGase were significant for monocarboxylate transporter 1 (MCT1) and mucin 5AC (MUC5AC) on d 11, but no treatment effects were found at d 33. In conclusion, BGase depolymerized high molecular weight β-glucan in HB in a dose-dependent manner. Hulless barley and BGase did not increase SCFA concentrations (except for 60% HB with 0.1% BGase at d 11) and caused minor effects on digestive tract histomorphological measurements and relative mRNA gene expression.  相似文献   

6.
This study evaluated the effects of barley inclusion and glucanase supplementation on the productive performance and digestive function in laying ducks. The experiment used a randomized design with a 5 × 2 factorial arrangement of 5 graded levels of barley (0%, 15%, 30%, 45% and 60%) with or without 1.5 g/kg β-1,3-1,4-glucanase (15,000 U/kg). During the experimental period of 120 d, the weight and total number of eggs within each pen were recorded daily, and egg quality was determined every 4 wk. At the end of the experiment, 3 randomly selected ducks within each replicate were sacrificed, then duodenal digesta and jejunal mucosa was collected. Dietary inclusion of barley had no effects on egg production, daily egg mass or FCR, but supplementation with glucanase improved egg production and FCR (P < 0.01). Barley did not affect feed intake of laying ducks, but glucanase tended to increase feed intake (P = 0.09). Neither barley nor β-glucanase had effects on the egg quality variables, except for yolk color score, which was decreased with increasing barley supplementation. Glucanase, but not barley, increased the activity of chymotrypsin and amylase in duodenal digesta. Barley inclusion affected the activity of alkaline phosphatase and maltase in jejunal mucosa (P < 0.05), but β-glucanase had no effects on the activity of these brush border enzymes. Barley inclusion increased the glucan content in duodenal digesta, but supplementation of glucanase to barley-based diet reduced digesta glucan content and reduced total volatile fatty acids and increased the proportion of acetic acid in cecal contents. The results indicate that, without glucanase, the optimal dietary barley level in the diets of laying ducks is about 13% for maximal production performance; glucanase supplementation of the barley diets improved production performance, probably through enhancing digestive function.  相似文献   

7.
  1. A 42-d trial was conducted to investigate the effect of adding a synbiotic supplement to diets containing two different types of fat on performance, blood lipids and fatty acid (FA) composition and oxidative stability of breast and thigh meat in broilers.

  2. A total of 800 one-d-old male broiler chickens were randomly assigned into 1 of 8 treatments with 4 replicates of 25 birds per treatment. The experiment consisted of a 4 × 2 factorial arrangement of treatments including 4 concentrations of synbiotic (0, 0.5, 1 or 1.5 g/kg diet) and 2 types of fat [sunflower oil (SO) or canola oil (CO)] at an inclusion rate of 50 g/kg diet.

  3. Dietary fat type did not affect body weight gain (BWG) or feed conversion ratio (FCR) during the overall experimental period (0–42 d). However, fat type modified serum lipid profile and FA composition and 2-thiobarbituric acid-reactive substances (TBARS) content in breast and thigh meat.

  4. The addition of synbiotic to the diet linearly improved overall BWG and FCR and also decreased serum cholesterol and low-density lipoprotein cholesterol concentrations. The TBARS value in thigh meat after 30 d of storage at 4°C was linearly decreased as the synbiotic inclusion concentrations in the diets increased. Dietary synbiotic also decreased the proportion of monounsaturated fatty acids and increased n-6 polyunsaturated fatty acid (PUFA) concentration in thigh meat, whereas the FA profile of breast meat was not affected by synbiotic supplementation. Moreover, the PUFA/SFA ratio in the breast meat was linearly increased when synbiotic was included in the CO-containing diets.

  5. In conclusion, the addition of synbiotic to broiler diets had a positive effect on growth performance, blood lipid profile and meat quality. The results also support the use of synbiotic to increase the capacity of canola oil for enhancing PUFA/SFA ratio of breast meat in broilers.

  相似文献   

8.
Modern strains of broiler chickens are selected for fast growth and are marketed anywhere from 36 to 49 days after a 21-day incubational period. For a viable healthy chick, all the necessary nutrients required for growth and development must be provided by the hen through the fertilized egg. The current feeding strategies for improved growth, health and productivity are targeted towards chicks after hatching. Considering the fact that developing chick embryo spends over 30 % of its total life span inside the hatching egg relying on nutrients deposited by the breeder hen, investigations on nutritional needs during pre-hatch period will improve embryonic health, hatchability and chick viability. In this context, investigations on hatching egg lipid quality is of utmost importance because, during incubation, egg fat is the major source of energy and sole source of essential omega-6 (n-6) and omega-3 (n-3) fatty acids to the chick embryo. Due to the unique roles of n-3 and n-6 fatty acids in growth, immune health, and development of central nervous system, this review will focus on the role of early exposure to essential fatty acids through maternal diet and hatching egg and its impact on progeny in meat-type broiler chickens.  相似文献   

9.
A study was conducted to investigate the dietary supplementation of black cumin seeds (BCS) on carcass characteristics, chemical and fatty acid (FA) composition and antioxidant properties of thigh and breast meat of broiler chickens at 42 days of age. Three hundred sixty 1‐day‐old broiler chickens were allocated to five dietary treatment groups (each group containing eight replicate pens with each pen containing nine broiler chickens): basal diet (control; CON), CON + 0.05 g/kg of bacitracin methylene disalicylate (AB), CON + 5 g/kg of BCS (low dose of BCS), CON + 10 g/kg of BCS (medium dose of BCS) and CON + 20 g/kg of BCS (high dose of BCS). Weight (g) of slaughtered birds (= .03), hot carcass (= .007), breast (= .03), thigh (< .001), wing (= .06), neck (= .01), liver (= .09), abdominal fat (= .01) and total edible parts (= .01) increased or tended to increase due to BCS supplementation compared with the CON. The concentrations of dry matter, crude protein and ether extract in chicken thigh and breast meat increased (= .038 to <.001) with increasing doses of BCS in diets. The ferric reducing antioxidant activity in blood and meat increased linearly with increasing doses of BCS in the diets. However, peroxide values in meat were not affected by BCS and AB on both days 1 and 7 of storage at 4°C. Supplementation of BCS increased the concentrations of C14:1, C18:3n‐6, C20:1, C20:2 FA and PUFA linearly (< .05) and tended to increase (= .098) the concentration of C18:2cis linearly. However, the concentrations of C16:0 and C16:1 FA decreased linearly with increasing doses of BCS in the diets. In conclusion, dietary supplementation of BCS at 20 g/kg diet may improve slaughter body weight, beneficial FA concentrations and antioxidant properties of broiler chicken meat.  相似文献   

10.
1. The effect of dietary fat and vitamin E supplementation on quality attributes (drip loss, oxidative stability, sensory quality) in chicken meat and meat products was investigated. Broiler chicks were fed on diets containing tallow (60 g/kg) or olive oil (60 g/kg) at a basal (30 mg/kg diet) or supplemental (200 mg/kg diet) concentration of alpha-tocopheryl acetate for 8 weeks. The alpha-tocopherol content and fatty acid composition of breast and thigh meat was determined. Drip loss was determined in breast fillets. Lipid oxidation (thiobarbituric acid-reacting substances/TBARS) and sensory quality (warmed-over flavour development/WOF) were assessed in minced thigh meat during storage. 2. Dietary olive oil increased the ratio of monounsaturated to saturated fatty acids (MUFA/SFA) in the diets. In breast and thigh, this resulted in approximately a two-fold increase in the MUFA/SFA ratio. Supplemental alpha-tocopherol increased the alpha-tocopherol content of muscles. 3. Dietary fat did not influence drip loss in thawed breast fillets during refrigerated storage, but supplemental alpha-tocopherol reduced drip loss. 4. TBARS and WOF development in minced thigh meat patties were also reduced by supplemental alpha-tocopherol following frozen storage, or cooking and refrigerated storage. Storage stability was not adversely affected by dietary fat. 5. Overall, the results showed that increasing the monounsaturated profile of chicken meat lipids did not adversely affect quality characteristics. Dietary alpha-tocopherol supplementation was a more important factor in the determination of broiler meat quality.  相似文献   

11.
Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P < 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P < 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P < 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.  相似文献   

12.
Two hundred and fifty‐day‐old male broiler chicks (Ross 308) were used to investigate the dietary supplementation effects of different levels of 0.0 turmeric rhizome powder (TRP) (free TRP, F.TRP), 0.25 (low TRP, L.TRP), 0.5 (medium TRP, M.TRP) and 0.75% TRP (high TRP, H.TRP) or 50 mg/kg vitamin E (VE) on antioxidant properties of thigh meat in broiler chickens after slaughter. No effect of treatment was observed for the activities of glutathione peroxidase (GPX) and superoxide dismutase (SOD) and total antioxidant status (TAS) in thigh meat (P > 0.05) but all were reduced over time (P < 0.0001). A significant treatment*time interaction was observed for thigh meat GPX activity (P = 0.02). Significant effects of treatment and time were observed for malondialdehyde (MDA) content (P < 0.05). There was no significant difference between the treatments for thigh meat MDA content at slaughter (P > 0.05). Three days after refrigerator storage, MDA content in thigh meat of M.TRP birds was lower than that of F.TRP birds (P < 0.05). Both the M.TRP and VE birds showed a lower MDA content in thigh meat as compared with F.TRP birds 7 days after storage (P < 0.05). In conclusion, dietary consumption of 5 mg/kg TRP can increases the thigh meat shelf‐life storage and quality in broiler chickens after slaughter.  相似文献   

13.
This study evaluated the effects of dietary energy levels on growth performance, carcass traits, meat quality, and serum biochemical of female Hu lambs. Seventy female Hu lambs (aged 4 months) were randomly allotted to 5 dietary treatments. Lambs were fed diets with 5 levels of metabolizable energy (ME): 9.17 (E1), 9.59 (E2), 10.00 (E3), 10.41 (E4), and 10.82 MJ/kg (E5). The lambs were adapted to the experimental diets for 10 d and the experiment period lasted for 60 d. Dry matter intake and feed conversion ratio linearly (P < 0.001) increased and decreased (P < 0.001), respectively, with increasing dietary ME levels. Average daily gain (ADG) linearly (P < 0.001) increased with increasing dietary ME levels, with the highest final body weight (P = 0.041) observed in E4 group. Moreover, dietary energy level was associated with linear increases in serum total protein (TP) (P < 0.001), albumin (ALB) (P = 0.017), glucose (GLU) (P = 0.004), and low-density lipoprotein cholesterol (LDLC) (P = 0.006) concentrations, and it was associated with a quadratic decrease in serum triglyceride (TG) concentration (P = 0.002). Serum ammonia concentration, which was firstly decreased and then increased, was quadratically affected by dietary ME levels (P = 0.013). Compared with E1 group, lambs in E4 group had higher (P < 0.05) live weights, carcass weights, mesenteric fat ratio, non-carcass fat ratio, and larger loin muscle area, but lower (P < 0.05) meat colour a∗ and b∗ values, and lesser (P < 0.05) C17:0, C20:0, C18:1n-9t, C18:3n-3, and n-3 polyunsaturated fatty acids (PUFA), but greater (P < 0.05) C18:3n-6 and n-6:n-3 ratios in longissimus dorsi (LD) muscle tissue, and lesser (P < 0.05) C17:0, C18:3n-3, C22:6n-3, and n-3 PUFA in the biceps femoris (BF) muscle tissue. The results demonstrated that increasing dietary energy level improved the growth performance and affected carcass traits, serum biochemical indexes, and fatty acid profiles in different muscles of female Hu lambs. For 4-month-old female Hu lambs, the recommended fattening energy level is 10.41 MJ/kg.  相似文献   

14.
1. The objective of this study was to determine the influence of iodine (I) supplementation of feed, within the range of the European guidelines, on the performance of broiler chickens and I transfer into different organs and tissues, especially meat. The main emphasis was to assess whether broiler meat could be enriched and used as an I source in human nutrition. 2. Two experiments were performed, one with KI and the other with Ca(IO(3))(2). For each experiment, 288 d-old broiler chicks were divided into 4 groups (72 birds/group) and fed on diets with supplementations between 0 and 5 mg I/kg feed. The birds were reared to 35 d of age under standard conditions. Six birds per group were slaughtered at 35 d and samples of blood, thyroid gland, liver, pectoral and thigh meat taken. 3. Iodine treatment did not significantly affect the growth and slaughter performance of the broiler chickens. In all investigated parameters, I concentrations increased significantly with increasing I intake of the animals. The lowest I concentrations were measured in the meat, but they were considerably higher in blood serum, liver and thyroid gland. Since the I content of meat was still low in the highest supplemented group (highest median concentration: 67·8 μg I/kg thigh meat), there is no evidence that this could substantially improve I supply in human nutrition.  相似文献   

15.
The aim of this study was to evaluate the effects of dietary betaine (BET) on growth performance, redox state, and related gene expression in broilers under heat stress (HS). A total of 144 21-day-old male broiler chickens with similar body weights were assigned randomly to three treatments with six replicates (eight chickens per replicate cage). Broilers in the control (CON) group were kept at thermoneutral (TN, 22±1°C) conditions and fed a basal diet until they were 42 days of age. Broilers in the other two groups (defined as HS and HS + BET) were exposed to HS (34±1°C, 8 h/day) and fed the basal diet without or with 1000 mg/kg BET, respectively. Rectal and cockscomb temperature of broilers was increased (P<0.05) in HS and HS + BET groups compared with the CON group, whereas there was no difference between HS and HS + BET groups. Dietary BET supplementation restored (P<0.05) average daily gain (ADG) and average daily feed intake (ADFI) of broilers and reversed (P<0.05) the increase in serum alanine transaminase (ALT) activity and malondialdehyde (MDA) content in the liver tissue of broilers under HS. The HS + BET group had higher (P<0.05) activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) in the liver tissue and mitochondria than the HS group, and the same pattern was observed for glutathione (GSH) and GSH/glutathione disulphide (GSSG) in the liver tissue. The decreased mRNA levels of GPX1 and uncoupling protein (UCP) in the liver induced by HS were restored by BET supplementation. In conclusion, dietary BET supplementation can alleviate HS-induced hepatic and mitochondrial oxidative damage of broilers by regulating mRNA expressions of GPX1 and UCP.  相似文献   

16.
In the present study, we aimed to evaluate the effects of maternal yeast-based nucleotide (YN) supplementation on the intestinal immune response and barrier function in neonatal pigs, as well as the diarrhoea rate and growth performance in suckling piglets. Sixty-four late-gestation sows were assigned to the following groups: the CON (fed a basal diet) and YN groups (fed a basal diet with 4 g YN/kg diet). The experiment started on d 85 of gestation and ended on d 20 of lactation. Diarrhoea rate and average daily gain of the piglets were recorded, and samples of blood and intestines from neonatal piglets were collected before they consumed colostrum during farrowing. Compared with the CON group, maternal YN supplementation increased the weaning weight of litter and decreased the diarrhoea rate (P < 0.01). In addition, maternal YN supplementation promoted the ileal villus development in the neonates compared with that in the CON group (P < 0.01). Maternal YN supplementation also increased the ileal secretory immunoglobulin A (sIgA) level compared with that in the CON group (P < 0.05). The real-time PCR results showed that maternal dietary YN supplementation increased the jejunal and ileal expression of interleukin (IL)-17, IL-8, IL-1β, IL-10 and tumor necrosis factor (TNF)- α in the neonates compared with that in the CON group (P < 0.05). Overall, maternal nucleotide supplementation improved the villus development and innate immunity of neonatal piglets during late pregnancy. This may be associated with the decrease in diarrhoea and the increase in weaning weight of the litter of suckling piglets.  相似文献   

17.
The aim of present study was to evaluate whether diets supplemented with dihydroartemisinin (DHA) could alleviate intestinal inflammatory injury in weaned piglets with intrauterine growth retardation (IUGR). Twelve normal birth weight (NBW) piglets and 12 piglets with IUGR were fed a basal diet (NBW-CON and IUCR-CON groups), and another 12 piglets with IUGR were fed the basal diet supplemented with DHA at 80 mg/kg (IUGR-DHA group) from 21 to 49 d of age. At 49 d of age, 8 piglets with similar body weight in each group were sacrificed. The jejunal and ileal samples were collected for further analysis. The results showed that IUGR impaired intestinal morphology, increased intestinal inflammatory response, raised enterocyte apoptosis and reduced enterocyte proliferation and activated transmembrane toll-like receptor 4 (TLR4)/nucleotide-binding and oligomerization domain (NOD)/nuclear factor-κB (NF-κB) signaling pathway. Dihydroartemisinin inclusion ameliorated intestinal morphology, indicated by increased villus height, villus height-to-crypt depth ratio, villus surface area and decreased villus width of piglets with IUGR (P < 0.05). Compared with NBW piglets, IUGR piglets supplemented with DHA exhibited higher apoptosis index and caspase-3 expression, and lower proliferation index and proliferating cell nuclear antigen expression in the intestine (P < 0.05). Dihydroartemisinin supplementation attenuated the intestinal inflammation of piglets with IUGR, indicated by increased concentrations of intestinal inflammatory cytokines and lipopolysaccharides (P < 0.05). In addition, DHA supplementation down-regulated the related mRNA expressions of TLR4/NOD/NF-κB signaling pathway and upregulated mRNA expressions of negative regulators of TLR4 and NOD signaling pathway in the intestine of piglets with IUGR (P < 0.05). Piglets in the IUGR-DHA group showed lower protein expressions of TLR4, phosphorylated NF-κB (pNF-κB) inhibitor α, nuclear pNF-κB, and higher protein expression of cytoplasmic pNF-κB in the intestine than those in the IUGR-CON group (P < 0.05). In conclusion, DHA supplementation could improve intestinal morphology, regulate enterocyte proliferation and apoptosis, and alleviate intestinal inflammation through TLR4/NOD/NF-κB signaling pathway in weaned piglets with IUGR.  相似文献   

18.
Oxidative stress seriously affects poultry production. Nutritional manipulations have been effectively used to alleviate the negative effects caused by oxidative stress. This study investigated the attenuating effects and potential mechanisms of dietary taurine on the growth performance and meat quality of broiler chickens challenged with hydrogen peroxide (H2O2). Briefly, a total of 192 male Arbor Acres broilers (28 d old) were randomly categorized into three groups: non-injection of birds on basal diets (control), 10.0% H2O2 injection of birds on basal diets (H2O2), and 10.0% H2O2 injection of birds on basal diets supplemented with 5 g/kg taurine (H2O2 + taurine). Each group consisted of eight cages of eight birds per cage. Results indicated that H2O2 administration significantly reduced growth performance and impaired breast meat quality by decreasing ultimate pH and increasing shear force value (P < 0.05). Dietary taurine improved the body weight gain and feed intake and decreased feed/gain ratio of H2O2-challenged broilers. Meanwhile, oxidative stress induced by intraperitoneal injection of H2O2 suppressed the nuclear factor-κB (NF-κB) signaling and initiated autophagy and apoptosis. Compared with the H2O2 group, taurine supplementation restored the redox status in the breast muscle by decreasing levels of reactive oxygen species and contents of oxidative products and increasing antioxidant capacity (P < 0.05). Moreover, upregulated mRNA expression of NF-κB signaling-related genes, including NF-κB subunit 1 (p50) and B-cell CLL/lymphoma 2 (Bcl-2), and enhanced protein expression of NF-κB were observed in the H2O2 + taurine group (P < 0.05). Additionally, dietary taurine decreased the expression of caspase family, beclin1, and microtubule-associated protein 1light chain 3 beta (LC3-II; P < 0.05), thereby rescuing autophagy and apoptosis in breast muscle induced by H2O2. Collectively, dietary supplementation with taurine effectively improves growth performance and breast meat quality of broilers challenged with H2O2, possibly by protecting against oxidative injury and modulating cell death signaling.  相似文献   

19.
Iso-nitrogenous and iso-lipidic diets containing 0%, 3%, 6%, 9%, and 12% hydrolyzed porcine mucosa (namely, HPM0, HPM3, HPM6, HPM9, and HPM12) were prepared to evaluate their effects on the growth performance, muscle nutrition composition, texture property, and gene expression related to muscle growth of hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Groupers were fed to apparent satiation at 08:00 and 16:00 every day for a total of 56 days. It was found that the weight gain percentage in the HPM0, HPM3, and HPM6 groups did not differ (P > 0.05). The cooking loss and drip loss of the dorsal muscle in the HPM3 group were lower than those in the HPM6 and HPM9 groups (P < 0.05). The hardness and chewiness of the dorsal muscle in the HPM3 group were higher than those in the HPM0, HPM9, and HPM12 groups (P < 0.05). The gumminess in the HPM3 group was higher than that in the HPM9 and HPM12 groups (P < 0.05). The total essential amino acid content of the dorsal muscle in the HPM12 group was higher than that in the HPM0 group (P < 0.05). The contents of total n-3 polyunsaturated fatty acid and total n-3 highly unsaturated fatty acid, as well as the ratio of n-3/n-6 polyunsaturated fatty acid in the dorsal muscle was higher in the HPM0 group than in all other groups (P < 0.05). The relative expressions of gene myogenic factor 5, myocyte enhancer factor 2c, myocyte enhancer factor 2a, myosin heavy chain, transforming growth factor-beta 1 (TGF-β1), and follistatin (FST) were the highest in the dorsal muscle of the HPM3 group. The results indicated that the growth performance of hybrid grouper fed a diet with 6% HPM and 27% fish meal was as good as that of the HPM0 group. When fish ingested a diet containing 3% HPM, the expression of genes TGF-β1 and FST involved in muscle growth were upregulated, and then the muscle quality related to hardness and chewiness were improved. An appropriate amount of HPM could be better used in grouper feed.  相似文献   

20.
Beta-glucan has been shown to have a beneficial effect on gastrointestinal health. This experiment was conducted to investigate the effects of β-glucan isolated from Agrobacterium sp. ZX09 on growth performance and intestinal health of weaning pigs. A total of 108 weaned pigs (21 d of age; 6.05 ± 0.36 kg) were randomly divided into 3 groups (6 pens/group; 6 pigs/pen), and the groups were each treated with the following diets: 1) basal diet, 2) basal diet supplemented with 20 mg/kg olaquindox, 3) basal diet supplemented with 200 mg/kg β-glucan, for 21 d. Compared with the control group, pigs fed with 200 mg/kg β-glucan had greaterBW, average daily gain and duodenal villus height to crypt depth ratio (P < 0.05). Olaquindox increased the duodenal or jejunal villus height of pigs compared with β-glucan. Compared with the control group, β-glucan tended to increase the occludin mRNA expression in the jejunum (0.05 < P < 0.10). Beta-glucan enriched the beneficial microbiota in the ileum of pigs (P < 0.05). In conclusion, β-glucan may promote growth performance by improving intestinal health and increasing beneficial microbiota of weaned pigs. The study results will provide valuable theoretical guidance for the utilization of β-glucan in weaned pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号