首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Three thermal power plants in Serbia, Croatia and Bosnia of the Western Balkan region were expected to be metal polluting sources, and this study was performed to investigate the bioavailability and chemical speciation of trace metals in soils and soil water extracts, respectively. Surface (0–15 cm) soil samples along with maize and grass samples were collected at a gradient from the pollution source. The chemical speciation of metals was conducted using the Windereme Humic Aqueous Model (WHAM)/Model VI for water, whereas the Diffusion Gradient in Thin Films (DGT) technique was used to estimate plant availability. The chemical speciation indicated that more than 99% of all four metals in soil water extracts were complexed to fulvic acid. This is connected to relatively high soil pH (> 6.5) and high contents of soil organic matter in these soils. The accumulation of trace metals by DGT was not correlated to plant uptake. This is connected to the very low partitioning of free ions in solution, but also to the low variation in metal solubility and metal concentration in plant tissue between sites. In spite of active thermal power plants located in the areas, hardly any differences in concentration of soil metals between sites were seen and the partition of metals in soil waters was insignificant. The latter indicates that these soils have a large metal-retaining capacity. The only significant soil chemical variable affecting the variation in metal solubility was the soil pH. In a time with large infrastructure and industrial expansion in these areas, this investigation indicates the importance of protecting these high-quality soils from industrial use and degradation. High industrial activity has so far had insignificant effect on soil quality with respect to bioavailability of trace metals in these soils.  相似文献   

2.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

3.
Abstract

Speciation of cadmium (Cd) was studied in four spiked agricultural soils at moisture content corresponding to 1.2 times field moisture capacity (FMC) and in the range from 1.2 FMC to soil–water 1∶10. Cadmium desorption isotherms were nonlinear in all soils, resulting in the decrease in Cd partition coefficient with loading. The Windermere Humic Aqueous Model (WHAM VI) was applied to predict Cd concentration in the solutions, and predicted values were compared with the measured ones. Based on total Cd content in soils, with concentrations of dissolved organic carbon (DOC), calcium (Ca), magnesium (Mg), and sodium (Na) and soil solution pH as the input variables, WHAM VI predicted Cd concentration in soil solutions with the root‐mean‐square error (RMSE) of log[Cd] RMSElog[Cd]=0.54 (n=37). Using total Cd content in soils, average concentrations of Ca and DOC in soil solutions, and soil pH instead of soil solution pH enabled prediction of Cd concentration in soil solution with RMSElog[Cd]=0.56. Calculation of Cd concentration as a function of moisture content resulted in RMSElog[Cd]=0.25 (n=20).  相似文献   

4.
According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative is to use empirical equations (so called transfer functions (TFs)) that relate FMI activity in solution to the reactive metal concentration in the solid phase and to soil properties (pH and organic matter content). Here we test the applicability of two sets of TF for Cd and Pb using independent data from a wide range of soil types and regions that are not represented in the datasets used to derive the TFs. From these soils, soil solution was extracted using four different methods. For all these extracts, FMI activities were calculated from total concentrations in solution using the speciation program WHAM VI. In some of the soils, Cd and Pb FMI activities were also measured using a Donnan membrane technique. Most of these FMI activities deviated from the TF predictions by less than one order of magnitude and were within the 95% confidence interval of the TFs, irrespective of the method used to extract soil solution. Predictability was higher for Pb than for Cd and differed also between the two TF sets.  相似文献   

5.
Ageing reactions can reduce trace metal solubility and can explain natural attenuation of contaminated soils. We modelled ageing reactions in soil with an assemblage model that considers slow reactions in Fe‐oxyhydroxides and reversible sorption on organic matter and clay minerals. Metal adsorption kinetics on Fe‐oxyhydroxides was obtained from data with synthetic oxyhydroxides. Metal solubility and isotopic exchangeability data were obtained from 28 soils amended with Ni, Zn, Cu and Cd metal salts and monitored for 850 days. The assemblage model was constructed in WHAM 6.0 and used soil properties and dissolved organic matter as input data. The model was first validated to predict dissolved metal concentrations, based on the concentration of isotopic exchangeable metals. The model overestimated metal solubility without parameter adjustment by mean factors of 4–7, and successful fits were obtained by increasing the specific surface area of Fe‐oxyhydroxides from measured values of synthetic systems to a value of 600 m2 g?1 recommended by other authors. The effect of ageing on the isotopic exchangeable metal fraction was subsequently modelled starting from the predicted fraction of metals present on Fe‐oxyhydroxides immediately after soil spiking. The observed isotopic exchangeable metal fractions of Ni, Zn and Cd agreed reasonably well with predicted values. The model predicts that ageing reactions are more pronounced at higher pH because metal sorption is increasingly directed to oxyhydroxide surfaces with increasing soil pH. Modelling fixation of Cu requires more information on fixation of that metal in organic matter.  相似文献   

6.
The effect of soil pH on solubility of the potentially toxic trace elements (PTEs) [cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn)] was assessed using two native and spiked calcareous soils. Multiple PTEs solutions were added to soils and equilibrated (aged) for 40 days. Then, PTEs solubility was measured at different pH level (1–3 units below and above the pH of native soils). In native soils, all PTEs displayed a V-shaped pH-dependent solubility pattern with important releases at pH 4 and 10 (native soil 1) and 5 and 11 (native soil 2). In spiked soils, the general tendency for the pH where solubility started was in the order Cd > Ni > Zn > Cu. Solubility of added trace elements increased with a decrease in pH. Solubility of PTEs occurred at a lower pH in the soil with a higher carbonate content than the other soil (both native and spiked). In order to predict the effect of soil pH on solubility of PTEs, surface complexation and ions exchange models of PHREEQC program were used. The model simulated the PTEs solubility in soils very well. Comparison of experimental and simulated data indicated that ions exchange and surface complexation were the main mechanisms for predicting PTEs solubility in soils. Environmental implications concerning PTEs mobility might be derived from these findings.  相似文献   

7.
The success of risk assessment of metal contaminated soils depends on how precisely one can predict the bio-availability of metals in soil and transfer to the human food chain. In the present investigation, we tested several formulations of the ‘free-ion activity model (FIAM)’ to predict uptake of Cd, Zn and Cu by perpetual spinach (Beta vulgaris, Cicla) grown on a range of soils amended with sewage sludge. The model was parameterised using data measured on samples of pore water extracted by centrifugation and with porous Rhizon samplers installed within the rhizosphere of the growing plants. Free ion activities (M2+) were estimated following speciation of solution data using version 6 of the ‘Windermere Humic Aqueous Model (WHAM-VI). For all three metals, the best formulation of the FIAM appeared to require only one hypothetical root sorption site without competition from protons. Values of (M2+) could also be predicted satisfactorily from a pH-dependent Freundlich relation. Thus, from a combined FIAM–Freundlich relation and population dietary information, it was possible to estimate risk (hazard quotients) to consumers from very simple soil measurements: extractable metal content (0.05 M EDTA (Zn and Cu) or 1 M CaCl2 (Cd)), soil humus content and pH. The role of increased soil organic matter content and soil pH, in reducing risk to consumers, is illustrated for Cd in a hypothetical soil at the current UK statutory Cd limit for sludge application to agricultural land.  相似文献   

8.
Soil pH, soil organic matter (SOM), dissolved organic carbon (DOC) and total trace metal concentration (M(tot)) control the solubility of metals in the soil. Several regression models have included these soil chemical variables for the prediction of metal solubility and free metal ion (FMI) concentrations in contaminated soils. We hypothesize that models developed on contaminated soils (after optimization of the coefficients) can be used on samples from uncontaminated sites. Soil samples were collected from unpolluted agricultural and forest soils located in Eastern Croatia and extracted with water to determine the concentrations of Cd, Cu, Pb and Zn. We used these data to test the applicability of three regression models on existing conditions under different land uses. The same predictors issued in the three models and the same regression coefficients were utilized in the present study. The results showed a good correlation between the observed and predicted values of metal solubility. However, the models overestimate the total solution concentration (M(sol)) and the concentrations of free metal ions (FMI) in solution, and therefore the same regression coefficients were optimized to fit our own observations. This was found to be very successful. The results showed that pH and DOC played a very important role in controlling metal solubility, while SOM and CEC were somewhat less significant. The impact of total soil concentration of metals (M(tot)) was rather minor. However, we feel that to carry out good predictions of M(sol) and FMI, the M(tot) is needed in such regression models.  相似文献   

9.
Abstract

The objective of this study was to determine the effects of pH and ionic strength on the distribution and speciation of zinc (Zn), copper (Cu), and cadmium (Cd) in surface soil samples from two Brazilian Oxisols amended with biosolids. Soils and biosolids were equilibrated in an experimental dual‐chamber diffusion apparatus that permits the soils and biosolids to react through a solution phase via diffusion across a membrane. After equilibrium was reached, soil and biosolids samples were sequentially fractionated to identify various solid forms of Zn, Cu, and Cd. Metal concentrations in the solution phase were determined and mass balance calculated. Equilibrating pH had no major effect on Cu solubility from biosolids and, at pH range from 4 to 7, most Cu remained in the biosolids. Soluble Zn and Cd concentration increased with decreasing pH because of the increased solubility of the biosolids. Copper and Zn were primarily associated with the residual fraction and Fe oxides in one soil, but were primarily associated with chemically unstable fractions, or adsorbed to the surface of oxides, in the other soil. In both soils, Cd was primarily associated with readily bioavailable fractions. The effect of pH on the metal distribution was more evident than the ionic strength effect. Free ions were the predominant metal species in solution, especially at lower pH values.  相似文献   

10.
Risk assessment of heavy metals in soil requires an estimate of the concentrations in the soil solution. In spite of the numerous studies on the distribution of Cd and Zn in soil, few measurements of the distribution coefficient in situ, Kd, have been reported. We determined the Kd of soils contaminated with Cd and Zn by measuring metal concentrations in the soil and in the soil solution and attempted to predict them from other soil variables by regression. Soil pH explained most of the variation in logKd (R2 = 0.55 for Cd and 0.70 for Zn). Introducing organic carbon content or cation exchange capacity (CEC) as second explanatory variable improved the prediction (R2 = 0.67 for Cd and 0.72 for Zn), but these regression models, however, left more than a factor of 10 of uncertainty in the predicted Kd. This large degree of uncertainty may partly be due to the variable degree of metal fixation in contaminated soils. The labile metal content was measured by isotopic dilution (E value). The E value ranged from 18 to 92% of the total metal content for Cd and from 5 to 68% for Zn. The prediction of Kd improved when metals in solution were assumed to be in equilibrium with the labile metal pool instead of the total metal pool. It seems necessary therefore to discriminate between ‘labile’ and ‘fixed’ pools to predict Kd for Cd and Zn in field contaminated soils accurately. Dilute salt extracts (e.g. 0.01 m CaCl2) can mimic soil solution and are unlikely to extract metals from the fixed pool. Concentrations of Cd and Zn in the soil solution were predicted from the concentrations of Cd and Zn in a 0.01 m CaCl2 extract. These predictions were better correlated with the observations for field contaminated soils than the predictions based on the regression equations relating logKd to soil properties (pH, CEC and organic C).  相似文献   

11.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils   总被引:21,自引:0,他引:21  
We developed a semiempirical equation from metal complextion theory which relates the metal activity of soil solutions to the soil's pH, organic matter content (OM) and total metal content (MT). The equation has the general form: where pM is the negative logarithm (to base 10) of the metal activity, and a, b and c are constants. The equation successfully predicted free Cu2+ activity in soils with a wide range of properties, including soils previously treated with sewage sludge. The significant correlation of pCu to these measured soil properties in long-contaminated soils suggests that copper activity is controlled by adsorption on organic matter under steady state conditions. An attempt was made from separate published data to correlate total soluble Cu, Zn, Cd and Pb in soils to soil pH, organic matter content and total metal content. For Cu, the total Cu content of the soil was most highly correlated with total soluble Cu. Similarly, total soluble Zn and Cd were correlated with total metal content, but were more strongly related to soil pH than was soluble Cu. Smaller metal solubility in response to higher soil pH was most marked for Zn and Cd, metals that tend not to complex strongly with soluble organics. The organic matter content was often, but not always, a statistically significant variable in predicting metal solubility from soil properties. The solubility of Pb was less satisfactorily predicted from measured soil properties than solubility of the other metals. It seems that for Cu at least, solid organic matter limits free metal activity, whilst dissolved organic matter promotes metal solubility, in soils well-aged with respect to the metal pollutant. Although total metal content alone is not generally a good predictor of metal solubility or activity, it assumes great importance when comparing metal solubility in soils having similar pH and organic matter content.  相似文献   

12.
Abstract

Environmental changes and management practices which alter soil properties may affect the capacity of soils to sorb trace metals, such as copper (Cu), zinc (Zn), and cadmium (Cd), and thus influence the bioavailability and leach ability of the metals. Two agricultural soils were treated to partially oxidize organic matter and to decrease soil pH for evaluating the effects of acidification and organic matter oxidation on trace metal sorption onto soils. For the one soil with a pH value of 6.74 and organic carbon (C) content of 46.9 g‐kg‐1, loss of 11% of its organic matter reduced by 97, 72, and 62% the original sorption capacity for Cu, Zn, and Cd, respectively, while the corresponding values caused by acidifying the soil one pH‐unit were 32, 16, and 29%. For the another soil with a pH of 4.69 and organic C content of 16.3 g‐kg‐1, a decrease in pH by one unit resulted in a loss of 43, 21, and 52% of the sorption capacity for Cu, Zn, and Cd, respectively.  相似文献   

13.
This study was conducted to determine the chemical distribution and plant availability of Cd, Zn and Ni in eight metal-polluted soils in southern Ontario, Canada. There were altogether 30 different soil samples because two of the soils had received various sewage sludge treatments. The soils were sequentially extracted with 1 m ammonium acetate to remove soluble plus exchangeable metals, with 0.125 m Cu(II) acetate to remove complexed metals, and with 1 m HNO3 to dissolve chemisorbed or occluded metals and precipitates such as oxides and carbonates. Expressed as a percentage of the metal so extracted, exchangeable Cd and Zn and Ni; complexed Cd and Zn>Ni and Ni>Zn>Cd in the acid-soluble pool. With a few exceptions (soils with high organic matter content or low pH) at least 50 per cent of the extracted metal was in the acid-soluble pool. The percentage of metal complexed was significantly correlated with organic matter content. The percentage of metal in the acid-soluble fraction was significantly correlated with soil pH. Preliminary findings based on the results with two soils suggested that for Cd and Zn plant availability was correlated with the concentrations of exchangeable, complexed or acid-soluble pools of Cd and Zn.  相似文献   

14.
Soil pH is one of the main factors influencing the solubility and availability of trace elements in arable soils. Thus pH can affect the trace element contents of agricultural crops and thereby indirectly influence human health. The aim of this study was to determine Cd, Ni, Zn, Cu, Mn, Cr, Al and Se contents in spring wheat, potatoes and carrots (Cd, Ni and Zn) and estimate their correlations with certain soil factors (surface and subsurface soil pH and organic matter content) governing the plant availability of these elements. Commercial fields were sampled in Sweden in order to cover a wide range of soil types with respect to pH, soil texture and organic matter content. Concentrations of Zn, Mn, Ni (grain) and Cd (straw) in spring wheat (n=43); Cd, Ni, Zn, Mn, Cu and Al in potatoes (n=69); and Cd, Ni and Zn in carrots (n=36) showed significant negative correlations with surface soil pH (0–25 cm). The Se content of potatoes and Cr content of spring wheat straw were positively correlated with soil pH. Stepwise multiple regressions including a combination of soil pHs (0–25 and 25–50 cm) and organic matter contents (0–25 cm) showed that the organic matter content as well as the surface and subsurface soil pH significantly influenced concentrations of several trace elements in one or more of the studied crops. It was concluded that, if acid deposition together with other acidifying processes (fertilisation, harvest of biomass, etc.) are not balanced by a sufficient amount of liming there might be a decrease in the pH of arable soils, which, in turn will lead to decreased levels of Se in edible crops but an overall increase concentrations of other trace elements.  相似文献   

15.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

16.
贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究   总被引:2,自引:1,他引:2  
张厦  宋静  高慧  张强  刘赣 《土壤》2017,49(2):328-336
农田土壤重金属的不同活性库分布和土壤-溶液分配模型能够提供重金属的生物有效性和浸出能力等信息,因而在风险评价和修复实践中非常重要。本研究采集毕节铅锌冶炼区30个历史污染农田土壤,同时在贵州省范围内采集5种类型背景土壤制成不同浓度Pb/Cd单一污染土壤;经3个月老化,分别测定由0.43 mol/L HNO_3、0.1 mol/L HCl和0.005 mol/L DTPA提取态表征的重金属反应活性库以及由0.01 mol/L CaCl_2提取态表征的直接有效库;分析铅锌冶炼区农田土壤Cd、Pb不同有效库的分布特征,建立土壤-溶液分配模型,并讨论土壤理化性质的影响。结果表明:历史污染土壤中Cd和Pb的直接有效库占全量比例分别比人工污染土壤低4倍和223倍,然而历史污染土壤Cd和Pb的反应活性库(0.43 mol/L HNO_3提取态)占全量比例要高于相应人工污染土壤中的比例。拓展Freundlich形式吸附方程能够准确描述各提取态表征的Cd和Pb活性库与土壤全量Cd和Pb的关系,尤其0.43 mol/L HNO_3提取方法能够克服土壤理化性质对土壤Cd和Pb提取的影响而与总量建立极显著的相关关系。pH依附性Freundlich吸附方程准确描述了Cd和Pb的总反应活性库分别与土壤溶液Cd和Pb的关系,对于Pb而言,还要考虑土壤有机质和有效磷的影响。本研究可为矿区农田土壤重金属污染评价、修复以及农田有效态标准的推导提供参考。  相似文献   

17.
Background, aim, and scope  Ongoing industrialization has resulted in an accumulation of metals like Cd, Cu, Cr, Ni, Zn, and Pb in paddy fields across Southeast Asia. Risks of metals in soils depend on soil properties and the availability of metals in soil. At present, however, limited information is available on how to measure or predict the directly available fraction of metals in paddy soils. Here, the distribution of Cd, Cu, Cr, Ni, Zn, and Pb in 19 paddy fields among the total, reactive, and directly available pools was measured using recently developed concepts for aerated soils. Solid-solution partitioning models have been derived to predict the directly available metal pool. Such models are proven to be useful for risk assessment and to derive soil quality standards for aerated soils. Material and methods  Soil samples (0–25 cm) were taken from 19 paddy fields from five different communities in Taiwan in 2005 and 2006. Each field was subdivided into 60 to 108 plots resulting in a database of approximately 3,200 individual soil samples. Total (Aqua Regia (AR)), reactive (0.43 M HNO3, 0.1 M HCl, and 0.05 M EDTA), and directly available metal pools (0.01 M CaCl2) were determined. Solid-solution partitioning models were derived by multiple linear regressions using an extended Freundlich equation using the reactive metal pool, pH, and the cation exchange capacity (CEC). The influence of Zn on metal partitioning and differences between both sampling events (May/November) were evaluated. Results  Total metals contents range from background levels to levels in excess of current soil quality standards for arable land. Between 3% (Cr) and 30% (Cd) of all samples exceed present soil quality standards based on extraction with AR. Total metal levels decreased with an increasing distance from the irrigation water inlet. The reactive metal pool relative to the total metal content is increased in the order Cr << Ni = Zn < Pb < Cu < Cd and ranged from less than 10% for Cr to more than 70% for Cd. Despite frequent redox cycles, Cd, Pb, and Cu appear to remain rather reactive. The methods to determine the reactive metal pool in soils yield comparable results, although the 0.43 M HNO3 extraction is slightly stronger than HCl and EDTA. The close correlation between these methods suggests that they release similar fractions from soils, probably those reversibly sorbed to soil organic matter (SOM) and clay. The average directly available pool ranged from less than 1% for Cu, Pb, and Cr to 10% for Ni, Zn, and Cd when compared to the reactive metal pool. For Cd, Ni, Zn, and to a lesser extent for Cu and Pb, solid-solution partitioning models were able to explain up to 93% (Cd) of the observed variation in the directly available metal pool. CaCl2 extractable Zn increased the directly available pool for Ni, Cd, and Cu but not that of Pb and Cr. In the polluted soils, the directly available pool was higher in November compared to that in May. Differences in temperature, rainfall, and changes in soil properties such as pH are likely to contribute to the differences observed within the year. The solid-solution partitioning model failed to explain the variation in the directly available Cr pool, probably because Cr is present in precipitates rather than being adsorbed onto SOM and clay. Despite obvious differences in parent material, source of pollution, climate, and land use, solid-solution partitioning of Cd in paddy fields studied here was similar to that in soils from Belgium and the Netherlands. Discussion  To assess risks of metals in soils, both analytical procedures as well as models are needed. The three methods tested here to determine the reactive metal pool are highly correlated and either of these can be used. The directly available pool was predicted most accurately by the 0.43 M HNO3 method. The similarity of metal partitioning in paddy soils compared to well-drained soils suggests that changing redox conditions in paddy fields have a limited effect on the geochemical behavior of metals like Cd, Ni, and Zn. Small but significant differences in the directly available metal pool during the year suggest that redox cycles as well as differences in rainfall and temperature affect the size of the directly available metal pool. The large observed spatial heterogeneity of contaminant levels requires ample attention in the setup of soil monitoring programs. Conclusions  The directly available pool (0.01 M CaCl2) of Cd, Zn, and Ni in paddy fields can be described well by an extended Freundlich model. For Cu and Pb, more information on dissolved organic carbon is needed to obtain a more accurate estimate of the directly available pool. Recommendations and perspectives  Soil testing protocols and models used in risk assessment consider the availability of pollutants rather than the total metal content. Results from extensive testing indicate that approaches developed for nontropical regions can be applied in paddy fields as well for metals like Cd, Ni, and Zn. This study shows that the chemical behavior under drained conditions in paddy fields is comparable to that observed in soils across the European Union, which allows regions with large scale soil pollution including Taiwan to apply such concepts to derive meaningful experimental protocols and models to assess risks of metals in soils.  相似文献   

18.
Mao  X.  Barry  D.A.  Li  L.  Stagnitti  F.  Allinson  G.  Turoczy  N. 《Water, air, and soil pollution》2004,154(1-4):357-370
Afforestation of former agricultural land changes soil characteristics such as pH and organic matter content, which may affect heavy metal solubility in the soil. In this study the effects of different tree species on heavy metal solubility were investigated at four 34 years old adjacent stands of beech (Fagus sylvatica L.), grand fir (Abies grandis Lindl.), Norway spruce (Picea abies (L.) Karst.) and oak (Quercus robur L.) planted on former agricultural land at four different sites in Denmark. The sites differ in soil characteristics and represent two texture classes (loamy sand and sandy loam). Soil pH and soil organic matter content was measured in the 16 stands and soil solution was isolated by centrifugation from three depths at four different occasions. Dissolved organic carbon (DOC), pH in the soil solution and the soil solution concentrations (availability) of Cd, Cu, Ni, Pb and Zn were determined. Analysis of variance showed that the tree species affects soil pH and organic matter content in the topsoil, but not in the lower horizons. Norway spruce and grand fir acidify more than beech and oak, and the highest amount of accumulated soil organic matter is in the topsoil under Norway spruce. The effects of tree species on soil solution pH and DOC resemble the effect on soil pH and organic matter content. Grand fir enhances the solubility of Cd and Zn in the topsoil with the lower solubility found under beech and oak and Norway spruce enhances the solubility of Cu, Ni and Pb in the top horizons. The lowest solubility of Ni and Pb is found under beech and oak, whereas the lowest Cu concentrations in the soil solution are found under grand fir. After 34 years of afforestation no effects of tree species on the concentrations of heavy metals in the soil solution from the C-horizons were found. The tree species effect on the concentration of Cd, Cu and Ni in the soil solution depends on the soil characteristics with the higher concentrations found in sandy loam soils, whereas no effect of site on the solution concentration was found for Pb and Zn. It was not possible to find a clear correlation between the soil solution concentrations of heavy metals, pH and DOC concentration.  相似文献   

19.
Critical load of trace metals in soils is a function of biological uptake, leaching by percolating water, input of the trace metals due to bedrock weathering, and the norms set to protect soils from metal pollution. The exceedance of the critical load is a difference between the calculated load and the measured input of the metals by atmospheric deposition and by application of agrochemicals. A critical time is the time when the concentration of a trace metal in soil, which is the result of all inputs and outputs of the metal in the soil, reaches the value of the norm. Data on biologically important trace metals in a small agricultural catchment in the Czech Republic indicate that the soil concentrations of As, Cd and Pb will reach the norms set for the soils after 4.5, 61, and 980 years, respectively. The present mass balances of Cu and Zn in the soils indicate that their steady-state concentrations will be below the norms so that the atmospheric and agricultural inputs will never overshoot the calculated critical load.  相似文献   

20.
The risk assessment of heavy‐metal contamination in soils requires knowledge of the controls of metal concentrations and speciation. We tested the relationship between soil properties (pH, CEC, Corg, oxide concentrations, texture) and land use (forest, grassland, arable) and the partitioning of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn among the seven fractions of a sequential extraction procedure in 146 A horizons from Slovakia. Using a cluster analysis, we identified 92 soils as representing background metal concentrations while the remaining 54 soils showed anthropogenic contamination. Among the background soils, forest soils had the lowest heavy‐metal concentrations except for Pb (highest), because of the shielding effect of the organic layer. Arable soils had the highest Cr, Cu, and Ni concentrations suggesting metal input with agrochemicals. Grassland soils had the highest Cd and Zn concentrations probably for geogenic reasons. Besides the parent material (highest metal concentrations in soils from carbonatic rock, lowest in quartz‐rich soils with sandy texture), pedogenic eluviation processes controlled metal concentrations with podzols showing depletion of most metals in E horizons. Partitioning among the seven fractions of the sequential extraction procedure was element‐specific. The pH was the overwhelming control of the contributions of the bioavailable fractions (fractions 1–4) of all metals and even influenced the contributions of Fe oxide‐associated metals (fractions 5 and 6) to total metal concentrations. For fractions 5 and 6, Fe concentrations in oxides were the most important control of contributions to total metal concentrations. After statistically separating the pH from land use, we found that the contributions of Cu in fractions 1–4 and of NH4NO3‐extractable Al, Cd, Pb, and Zn to total metal concentrations were significantly higher under forest than under grassland and in some cases arable use. Our results confirm that metal speciation in soils is mainly controlled by the pH. Furthermore, land use has a significant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号