首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deficit irrigation is increasingly being practiced in water-limited areas to overcome water scarcities. Although, this practice reduces yield losses, there is limited information currently available on how this practice can affect crops when the irrigation water contains elevated levels of salts. An experiment was set up to investigate salt uptake and distribution and salt tolerance of potted Soultanina vines grafted on different rootstocks (41B, 1103P, 110R) and irrigated with effluent containing relatively high concentrations of salts and fresh water at different fractions of evapotranspiration (0.50, 0.75 and 1.00ET). Irrigation with recycled water induced the development of leaf burns, which were more intense in 1998 despite the lower leaf-Na and -Cl content. This may have been due to the more severe water deficit and/or to the more adverse climatic conditions which prevailed during that season. Decreasing the irrigation level induced the development of leaf burns causing only minor changes to leaf-Na or -Cl content. Differences in salt uptake, accumulation and distribution were observed among the rootstocks investigated in this work, suggesting that differences exist in the mechanisms regulating salt uptake and distribution in the shoot. Despite these differences, a distinct superiority in terms of salinity tolerance among rootstocks was only observed at the 0.50ET irrigation level, where vines grafted on 41B developed earlier and more acute leaf burns than the other rootstocks. These findings suggest that leaf salt content alone it is not to classify genotypes according to their tolerance to salinity and that salinity-induced damage is linked with prevailing environmental conditions. Furthermore, it can be inferred that grapevines have additional mechanisms to cope with salt stress which may counteract differences in salt uptake and accumulation in the shoot.  相似文献   

2.
Adoption of water-saving irrigation strategies is necessary especially for grapevine that has the highest acreage of any fruit crop in the world. We applied deficit irrigation to Chardonnay wine grape at the following phenological stages: anthesis to fruit set, fruit set to veraison, and veraison to harvest. Four irrigation levels (0, 25, 50, and 100?% of crop evapotranspiration, ET c ) were applied in 2009. Vines grown in large containers were used to enable imposition of water stress early in the growing season. The following parameters were measured: midday leaf water potential, vine growth, yield, and quality of must and wine. The same parameters were measured in 2010 although all vines were fully irrigated. The 0 and 25?% treatments caused defoliation and had negative impacts on yield and wine quality in both 2009 and 2010. Chardonnay was most sensitive to water stress in post-veraison in terms of productivity and wine quality.  相似文献   

3.
In Northern India, insufficient soil moisture and excessively high soil temperatures are reported to restrict growth of crops during the hot, dry months of April–June. A 3-year field experiment was conducted to evaluate the effects of three irrigation schedules based on ratios of 0.50, 0.75 and 1.00 times pan evaporation, and two levels of paddy straw mulch of 0 and 6 tons/ha on yield and quality of sugarcane for a sandy loam. The differential irrigations were restricted to 10–12 weeks before the monsoon season.Both irrigation and straw mulching had favourable effects on plant height and yield. Cane yield increased by an average of 13.8% for the 1.00 over the 0.50 times pan evaporation. Similarly, yield averaged 13.8% higher with mulch than without it. Interestingly, the pan evaporation ratio of 0.50 with mulch gave a higher yield than the ratio 1.00 without mulch. For the same yield, irrigation under mulching averaged 34 cm less than under no mulch. These beneficial effects were attributed to better soil moisture and temperature regimes with mulching. Irrigation and mulching had no effect on the quality of cane juice. These results indicate that straw mulching and early season irrigation to sugarcane based on 1.00 times pan evaporation is a promising practice for increasing sugarcane production in subtropical areas.  相似文献   

4.
The effects of regulated deficit irrigation (RDI) and partial root-zone irrigation (PRI) strategies that apply the same irrigation volumes on vegetative and reproductive development were analyzed during a 3-year-period in field-grown Monastrell grapevines under semiarid conditions. Five treatments were applied: control irrigated at 60?% ETc (crop evapotranspiration) for the whole season (308?mm?year?1); RDI-1 and PRI-1 that received the same irrigation as the control before fruit set, 30?% ETc from fruit set to harvest and 45?% ETc post-harvest (192?mm?year?1); and RDI-2 and PRI-2 that were the same, except with 15?% ETc from fruit set to harvest (142?mm?year?1). Distinctive PRI effects on vegetative and reproductive development were observed depending on the total soil water content and the vine water stress level. PRI-1 vines showed less restriction of vegetative growth, lower leaf abscission, and higher leaf area during post-veraison than RDI-1 vines. Higher supply of water (close to field capacity) via half of the root system in PRI-1 vines maintained better water supply and more favorable phloem sap flow (water and carbohydrates) into the fruit during post-veraison and showed a positive differential effect on fruit growth compared with RDI-1 vines. This was reflected in a higher solute content per berry (12?% higher) and higher fresh berry weight (8?% higher) at harvest in PRI-1 compared to RDI-1 berries. However, this positive effect in fruit growth was not reflected in either an improved final yield or the water use efficiency of PRI-1 vines. In PRI-2, the soil water in the wet half was insufficient to maintain more favorable shoot water supply and phloem sap flow into the berry, and no substantial changes were observed in vine vigor, leaf and fruit growth between PRI-2 and RDI-2. Higher irrigation amount in the wet root zone and higher depth of irrigation under PRI seem to be more effective for 1103P–Mourvedre combination to produce a favorable effect in berry growth and development.  相似文献   

5.
The effects of several moderate irrigation regimes on vine water status, yield, and must and wine composition, were investigated during five seasons in a vineyard planted with Vitis vinifera cv. Tempranillo. Treatments consisted of non-irrigated vines and six differentially irrigated treatments with contrasting watering regimes during the pre-veraison and post-veraison periods. There were large differences in yield and grape and wine quality responses to irrigation among seasons, probably as consequence of the different environmental conditions and crop levels. It was, however, clear that vines benefit more of the irrigation supplied in years of high yield levels. Across seasons, yield increased in proportion to the amount of water applied mostly due to the larger berries of irrigated vines, and there was no clear response to the timing of irrigation supplied. In addition, there were no carry over effects due to irrigation on bud fertility. The post-veraison water application was necessary to increase must sugar level and wine alcohol content. However, water restrictions during the pre-veraison period lead to more concentrated berries in terms of total phenolic and anthocyanins. The only noticeable detrimental effect of irrigation, regardless of the timing of its application, on wine composition was an increase in wine pH.  相似文献   

6.
We investigated the effects of partial root-zone drying (PRD) applied at different periods on leaf water relations, vegetative development, fruit yield, must and wine quality in wine grapes (Vitis vinifera L. cv. Monastrell) during a 3-year field experiment in order to determine the importance of the timing of PRD application on physiological and agronomical vine response under semiarid conditions. Two irrigation treatments were applied: conventional drip irrigation (CI) and PRD. Both treatments received the same annual water quantity. Each year the PRD treatment was applied at different periods of the growth cycle. In 1999 PRD was applied from veraison to harvest (end July–early September); in 2000 from fruit set to harvest (mid June–early September); and in 2001 PRD from budburst to harvest (mid April–early September). Leaf water relations and gas exchange during the experimental period were not significantly affected by PRD treatment. In 1999 and 2000 there was no significant treatment effect on vegetative development, yield or fruit quality. However, in 2001 (when PRD was applied from budburst to harvest), reproductive and vegetative development was clearly altered in PRD vines. Fruit set percentage and vegetative development (shoot length, pruning weight and primary and lateral leaf area) were significantly increased in PRD vines compared to CI. This resulted in both higher yield (kg per vine) (43%) and water use efficiency (40%) compared to CI vines. Berry number per cluster and cluster weight were also significantly increased in PRD vines. Notwithstanding higher yield in PRD vines and a similar berry size, the must and wine quality was not significantly altered, indicating a higher synthesis and accumulation of photoassimilates and metabolites in the berries of PRD vines. We conclude that there was an positive effect on vegetative and reproductive growth when long-term PRD was applied from the beginning of growing season (budburst), suggesting that early onset of PRD is desirable to intensify PRD response under these semiarid conditions. Nevertheless from these results we need to further investigate the long- and short-term effects of PRD, with moderate water amounts, on vegetative and reproductive development such as flowering and fruit set processes in wine grapes.  相似文献   

7.
A field experiment was carried out over three seasons on Vitis vinifera cv. Tempranillo in order to compare pre-veraison and post-veraison water restrictions on vine performance and fruit composition. Rain-fed vines were compared with a treatment named MAX that was constantly irrigated at 75?% of the estimated crop evapotranspiration (ETc). In addition, an early (pre-veraison) water deficit strategy (ED) was applied by withholding irrigation until plant water stress experienced by vines surpassed a threshold value of midday stem water potential of ?1.0?MPa. After that, 75?% of ETc was applied. A late season deficit (LD) treatment was irrigated as per the MAX up to veraison, and thereafter, water application was reduced to approximately 37?% of ETc. All irrigation regimes increased vine yield up to 58?% with respect to the rain-fed treatment, and no differences in yield among the irrigated treatments occurred. However, there were differences in berry composition among the different irrigation strategies. The ED strategy was more effective than the LD one in reducing berry growth leading to more concentrated berries in terms of sugars and anthocyanins. The LD water shortage impaired berry sugar accumulation due to the detrimental effect of water stress on leaf photosynthesis.  相似文献   

8.
The effects of crop level and irrigation on water relations, yield, grape and wine composition were studied during two seasons in a Tempranillo vineyard in Spain. Irrigation was applied at two levels: R2 (with mild deficit irrigation applied during all the season) and R1 (with more severe water stress applied before veraison). Deficit irrigated vines were compared to a non-irrigated control. Crop levels imposed resulted in 11, 20, and 27 clusters per vine. Over all treatments, yield and ratio of leaf area to yield (LA: Y) were different between years: 4.4 and 16.3?t?ha?1 and 1.72 and 0.88?m2?kg?1 in 2005 and 2006, respectively. In 2005, large differences in grape and wine composition occurred among non-irrigated and the irrigated treatments, but not between R1 and R2 treatments. Wines from non-irrigated vines were more acid, had higher total anthocyanins, and higher color intensity. In 2006, irrigation had less effect on grape and wine variables. The effect of shoot and cluster thinning on wine composition was different between seasons due to the different crop load values between years. Grape composition was negatively affected by high crop level only for values of LA: Y lower than 1.5?m2?kg?1.  相似文献   

9.
The effect of using treated wastewater for irrigation of table grapes (Vitis vinifera cv. Superior Seedless) was studied for six seasons. The experimental vineyard was grown on clay loam soil in a semi-arid area. Treated wastewater (5.83 meq L?1 Na+) with (TWW + F) and without (TWW) fertilizer, and fresh water with fertilizer (FW + F, 2.97 meq L?1 Na+), were each applied at three irrigation levels (80, 60 and 40 % of crop evapotranspiration before harvest). Root zone (0–60 cm soil depth) soil saturated paste extract Na+ concentrations and sodium adsorption ratio (SAR) values fluctuated over the years, but generally decreased in the order TWW > TWW + F > FW + F for each irrigation level. Both Na+ concentrations and SAR values developed faster and to a greater extent at higher irrigation. Adding fertilizer to TWW decreased Na+ and SAR only at the high irrigation level. Na+ concentrations in the trunk wood, bark and xylem sap of the TWW and TWW + F irrigated vines were significantly higher than those in the FW + F-irrigated vines. Leaf petiole Na+ content increased with time and its maximum value in TWW and TWW + F irrigated vines exceeded 6,500 mg kg?1, threefold higher than in FW + F irrigated vines. We conclude that in clay soils under relatively high irrigation, Na+ may pose a greater potential risk to plants and soil rather than Cl? or salinity per se. However, significant effects on yield were not recorded during this six-year study probably due to the high salinity tolerance of the ‘Paulsen’ rootstock used in the experiment.  相似文献   

10.
Cost-benefit analysis was performed to determine the profitability of producing wine grapes under different irrigation regimes. Vines irrigated by regulated deficit irrigation (RDI) and partial root-zone drying (PRD) were compared with vines grown under full irrigation in a typical vineyard in a semiarid environment with scarce water resources (south-eastern Spain) during three consecutive years. Five irrigation treatments were applied. The Control treatment irrigated at 60% of the ETc (Crop evapotranspiration) throughout the orchard cycle. PRD-1 and RDI-1 provided deficit irrigation from fruit set to harvest (irrigated 30% ETc) and post-harvest (45% ETc). PRD-2 and RDI-2 provided deficit irrigation from fruit set to harvest (irrigated 15% ETc) and post-harvest (45% ETc). From an economic point of view, only the Control, PRD-1 and RDI-1 treatments were economically viable since their profitability indicators were positive, although low, especially PRD-1. The more severe deficit irrigated treatments (PRD-2 and RDI-2) were unviable. The most profitable treatment was the Control which had a Net Margin/total cost ratio (NM/C) (representing the overall profitability of the vineyard) of 25.37% compared with the 1.90% of RDI-1 and 0.57% of PRD-1. The threshold price of water indicates that only the Control remains profitable with higher water prices of up to 0.46 € m−3. When the cost-benefit analysis took into account the extra quality achieved in PRD-2 and RDI-2, it indicated that these treatments, which were otherwise economically unviable, achieved high returns (17 and 16%, respectively) and were close to the Control treatment. Thus, a low or moderate bonus that encourages extra berry quality for premium wine production would make deficit irrigation practices profitable. Moreover, the financial indices estimated suggest that in the present situation, and with our soil and climatic conditions, PRD is less economically profitable (higher installation cost, lower NM/C, and threshold price of water) than RDI under the same conditions.  相似文献   

11.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   

12.
灌水模式对油葵耗水量产量及经济效益的影响   总被引:2,自引:0,他引:2  
通过5种灌水处理模式和对照旱地油葵田间试验,探讨了灌水模式对油葵耗水量、产量、水分利用效率以及经济收入的影响。结果表明,油葵出盘前和灌浆后耗水量比其他时段多50%以上。在油葵不同生育阶段耗水量随着灌水量增加而增加;灌水定额120mm,灌两次水的灌水模式的产量最高,为2268kg/hm^2,而水分利用效率最大值出现在灌水定额66mm的灌水模式,灌水量增加反而使水分利用效率下降。经济分析结果表明,纯收入最高值出现在灌水模式93mm灌二水的处理,为2871元/hm^2,灌水定额增加或减少均导致经济收入下降。统计分析结果表明,干旱年份(全生育期有效降水量123mm)灌二水时,为了兼顾产量、水分利用效率以及经济收入,油葵最佳总灌水量以208-218mm为宜。全生育期有效降水量超过350mm的丰水年份不应该再灌水。  相似文献   

13.
再生水灌溉,是缓解水资源紧缺状况的一个重要措施,在缓解农田土壤旱情的同时,为农田注入了一定量的N、P营养物质,可明显地提高作物产量(可达到10%以上)。但是,在大量使用再生水灌溉的同时,也必须加强对农田氮素动态变化过程的监测,并据此适量调整减小施肥数量,以避免农田氮素过量而导致农田生态环境的恶化和水体的污染。提出了农田氮素监测和据此分析确定灌溉施肥数量的研究设想,包括研究内容、方法、拟解决的关键技术问题,以及预期成果和应用前景等。  相似文献   

14.
There are still some traditional vine-growing areas in Spain in which water-stressed vines are considered to produce berries with the highest quality must. To assess vine response to water availability, measured in terms of crop yield, vegetative development, and grape composition, five different irrigation treatments were evaluated over a five-year period in a Cabernet-Sauvignon vineyard in the Madrid region (Spain): no-irrigation (T0), water provided at 20?% of the reference evapotranspiration (ETo) (T20), water provided at 45?% of the ETo (T45), water provided at 20?% of the ETo until veraison and at 45?% thereafter (T20-45), and water provided at 45?% until veraison and 20?% thereafter (T45-20). A yield increment was observed with increasing water volumes. The T45 vines returned a consistent yield of around 8 t/ha, and a mean shoot weight of 30–50?g. The T0 and T20 plants showed reduced yields and vegetative growth in most years (yields being the most acutely affected). Berry weight was the yield component most influenced by water availability. In years of low rainfall, fertility was markedly reduced in the T0 vines. Providing a smaller irrigation volume before or after veraison (the T20-45 and T45-20 treatments) led to reductions in berry weight, cluster weight, and shoot weight over the last 3?years of the trial. Berry composition was almost unaffected by irrigation strategy. Taking into account yield, water use efficiency, and berry composition, the T45-20 treatment was the most efficient irrigation strategy.  相似文献   

15.
We describe the three dimensional variation in root length density (Lv) within a quarter of the planting area of Colombard grapevines on Ramsey rootstock grown under drip and full-cover microjet irrigation. Under drip irrigation roots were concentrated under the vine row, whereas under microjet irrigation roots were evenly spread across the planting area. The maximum Lv were 1.2 and 0.6 cm/cm3 and the estimated total root lengths per vine were 32 and 26 km for drip and microjet irrigated vines, respectively. Under drip irrigation, 56% of the variation in Lv could be accounted for as a function of depth and radial distance into the row, and under microjet, 45% of the variation in Lv could be accounted for as a function of depth. Twenty five per cent of the vine roots were in soil with an air filled porosity at field capacity of 6% or less. Based on the variation of root length per unit area (La) across a quarter of the planting area and between vines, we concluded that selection of a location at which the La would be representative of that in the entire irrigation unit is feasible in microjet irrigated vines but not in those irrigated with drip. The absence of a location representative of La confounds the scheduling of drip irrigation based solely on measurements of soil moisture.  相似文献   

16.
A study was conducted to determine the water stress effect on yield and some physiological parameters including crop water stress index for drip irrigated second crop watermelon. Irrigations were scheduled based on replenishment of 100, 75, 50, 25, and 0% soil water depletion from 90 cm soil depth with 3-day irrigation interval. Seasonal crop evapotranspiration (ET) for I100, I75, I50, I25, and I0 were 660, 525, 396, 210, and 70 mm in 2003 and 677, 529, 405, 221, and 75 mm in 2004. Fruit yield was significantly lowered by irrigation water stress. Average water-yield response factor for both of the years was 1.14. The highest yield was obtained from full irrigated treatment as 34.5 and 38.2 t ha−1 in 2003 and 2004, respectively. Lower ET rates and irrigation amounts in water stress treatments resulted in reductions in all measured parameters, except water-soluble dry matter concentrations (SDM). Canopy dry weights, leaf relative water content, and total leaf chlorophyll content were significantly lowered by water stress. Yield and seasonal ET were linearly correlated with mean CWSI values. An average threshold CWSI value of 0.17 before irrigation produced the maximum yield and it could be used to initiate the irrigation for watermelon.  相似文献   

17.
During a three-year period, we evaluated the profitability of a deficit-irrigation (DI) treatment in mature ‘Lane late’ navel orange (Citrus sinensis (L.) Osb.) trees grafted on two different drought-tolerant rootstocks, ‘Cleopatra’ mandarin (Citrus reshni Hort. ex Tanaka) and ‘Carrizo’ citrange (C. sinensis (L.) Osb. × Poncirus trifoliata L. Raf.). The irrigation strategies for each rootstock were a control treatment, irrigated at 100% crop evapotranspiration (ETc) during the entire season, and a DI, irrigated at 100% ETc except during phase I (fruit set) and phase III (fruit maturation) of fruit growth, when complete irrigation cut-off was applied. The main difference found was between rootstocks, orchards of ‘Carrizo’ being 39% more profitable than those of ‘Cleopatra’ due to the greater yield and fruit size and higher price (0.02 € kg−1) for trees on ‘Carrizo’. The application of the DI treatment increased the profit for ‘Carrizo’ since the decrease in pruning costs was greater than the reduction of incomes. The profit of ‘Cleopatra’ under DI decreased due to yield reduction. The variable and fixed operating costs during the growth cycle were decreased by the DI treatment, with a reduction of fertiliser (40%), water applied (30%) and electricity consumed (30%) compared with the control. In addition, in ‘Carrizo’, DI decreased the pruning (16%), machinery (11%) and phytosanitary products (9%) costs as a result of the reduction of the canopy growth. From these results, we conclude that, with similar crop management, orchards of ‘Lane late’ navel orange on ‘Carrizo’ rootstock were more profitable than those on ‘Cleopatra’ under deficit-irrigation conditions.  相似文献   

18.
In a greenhouse pot experiment conducted in Turkey during 2001, onion seedlings were transplanted on May 31 at the density of five plants per pot. On this date the soil water content of all pots were at field capacity. The pots were weighed daily until harvest (December 2), and the data were used to determine the daily evapotranspiration and quantity of irrigation. Eight irrigation treatments were applied, designated as I1 full irrigation (non-deficit treatment), and I2, I3 and I4 no irrigation in the vegetative growth periods, yield formation and ripening, respectively, and I5, I6, I7 and I8 received 0.0, 0.25, 0.50 and 0.75 times the soil water depletion in the treatment I1 on the same day. For each treatment, the following parameters were analysed and compared: applied irrigation depth, daily and seasonal evapotranspiration, bulb yield, yield response factor (ky), irrigation water use efficiency (IWUE) and water use efficiency (WUE). The findings indicated that onion plants were very sensitive to lack of soil water during the total growing season and the yield formation period, but rather insensitive in the vegetative and ripening periods. High water use and water use efficiencies were observed with increasing levels of irrigation, or no irrigation in the vegetative period.  相似文献   

19.
Over the last two decades, a significant increase in intensively managed olive orchards has occurred in the northwest of Argentina where climatic conditions differ greatly from the Mediterranean Basin. Annual amounts of applied irrigation are generally high due to low rainfall, access to deep ground water, and little information about water use by the crop in the region. The objectives of this study were to: (1) assess the responses of plant growth, yield components, and several physiological parameters to five different irrigation levels and (2) determine an optimum crop coefficient (Kc) for the entire growing season considering both fruit yield and vegetative growth. Five irrigation treatments (Kc = 0.50, 0.70, 0.85, 1.0, 1.15) were employed from late winter to the fall over 2 years in a 6-year-old cv. ‘Manzanilla fina’ olive orchard. Tree canopy volume was approximately 15 m3 with a leaf area of about 40 m2 at the beginning of the experiment. During much of each year, the volumetric soil water content was lower in the Kc = 0.50 treatment than in the other irrigation levels evaluated (Kc = 0.85 and 1.15). Although differences in midday stem water potential (Ψs) were not always apparent between treatments during the first year, there were lower Ψs values in Kc = 0.50 and 0.70 relative to the higher irrigation levels during the second year. Shoot elongation in Kc = 0.50 was about 50% of that in Kc = 1.0 and 1.15 during both years leading to significant differences in the increase of tree canopy volume by the end of the first year. Fruit yield was similar among irrigation levels the first year, but yield reached a maximum value the second year between Kc = 0.70 and 0.85 above which no increase was apparent. The somewhat lower fruit yield values in Kc = 0.50 and 0.70 were associated with decreased fruit number rather than reductions in individual fruit weight. The water productivity on a yield basis (fruit yield per mm of applied irrigation) decreased as irrigation increased in the second year, while similar calculations based on trunk cross-sectional area growth indicated that vegetative growth was proportional to the amount of irrigation. This suggests that the warm climate of northwest Argentina (28° S) can induce excessive vegetative growth when very high irrigation levels are applied. A Kc value of approximately 0.70 over the course of the growing season should be sufficient to maintain both fruit yield and vegetative growth at adequate levels. An evaluation of regulated deficit irrigation strategies for table olives in this region could be beneficial to further reduce irrigation.  相似文献   

20.
Northeast of Brazil is a semi-arid region, where water is a key strategic resource in the development of all sectors of the economy. Irrigation agriculture is the main water consumer in this region. Therefore, policy directives are calling for tools to aid operational monitoring in planning, control and charging of irrigation water. Using Landsat imagery, this study evaluates the utility of a process that measures the level of water use in an irrigated area of the state of Ceará. The experiment, which models evapotranspiration (ET), was carried out within the Jaguaribe-Apodi irrigation scheme (DIJA) during two months of the agricultural season. The ET was estimated with the model Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC). The model uses the residual of the energy balance equation to estimate ET for each pixel in the image. The results of the estimates were validated using measurements of ET from a micrometeorological tower installed within a banana plantation located near the irrigation scheme. After evaluating the ET estimates, the average fraction of depleted water for a set of agricultural parcels combined with the monthly ET mapping estimates by METRIC provided a method for predicting the total water use in DIJA for the study period. The results were then compared against the monthly accumulated flow rates for all the pumping stations provided by the district manager. Finally, this work discusses the potential use of the model as an alternative method to calculate water consumption in irrigated agriculture and the implications for water resource management in irrigated perimeters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号