首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two recombinants between Gli-A1 and Glu-A3 prolamin genes and seven between Gli-B1 and Glu-B3 obtained from two crosses of durum wheat were classified on the basis of the prolamin alleles at the Glu-A1, Gli-A1, Glu-A3, Gli-A2, Glu-B1, Gli-B1 and Glu-B3 loci. The separate effects on gluten strength of gliadin genes at Gli-1 and low Mr glutenin subunit genes at Glu-3 were estimated by comparing the SDS-sedimentation test values of the recombinants with those of the same progeny having the same prolamin composition, except for the recombined alleles. The results showed clearly that low Mr glutenin subunit genes at Glu-A3 and Glu-B3, rather than gliadin genes at Gli-A1 and Gli-B1, were responsible for the differences in gluten strength.  相似文献   

2.
Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program, we developed a set of nine near isogenic lines (NILs) including different Glu-A3/Gli-A1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu-3/Gli-1 allele combinations to improve breadmaking quality is discussed.  相似文献   

3.
The Glu-B1, Glu-D1 and Glu-B3 encoded glutenin subunit compositions of a population of synthetic hexaploid wheats (AABBDD, 2n=6x=42), which was random for flour protein (FP), SDS-sedimentation (SDSS), Alveograph strength (W), the tenacity/extensibility (P/G) ratio and bread loaf volume (LV) were examined in this study. The synthetics were produced from various crosses involving several Triticum lurgidum cultivars and Triticum lauschii (coss.) Schmal accessions. The Glu-A1 null allele as well as three Glu-B1 (subunits 7 + 8, 6 + 8 and 20), 13 Glu-D1 and two Glu-B3 (LMW-1 and LMW-2) allelic variants were present in the synthetic population. Thirty-six different glutenin subunit combinations, including the Glu-B1, Glu-D1 and Glu-B3 encoded alleles, were observed. The synthetic hexaploids showed large variations for all quality parameters evaluated. All quality characteristics except one (P/G ratio, which showed no association with allelic variations at Glu-B3) were influenced by allelic variations at the Glu-B1 and Glu-B3 loci; subunits 6 + 8 and 7 + 8 showed significantly better quality effects than subunit 20. Low Mr glutenin subunits LMW-1 and LMW-2 showed both negative and positive quality effects. The Glu-D1 locus of T. tauschii contributed various alleles not found in bread wheat. The influence of new Glu-D1 alleles on the bread-making quality characteristics of the synthetic wheats could not be established, partly because there was a limited frequency of some of the alleles in the population, and partly because some synthetics, having a common Glu-D1 allele, showed quality differences associated with allelic variation at Glu-B1 and/or Glu-B3. Differential quality effects could be observed, however, among some Glu-D1 alleles. Synthetics derived from a common durum wheat source showed better overall quality characteristics and bread loaf volume when they possessed subunits 5 + 12 or 1·5 + 10 than when they had any other Glu-D1 encoded glutenin subunit.  相似文献   

4.
Thirty-seven varieties of a Mediterranean durum wheat collection grown in Tunisia and Spain were analysed for their allelic composition in prolamins, as well as their protein concentration, sodium dodecyl sulphate sedimentation (SDSS) test and mixograph parameters. Genotype was a greater source of variation in all measurements than locality. Uncommon high and low molecular glutenin subunits (HMW-GS and LMW-GS) were found (V and 2•• subunits at Glu-A1, 13 + 16 at Glu-B1, 5* subunit and ax allele at Glu-A3). The rare combinations 2 + 4+14 + 18 and 8 + 9+13 + 16+18 subunits at the Glu-B3 locus were found. Glu-A3ax had a positive influence on SDSS and mixograph parameters. Of all the prolamins, those that have the B-LMW-GS composition aaa (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d gave the best semolina quality. By contrast, semolina quality is poor when this same composition is associated with the Glu-A1c and Glu-B1e and even poorer when associated with the Glu-A1c and Glu-B1f. In addition, the cultivars with B-LMW-GS allelic composition aab (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d, gave high quality, whereas when associated with the Glu-A1c and Glu-B1e or with Glu-A1o and Glu-B1f, the quality was very poor.  相似文献   

5.
The F4 progenies of four durum wheat crosses were used to determine the effects of different prolamin alleles on quality properties evaluated by the SDS sedimentation, mixograph, micro-alveograph and vitreousness tests and by protein content. Allelic compositions of the gliadins (Gli-B1 and Gli-2 loci) and the glutenins (Glu-1, Glu-3 and Glu-B2 loci) were determined. Alleles at the Glu-B3 locus showed a strong influence on quality measured by SDSS, mixograph and alveograph tests. Significant interactions between Glu-B3 and other glutenin loci were also detected. Prolamin composition explained more than 30% of the variation in SDSS, mixograph MT and alveograph W. The mixograph parameter BDR, and alveograph P and L parameters were the most erratic with between 8 and 76% of variation explained by prolamin composition. In general, no significant associations of prolamins with vitreousness or protein content were found. A significant correlation was detected between SDSS, MT and W. These results together with those from previous studies have important implications for wheat breeders since selection based on good alleles at Glu-B3 (a, c, j) together with favourable alleles at other loci such as Glu-A1 (subunit 1), Glu-A3 (a, c, d, h), Glu-B2 (a,b) and Gli-B1 (ω-35) could improve durum wheat quality.  相似文献   

6.
One hundred and eighty-two bread wheat cultivars developed in India were characterized for low molecular weight (LMW) glutenins using SDS-PAGE and allele-specific polymerase chain reaction (PCR) to assess allelic diversity encoded by Glu-3 loci, as well as their utility for correctly identifying different alleles. SDS-PAGE indicated Glu-A3c is present in 64.6% of the cultivars, Glu-A3b in 13.8%, Glu-A3d in 12.7% and Glu-A3e/f in 8.8%. Seven types of alleles were present at the Glu-B3 locus: Glu-B3b (29.3%), Glu-B3g (27.0%), Glu-B3h (13.8%), Glu-B3i (16.1%), Glu-B3j (12.1%), Glu-B3c (0.6%) and Glu-B3d (1.1%). SDS-PAGE found three types of Glu-D3 alleles: Glu-D3a (30.2%), Glu-D3b (67.1%) and Glu-D3c (2.7%). However, PCR found two different alleles in cultivars classified as carrying Glu-D3a and three alleles in those identified as carrying Glu-D3b cultivars, indicating a more complex nature of the Glu-D3 locus. In conclusion, the data found greater consistency between the SDS-PAGE and PCR amplification patterns of alleles such as Glu-A3c, Glu-A3d, Glu-B3g, Glu-B3h and Glu-B3i, and less consistency between those same patterns in the Glu-A3b, Glu-A3e/f and Glu-B3b alleles. More studies are needed in order to achieve unambiguous identification of the Glu-3 alleles and thereby allow their greater utility in germplasm evaluation and breeding.  相似文献   

7.
High-molecular-weight glutenin (HMW-GS) and low-molecular-weight glutenin (LMW-GS) subunits play an important role in determining wheat quality. To clarify the contribution of each subunit/allele to processing quality, 25 near-isogenic lines with different HMW-GS and LMW-GS compositions grown at two locations during the 2010 cropping season were used to investigate the effects of allelic variation on milling parameters, mixograph properties, raw white Chinese noodle (RWCN) and northern style Chinese steamed bread (NSCSB) qualities. The results showed that Glu-B1 and Glu-B3 made a large contribution to determining mixograph properties and processing quality, respectively. Subunit pairs 17 + 18 and 5 + 10, and alleles Glu-A3b, Glu-A3d, Glu-B3g and Glu-D3f made significant contributions to mixograph properties and no significant difference was detected on most parameters of RWCN and NSCSB for the allelic variation of HMW-GS and LMW-GS. The allelic interactions among glutenin loci had significant effects on wheat quality. The line with 1, 17 + 18, 2 + 12, Glu-A3c, Glu-B3b, Glu-D3c associated with superior mixograph properties, the line with 1, 7 + 9, 2 + 12, Glu-A3c, Glu-B3d, Glu-D3c had superior viscoelasticity of RWCN, and the line with 1, 7 + 9, 2 + 12, Glu-A3e, Glu-B3b, Glu-D3c had the highest total score of NSCSB. These results provide useful information for genetic improvement of the qualities of traditional Chinese wheat products.  相似文献   

8.
新疆小麦品种Glu-A3和Glu-B3位点等位变异的分布   总被引:1,自引:1,他引:1  
为给新疆小麦品质育种提供理论依据,利用Glu-A3、Glu-B3位点上的17个STS标记检测了185份新疆冬、春小麦品种Glu-A3和Glu-B3位点的等位变异。结果表明,新疆小麦品种以Glu-A3c、Glu-B3a和Glu-B3j亚基为主,其分布频率分别为64.86%、22.70%和17.84%。新疆冬、春小麦品种在Glu-A3位点上均以Glu-A3c亚基为主,分布频率分别为63.30%和67.11%;在Glu-B3位点上,新疆冬、春小麦品种分别以Glu-B3j和Glu-B3a为主,分布频率分别为22.02%和26.32%。新疆冬、春小麦农家品种亚基类型较少,冬小麦农家品种仅有5种类型(以Glu-A3c和Glu-B3i为主),春小麦农家品种有10种类型(以Glu-A3c和Glu-B3d为主)。引进品种和自育品种亚基类型丰富,冬小麦引进品种以Glu-A3c和Glu-B3i为主,分布频率为12.84%和6.42%;春小麦引进品种以Glu-A3c和Glu-B3j为主,分布频率为17.11%和6.58%。冬小麦自育品种以Glu-A3c和Glu-B3j亚基类型为主,分布频率为45.87%和18.35%;春小麦自育品种以Glu-A3c和Glu-B3a亚基类型为主,分布频率为36.84%和18.42%。  相似文献   

9.
Low-molecular weight glutenin subunits (LWM-GS) are important components of wheat (Triticum aestivum L.) gluten, with important effects on end-use quality. The LMW-GS are encoded at Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3, on the short arms of chromosomes 1A, 1B and 1D), each of which exhibits extensive allelic variation. Each locus encodes numerous LMW-GS, some of which have similar electrophoretic mobilities, making it difficult to distinguish among Glu-3 loci. Alleles of the Glu-D3 locus of bread wheat are considered the most problematic to assign. To date, six Glu-D3 alleles, designated a, b, c, d, e and f, have been reported. We report five previously undescribed alleles (g, h, i, j and k), and describe a method for characterizing them using a combination of SDS-PAGE and multiplexed PCR-based DNA markers. This method could be used for accurate identification of Glu-D3 alleles, permitting the estimation of the effects of these alleles on end-use quality and the selection of desirable alleles and allelic combinations in wheat breeding.  相似文献   

10.
Low-molecular-weight glutenin subunits (LMW-GS) play a key role in determining the processing quality of the end-use products of common wheat. The objectives of this study were to identify genes at Glu-A3 locus, develop the STS markers, and establish multiplex PCR with the STS markers for Glu-A3 alleles. Gene-specific PCR primers were designed to amplify six near-isogenic lines (NILs) and Glenlea with different Glu-A3 alleles (a, b, c, d, e, f and g) defined by the protein electrophoretic mobility. Three Glu-A3 genes with complete coding sequence were cloned, designated as GluA3-1, GluA3-2 and GluA3-3, respectively. Seven dominant allele-specific STS (sequence tagged sites) markers were designed based on the SNPs (single nucleotide polymorphisms) among different allelic variants for the discrimination of the Glu-A3 protein alleles a, b, c, d, e, f and g. Four multiplex PCRs were established including Glu-A3b + Glu-A3f, Glu-A3d + Glu-A3f, Glu-A3d + Glu-A3g, and Glu-A3b + Glu-A3e. These markers and multiplex-PCR systems were validated on 141 CIMMYT wheat varieties and advanced lines with different Glu-A3 alleles, confirming that they can be efficiently used in marker-assisted breeding.  相似文献   

11.
A number of primers were designed which target DNA sequence variation of the coding and /or promoter regions of wheat HMW glutenin y-type genes located at the Glu-B1 locus. This allowed the development of a set of PCR-based markers for specific HMW glutenin genes encoding By-subunits for which no markers were previously available. Markers were validated using test cultivars containing specific Glu-B1 alleles confirmed by SDS-PAGE and RP-HPLC analysis. Among the specific markers developed, primer pair ZSBy8F5/R5 was specific for the By8 gene, which exists in Glu-B1b (Bx7+By8) and Glu-B1u (Bx7*+By8) alleles. This marker allows discrimination of alleles containing By8 and By8* that are usually difficult to distinguish using SDS-PAGE. Since the over-expressed Glu-B1 allele (Glu-Bl al.) contains the By8* subunit, it is possible to use this marker in breeding programs for selecting for the over-expression of subunit Bx7 in crosses that segregate between normal Bx7 and over-expressed Bx7 subunits. This marker also represents an alternative for distinguishing two common Glu-B1 alleles: Glu-B1i (Bx17+By18) and Glu-B1b (Bx7+By8). Two primer pairs ZSBy9aF1/R3 and ZSBy9F7/R6 both gave characteristic banding patterns for Glu-B1c (Bx7+By9) and can therefore be used to discriminate By9 - containing alleles from non - By9 alleles. Primer pair ZSBy9F2/R2 produced amplicons with a diagnostic banding pattern for allele Glu-B1f (Bx13+By16) and also permitted the discrimination of Glu-B1h (Bx14+By15) and Glu-B1e (Bx20) that have opposing genetic effects on wheat quality and are difficult to discriminate by SDS-PAGE.  相似文献   

12.
There is a need to develop more sensitive and reliable tests to help breeders select wheat lines of appropriate quality. Gluten thermostability, measured by the viscoelasticity of heated gluten, was assessed for its usefulness in evaluating quality of wheats in breeding programs. Two sets of wheat samples were used: Set I consisting of 20 cultivars and/or breeders' lines (BL), with diverse dough strengths and allelic variations of high Mr glutenin subunits coded at the Glu-A1, Glu-B1 and Glu-D1 loci (N=20) and Set II consisting of 16 near isogenic BL of F7 generation that had been in a quality selection program for three years. Thermostability of the isolated wet gluten was determined by measuring its viscoelastic properties, and was related to noodle texture, flour protein content, protein composition, dough physical properties and other quality predicting tests.Viscoelasticity of heat-treated gluten, isolated with 2% NaCl solution, significantly correlated with most of the tests used to measure dough and/or gluten strength and Chinese white salted noodle texture. The rate of thermal denaturation of proteins depends on Mr and packing density. High ratios of monomeric proteins such as gliadins and low Mr glutenin subunits to high Mr glutenin subunits increase the thermostability of the gluten. The measurement of viscoelasticity of heat-denatured gluten can be a useful test to determine gluten quality. Our study showed that gluten viscoelasticity and most of the tests related to dough and/or gluten strength are independent of allelic variations of the high molecular weight glutenin subunits. This test has been developed for predicting white salted noodle quality.  相似文献   

13.
陕西小麦Glu-A3和Glu-B3位点等位变异的检测和分析   总被引:1,自引:1,他引:0  
低分子量谷蛋白亚基(LMW-GS)与小麦品质密切相关。为了给陕西小麦的品质改良提供参考依据,采用STS分子标记,检测了175份陕西小麦品种(系)Glu-A3和Glu-B3位点的等位变异组成。结果表明,陕西小麦Glu-A3位点存在4种等位变异,即Glu-A3a、Glu-A3b、Glu-A3c和Glu-A3d,分别占12.6%、1.7%、58.3%和27.4%;Glu-B3位点存在8种等位变异,即Glu-B3a、Glu-B3b、Glu-B3d、Glu-B3e、Glu-B3f、Glu-B3g、Glu-B3i和Glu-B3j,分别占4.6%、2.9%、45.7%、0.6%、2.9%、8.5%、4.0%和30.8%。在陕西不同地区小麦之间,两个位点等位变异的种类、组合及其分布比例存在差异,这可能与地区间不同的自然地理环境、饮食习惯、育种目标及亲本选择有关。  相似文献   

14.
A total of 485 common landraces of bread wheat were collected from the Yangtze-River region of China. Their high molecular weight glutenin subunit (HMW-GS) composition was analyzed by Matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry (MALDI-TOF-MS). Among all landraces tested, 453 were homogeneous for HMW-GS, 32 were heterogeneous, and 37 contained abnormal subunits. A total of 22 alleles were detected, including 3 at Glu-A1, 13 at Glu-B1 and 6 at Glu-D1, respectively. Higher variations occurred at the Glu-B1 locus compared with Glu-A1 and Glu-D1. Glu-A1c (74.0%), Glu-B1b (40.4%), Glu-D1a (84.9%) appeared to be the most frequent alleles at Glu-A1, Glu-B1 and Glu-D1, respectively. Two alleles ("null" and 1) at the Glu-A1 locus, three allele compositions (7 + 8, 7OE + 8, 7 + 9) at the Glu-B1 locus, and two (2 + 12 and 5 + 10) at the Glu-D1 locus appeared to be the common types in the 485 landraces. Sixteen new alleles represented by abnormal subunits were identified at the Glu-B1 and the Glu-D1 locus.  相似文献   

15.
Durum wheat is an important food crop used primarily for pasta production. High-molecular-weight glutenin subunits (HMW-GS) encoded by the closely linked genes Glu-B1x and Glu-B1y are known for their combined effects on pasta quality, but their individual contributions and interactions remain poorly understood. In this study, we show that individual loss-of-function mutants of Glu-B1x (ΔBx6) and Glu-B1y (ΔBy8) were associated with significant reductions in gluten strength compared to the wildtype, with stronger effects in the ΔBxy double mutant. Reductions in gluten strength were reflected in reduced mixograph and alveograph parameters, gluten index, faster extrusion flow rates and increased cooking loss. Interestingly, the Glu-B1x mutation was also associated with significant increases in grain and semolina protein content, increased pasta firmness, reduced starch viscosity and increased amylose in ΔBx6 and ΔBxy. In general, the ΔBx6 mutation had stronger effects than the ΔBy8 mutation, and significant interactions between the two genes were frequent. In addition to the basic knowledge gained on the individual effects of the Bx6 and By8 subunits and their interactions, the genetic stocks developed in this study provide useful tools to study the effects of natural or synthetic HMW-GS on pasta quality parameters in a background lacking endogenous HMW-GS.  相似文献   

16.
During the determination of the HMW glutenin subunit composition of Finnish varieties, the variety Ulla was observed to contain two biotypes which differed from each other at two loci:Glu-A1andGlu-A3/Gli-A1. One of them, called Ulla 1, contained subunit 2* (Glu-A1b) andGlu-A3o/Gli-A1o, and Ulla 2 contained the null allele (Glu-A1c) andGlu-A3a/Gli-A1c. In order to determine the effect of this allelic variation on quality, the two biotypes were crossed and random lines were produced from the progeny by single seed descent. In total, 95 F6 lines were analysed from four bulked Ulla progeny lines. Significant interaction between the allelic variants of HMW glutenins and LMW gluten proteins affected the SDS-sedimentation volume at the mean flour protein level of 13·1% (dmb); the effect of LMW gluten variants was larger in the lines deficient of a HMW glutenin subunit than in lines having a HMW glutenin subunit (2*). At the higher flour protein levels (mean=15·1%, dmb) the effect on SDS-sedimentation volume was additive; progeny carrying alleles b (subunit 2*) and o/o atGlu-A1andGlu-A3/Gli-A1had significantly greater sedimentation volumes than the progeny carrying alleles c (no subunit) and a/c, respectively. The SDS-sedimentation volumes indicated differences in the quantities of the polymeric glutenins, gel proteins which have been shown to reflect dough strength. In the four bulked Ulla progeny lines, the variation in HMW glutenin subunits affected the dough strength values of the Extensigraph. However, the variation in LMW glutenin subunits did not affect Extensigraph dough strength values, as was predicted by SDS-sedimentation volumes. In the Ulla progeny, adding a HMW glutenin subunit affected Extensigraph dough strength more than adding a LMW glutenin subunit, although both increased the SDS-sedimentation volumes. Moreover, the variation in LMW gluten proteins affected the dough mixing stability in the Farinograph and test baking results of the Ulla progeny.  相似文献   

17.
The high and low Mr glutenin subunit compositions (controlled by the Glu-1 loci and the Glu-B3 locus, respectively) and the bread-making quality characteristics of 26 durum wheat (Triticum turgidum) genotypes were determined. The relationships between quality parameters and Glu-B1 and Glu-B3 controlled glutenin subunit composition were also investigated. The Glu-A1-controlled null allele was present in all the genotypes. High Mr subunits 20, 6 + 8 and 7 + 8 occurred in similar proportions in the cultivars analysed. The Glu-B3 low Mr allelic variants, LMW-1 and LMW-2, were both represented, with LMW-1 being present in lower proportion. Flour protein, SDS-sedimentation volume, dough strength (Alveograph W value), dough mixing time and bread loaf volume varied among the genotypes. Most samples had high Alveograph tenacity/extensibility (P/G) ratios, typical of tenacious gluten character. SDS-sedimentation volume, dough strength, dough mixing time and bread loaf volume were all interrelated. An association with flour protein content was observed only for mixing time, while the Alveograph tenacity/extensibility ratio was not correlated with the other parameters. Comparisons within the Glu-B1 and Glu-B3 loci indicated that the high Mr subunit 7 + 8 and the low Mr subunit LMW-2 had significantly greater beneficial effects on gluten strength and bread-making quality than the high Mr subunits 6 + 8 or 20 and the low Mr subunit LMW-1, respectively. High Mr subunit 6 + 8 had greater beneficial effects on quality than subunit 20.  相似文献   

18.
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. The LMW-GSs are encoded by multi-gene families at the Glu-A3, Glu-B3 and Glu-D3 loci, with more than 15 genes present in most bread wheat varieties. However, the genic profile associated with different alleles has not been clearly defined. Here, the LMW-GSs in a set of standard varieties were analyzed using molecular markers. In most cases, each Glu-3 allele was represented by a specific haplotype; however, some alleles were undistinguishable. The Glu-A3e and Glu-A3g alleles showed an identical marker haplotype, as did the alleles Glu-B3c and Glu-B3d, and Glu-B3f and Glu-B3ab. In contrast, two haplotypes among varieties designated Glu-D3c were differentiated. The marker profiles present at the Glu-D3 locus exhibited less variation compared to the genes at the Glu-A3 and Glu-B3 loci. Results show the potential of the LMW-GS gene marker system in the characterization of the LMW-GS alleles present in specific bread wheat varieties, and its reconciliation with protein-based nomenclature. This approach will advance the understanding of the contribution of each of the LMW-GS gene alleles in the control of the end-use quality.  相似文献   

19.
为了从分子水平上探讨优质小麦资源中LMW-GS等位基因与小麦品质的关系,以及在改善小麦品质方面的潜在价值,利用小麦Glu-A3和Glu-B3基因的特异引物从强筋型、中筋型和弱筋型小麦共计10份材料中分离出LMW-GS基因后进行序列分析。结果表明,共发现14个新的核苷酸变异类型和4个肽链变异类型。其中,14个新的核苷酸变异类型中,4个为Glu-A3基因变异类型,1个为Glu-B3基因变异类型,9个为Glu-D3基因变异类型。值得注意的是,有2个半胱氨酸数目特殊的亚基类型被发现,一个是来自师栾02-1含有9个半胱氨酸残基的GluA3-18基因,另一个是来自偃展4110含有7个半胱氨酸残基的GluD3-13基因。  相似文献   

20.
为快速获得携带麦谷蛋白优质亚基基因的小麦新品种,提高小麦的品质育种技术水平,利用引进的矮败材料与和尚头、甘春20号、临麦34号等10个不同品种(系)杂交,并对杂交后代进行了花药培养,获得了115份花培株系;利用PCR对花培后代株系及杂交亲本进行了优质贮藏蛋白亚基分子标记检测,3个HMW-GS为 Bx7、 Bx14、 Dx5,3个LMW-GS为 Glu-A3ac、 Glu-A3d、 Glu-B3b。结果表明,在115份花培材料中, Bx7的出现频率最高,为94.78%,其余依次为 Glu-A3ac、 Dx5、 Bx14、 Glu-A3d和 Glu-B3b;获得了44份聚合4个亚基以上的材料;结合农艺性状鉴定,筛选出了3份综合性状优异的小麦新品系AB158、AB167和AB332。本研究将花培育种技术、分子标记辅助选择技术及矮败小麦育种技术进行了有机结合,其结果可为提升小麦品质育种技术水平提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号