首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
电液比例负载口独立控制系统压力流量控制策略   总被引:7,自引:2,他引:5  
介绍了电液比例负载敏感负载口独立控制系统组成结构和工作原理,建立了该系统的数学仿真模型;针对执行元件的不同工况,分别设计了基于计算流量反馈的速度控制器和基于压力闭环控制的压力控制器,实现了系统的压力流量复合控制;仿真和实验结果表明,该控制系统有较高的速度控制精度和良好的节能效果.通过变参分析,研究负载口独立阀单元频响和阻尼及死区对系统控制性能的影响,为负载口独立阀单元的开发和应用提供理论指导.  相似文献   

2.
针对传统电液控制系统单一工作模式能耗高、效率低等问题,提出了一种负载口独立多模式切换控制系统。该系统基于负载口独立控制,通过改变传统液压回路连接方式,为系统拓展多种节能工作模式并设计了多模式切换控制器。该控制器首先根据负载方向和速度方向,将系统切换至能量最优的工作模式;然后再根据工作模式为执行器进、出口配置最佳阀控策略,而泵控方式采用电液负载敏感方法使系统压力适应负载压力。为验证该系统在出口压力损失和能量再生两方面的节能效果,以传统电液负载敏感系统为对比对象,在小型挖掘机上进行了实验验证,并评估能效。实验结果证明,与传统电液负载敏感系统相比,采用负载口独立多模式切换控制方法在不降低运动跟踪性能的同时,能有效提高系统的能量效率,节能率达21.95%。  相似文献   

3.
负载口独立控制系统是一种进、出油路独立调节的新型液压系统,可以实现运动控制的同时,兼顾节能特性。本课题针对负载口独立控制系统的运动控制特点和节能特性,根据试验台的控制要求,采用了CAN总线通讯技术,选用了控制器、传感器、流量计等相关电控元件设计了负载口独立控制系统试验台的电控系统,编写了相关程序,并对负载口独立控制系统在典型工况下进行了节能特性试验。试验结果表明:负载口独立控制系统的节能特性优于传统单阀芯阀控系统。  相似文献   

4.
定量泵负载敏感系统在快速卸荷时容易出现压力冲击现象,对系统的可靠性和寿命产生较大危害。三通压力补偿阀是定量泵负载敏感系统中关键的调压元件,本文以三通压力补偿阀为切入点,建立定量泵负载敏感系统功率键合图模型,基于键合图模型推导系统的状态方程,建立Matlab动态仿真模型,探讨系统卸荷压力冲击的抑制方案。基于系统仿真模型,首先对系统卸荷压力冲击的仿真与试验进行对比,验证了仿真模型的正确性;然后,针对三通压力补偿阀的系统压力腔阻尼、阀芯直径、Ls腔阻尼、阀口锥角等关键参数,对卸荷压力冲击影响规律进行仿真;最后,基于关键参数对卸荷压力冲击影响规律的分析,提出了一种"小阀芯、双阀口"型三通压力补偿阀结构优化方案,并对其卸压冲击抑制效果进行了仿真和试验。结果表明,该方案可以有效抑制卸荷压力冲击,优化后系统卸压冲击压差比原系统降低了89%,卸荷压力降低了20%,进一步实现了节能。  相似文献   

5.
高压气动比例减压阀设计与仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
提出一种高压气动比例减压阀,该阀由比例电磁铁控制的二位三通型滑阀式先导阀和活塞提升式主阀组成,通过压力传感器和控制器构成闭环电反馈控制,最高工作压力为31.5 MPa。该阀虽然存在少量先导耗气,但保证了压力调整的快速性和稳定性,克服了先导泄漏对减压阀的影响,避免了先导阀意外结冰的发生。在介绍结构及工作原理的基础上分析了该减压阀的特点,利用AMESim建立了考虑气源压力和负载流量波动的仿真模型。仿真结果表明:该阀在气源压力缓慢下降且负载流量大范围波动的情况下能实现稳定的压力输出,在不改变控制参数的前提下,当气源压力为31.5 MPa时输出压力可在1~30 MPa范围内稳定;先导阀预开口形式对压力精度影响较小,但应避免正开口以减少气体浪费;先导阀环形间隙高度控制在10μm左右较为合适。  相似文献   

6.
甘蔗联合收割机由于执行元件的复杂性及液压系统负载的多变性,在作业过程中造成了大量的液压能损失现象.为改善收割机的节能性,在对负载敏感系统的工作原理进行分析的基础上首次提出了将负载敏感技术应用于甘蔗联合收割机的节能观点,并为其负载敏感系统匹配了相关参数.基于AMESim平台的静、动态仿真结果表明,在系统压力达到调压阀设定压力之前,系统的流量仅取决于流量阀的开口而与负载无关,负载敏感阀将根据流量阀的开口自动调节变量泵的排量.在系统压力达到调压阀设定压力之后,系统压力仅取决于调压阀的设定值,而与负载无关,此时负载敏感阀将自动调节变量泵的排量使其恰好与负载的需要相适应,控制过程的压力损失小于1 MPa,从而大大减小了甘蔗联合收割机的液压能损失.  相似文献   

7.
侯友山  石博强  谷捷 《农业工程》2010,(10):129-133
为了实现优先阀的稳健设计,基于解析法及SIMULINK分别建立了优先阀动态数学模型及仿真模型,仿真分析了系统各参数变化对优先阀动态响应特性的影响规律。在分析动态响应特性主要影响因素的基础上,以优先阀转向系统的流量响应超调量最小为设计目标,以优先阀的阀芯直径、弹簧刚度及节流口面积为设计变量,以方向盘角速度、转向负载、工作负载及输出流量为不确定因素,完成了基于损失模型的稳健设计。结果表明,稳健设计提高了设计目标的稳健性,一定程度上提升了优先阀的动态响应特性,该设计方法同样适用于其他阀件的改进设计。  相似文献   

8.
为了克服传统阀控液压系统由于其采用一根阀芯同时控制着进、出口油路,而造成的能耗大、效率低,出现了负载口独立液压系统。在负载口独立液压系统运动控制的研究中,大多采用电液压差补偿方法,此种方法具有计算量大、方法复杂、成本高等缺点,为此,本文分析了机液压差补偿方法的工作原理及其特点,根据机液压差补偿方法的原理,采用5个二位二通比例阀作为主控制阀,选用压力补偿器对进口控制阀两端的压差进行补偿,配以梭阀、换向阀、过载补油阀等辅助元件,设计了基于机液压差补偿的负载口独立控制阀,以及挖掘机工作机构负载口独立液压系统,并搭建了实物试验平台,从而为后续负载口独立液压系统的控制特性研究提供了良好的试验基础。  相似文献   

9.
为提高液压驱动拖拉机行驶时的调速稳定性和低速行驶时的平顺性,设计了一种液控比例流量阀。该阀设计有压力补偿功能,以消除压力波动对流量的影响,提高了流量控制精度。通过传统计算和仿真验证的方法对该阀进行结构参数设计。基于阀口迁移理论设计了阀芯节流槽,以增大调速区间。仿真结果表明:该阀控制流量范围为0~5.67×10-3m3/s,流量变化平稳,流量调速控制压力区占总控制压力区间的68.4%;压力补偿阀控制补偿压力在0.3~0.7 MPa的范围内,可使比例换向阀流量稳定。试验结果表明:拖拉机空载、发动机怠速工况时,流量调速控制压力区占总控制压力区间的45%;拖拉机空载、发动机高速工况时,流量调速控制压力区占总控制压力区间的62%;拖拉机重载、发动机怠速工况时,流量调速控制压力区占总控制压力区间的49.5%;拖拉机重载、发动机高速工况时,流量调速控制压力区占总控制压力区间的48.5%;当控制压力为0.78 MPa时,液控比例阀流量稳定在8.33×10-5m3/s;当控制压力为0.84 MPa时,液控比例阀流量稳定在2.5×10-4m3/s。  相似文献   

10.
为解决大负载、长行程位置控制系统中不能同时满足伺服缸活塞杆工作行程与控制精度的问题,提出了速度开环控制加传统的位置闭环控制的控制策略。在速度开环控制中比例调速阀控制调速缸,解决了工作行程不能太大的问题;在位置闭环控制中比例伺服阀控制伺服缸,解决了控制精度低的问题。此外为了解决设定位移经常变动和超调量过大问题,在位置闭环控制系统的PID控制器中分别采用了微分先行和积分分离控制算法。仿真结果验证了该策略的可行性与有效性。  相似文献   

11.
轴流脱粒滚筒模糊控制仿真   总被引:7,自引:2,他引:7  
基于模糊控制技术和变质量系统轴流脱粒滚筒的功耗模型,采用MATLAB的Simulink和FuzzyLogicToolbox工具箱建立了联合收割机脱滚筒的仿真模糊和模糊控制器。仿真结果表明:滚筒额定角速度运行时,给系统施加一阶跃负荷,在模糊控制器的作用下,机组的行走速度会相应改变,使加载前后滚筒的实际喂入量和总工作阻力基本恒定,从而将滚筒的角速度稳定在贮值附近,达到了预期控制效果。  相似文献   

12.
根据光滑管紊流流速分布规律,给出了管道中心流速与流量之间的近似正比关系,为简化设计提供了理论依据;从硬件和软件两方面论述了低压管道输水系统流量计的设计方法。结果表明,该水量计完全满足《低压管道输水灌溉工程技术规范》,并具备高精度、低成本、低功耗、使用方便等特点。  相似文献   

13.
联合收割机脱粒滚筒的PID恒速控制   总被引:11,自引:3,他引:8  
对联合收割机轴流式脱粒滚筒的控制问题进行了讨论,给出了脱粒滚筒 恒速控制模型。以联合收割机的行走速度为控制量,在作物密度变化的情况下,通过无级变速装置改变行走速度,保持喂入量恒定,从而控制滚筒转速稳定。设计了PID恒速控制器,给出了仿真结果。仿真结果表明控制器是有效的和可行的。  相似文献   

14.
根据插秧机升降液压缸设计的总体要求和液压传动的特点,设计了插秧机升降液压缸位置控制系统,选取了相关工作参数。该系统使用位置传感器和伺服换向阀完成闭环反馈,从而实现升降系统自动化控制。在AMESim软件中进行液压系统建模仿真,得到了对液压缸上升下降时间、工作压力及速度等参数。该设计和仿真结果为样机制造奠定了基础。  相似文献   

15.
基于FPGA的联合收获机脱粒滚筒模糊控制系统   总被引:4,自引:1,他引:3  
提出了一种基于VHDL语言描述、FPGA实现的联合收获机脱粒滚筒模糊控制系统的硬件设计方法.建立脱粒滚筒模糊推理规则和控制器算法结构,完成了控制器的VHDL模块化设计,并通过MAX+PLUSII开发平台,对各模块进行时序与功能仿真,实现了脱粒滚筒智能控制技术的单片集成.结果表明:用FPGA实现联合收获机脱粒滚筒模糊控制器,时序验证方便,而且推理速度快、修改灵活、系统集成度高,是实现智能控制策略的一种新的有效思路.  相似文献   

16.
到目前为止,还没有适合低压管灌系统特点的量水仪表,于是建立了管道中心流速和断面平均流速的关系,采用传感器的方法,研制出了SGS型水量计,这种水量计专门为低压管灌系统而设计,具有价格低廉,精度较高,不需交流电源,使用方便等显著特点。  相似文献   

17.
朱凤磊  张立新  胡雪  赵家伟  张雄业 《农业机械学报》2023,54(S1):135-143,171
水肥一体化技术在棉花、小麦、番茄等大田农作物种植场景中的应用逐渐增多。当前能够快速有效调整大田农作物水肥一体化系统中肥料流量的控制算法研究较为有限。由于水肥一体化系统存在时变性、滞后性与非线性的特点,常见的PID与BP-PID控制算法无法获得预期的控制效果。为此设计一种基于蝙蝠算法(BA)优化的BP神经网络PID控制器。通过采用BA对BP神经网络的初始权值进行优化,加快了BP神经网络的自学习速度,实现对水肥一体化系统中肥料流量的快速精准控制,从而降低了超调量、提高了响应速度。同时,基于STM32单片机搭建了水肥一体化流量调节测试平台,并对该控制器的性能进行了试验验证。结果表明,与常规PID控制器和基于BP神经网络的PID控制器相比,所设计的控制器具有较高的控制精度和鲁棒性,降低了由时滞性、非线性等因素引起的影响。平均最大超调量为4.78%,平均调节时间为41.24s。特别是在施肥流量为0.6m3/h时,控制器表现出最佳的综合控制性能,达到了精准施肥的效果。  相似文献   

18.
基于模糊控制的棉田变量对靶喷药除草系统设计   总被引:4,自引:0,他引:4  
为实现自动精确去除棉田杂草, 减少除草剂用量,设计了一种以S3C2410处理器为核心,采用模糊控制算法的变量对靶喷药除草系统,实现了自动识别杂草以及根据采集车速、杂草密度信息自动调整流量的功能。设计了双输入、单输出模糊控制器,并对其进行了仿真研究。仿真结果表明,利用该控制器能实现喷药量随车速及杂草密度变化而实时改变。在室内搭建了模拟棉田环境的变量对靶喷药试验台,对喷药系统进行了测试,试验测得在速度0.2m/s时,喷药除草对靶率达90%。  相似文献   

19.
玉米播种机播深和压实度综合控制系统设计与试验   总被引:1,自引:0,他引:1  
提高玉米播深合格率和一致性,并保持适宜的压实度,可以确保种子和土壤的良好接触,从而促进玉米苗期生长,有利于提高产量。本文对播深和压实度控制过程进行了分析,通过实时调节施加在四连杆仿形机构上的液压力调节下压力,实现播深的间接控制,通过实时调节镇压机构处的弹簧伸长量调节镇压力,从而间接控制压实度。从播深和压实度综合控制角度出发,设计了播深和压实度电液控制系统,主要包括测控系统、液压系统和机械部分等。控制系统的阶跃响应测试结果表明:下压力控制系统的调节时间均值为2.69 s,稳态误差均值为91.5 N,超调量均值为22.95%;镇压力控制系统的调节时间均值为1.44 s,稳态误差均值为30 N,超调量均值为1.83%。田间试验表明,当设定播深为50 mm、目标下压力为3 000 N、目标镇压力传感器测量值为400 N、播种机作业速度为6~10 km/h时,电液主动调节方式下的播深合格率均值为91.33%,播深变异系数均值为8.98%,机械调节方式下的播深合格率均值为82.67%,播深变异系数均值为16.73%。基于电液主动调节方式的播种机的试验指标优于基于机械调节方式的指标。  相似文献   

20.
基于流量调节阀和神经网络的植保机械在线混药装置   总被引:2,自引:0,他引:2  
农药的小流量、高精度实时动态测控是在线混药装置急需解决的一个关键问题。流过调节阀的流量与阀前后压差、流体密度、阀开度有关,通过建立流量与这3个变量间的关系表达式,即可利用调节阀对药液流量进行实时检测和控制。设计了利用流量计和调节阀分别对水和农药原液进行计量的在线混药装置,在提出调节阀相应标定方法的基础上,建立了调节阀的流量关系表达式,并在室内进行了测试。结果表明,农药流量在24~240 m L/min范围内时,混药装置的药液流量相对偏差均小于4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号