首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT The effects of solitary and concurrent infection by Pratylenchus pene-trans and Verticillium dahliae on gas exchange of Russet Burbank potato (Solanum tuberosum) were studied in growth chamber experiments. Treatments were P. penetrans at low, medium, and high density; V. dahliae alone at one initial density; the combination of the nematode at these three densities and V. dahliae; and a noninfested control. Gas exchange parameters of leaf cohorts of different ages in the different treatments were repeatedly measured with a Li-Cor LI-6200 portable photosynthesis system. At 45 days after planting, joint infection significantly reduced net photosynthesis, stomatal conductance, and transpiration of 1- to 25-day-old leaf cohorts. Intercellular CO(2) levels were significantly increased by co-infection, especially in older leaves. The synergistic effect of co-infection on gas exchange parameters was greater in the oldest cohort than in the youngest cohort. No consistent effects on leaf gas exchange parameters were observed in plants infected by the nematode or the fungus alone. The relationship between the assimilation rate and stomatal conductance remained linear regardless of solitary or concomitant infection, indicating that stomatal factors are primarily responsible for regulating photosynthesis. The significant reduction of gas exchange in leaves of co-infected plants without reduction in intercellular CO(2) concentrations suggests that nonstomatal factors also play a role when both organisms are present.  相似文献   

2.
Experiments were conducted under growth-chamber conditions to determine if Pratylenchus penetrans systemically alters light use efficiency (LUE) of Russet Burbank potato infected by Verticillium dahliae. Pathogen separation was achieved by inoculating potato roots with the nematode prior to injecting fungal conidia into the stem vasculature. Treatments were P. penetrans alone, V. dahliae alone, nematode and fungus together, and a no-pathogen control. Gas exchange was repeatedly and nondestructively measured on the fifth-youngest leaf with a Li-Cor LI-6200 portable photosynthesis system. By 16 and 20 days after stem injection with the fungus, LUE was synergistically impaired in jointly infected plants. Transpiration in plants infected with both pathogens was significantly reduced. However, the combined effect of nematode and fungus was synergistic in one experiment and additive in the other. Stems were destructively harvested when LUE was synergistically impaired. Coinfected potato plants contained more colony-forming units (CFU) of V. dahliae in stem sap than those infected by the fungus alone in one experiment. Evidence is provided that infection of Russet Burbank roots by P. penetrans systemically affects disease physiology associated with stem vascular infection by V. dahliae . The findings indicate that the role of the nematode in the fungus/host interaction is more than simply to facilitate extravascular and/or vascular entry of the fungus into potato roots.  相似文献   

3.
Potatoes were grown under a permanent rain shelter in mobile containers in soil with and without potato cyst nematodes (Globodera pallida). The plants were either subjected to an early drought stress period from planting until 43 days after planting, to a late drought stress period during tuber bulking or to a drought control. Leaf water potentials, stomatal diffusion resistances for water vapour, transpiration rates, dry matter accumulation and water use efficiencies of the plants were determined periodically. Both drought and nematodes decreased leaf water potential and increased stomatal resistance.Drought led to a higher water use efficiency, cyst nematode infection, however, reduced the water use efficiency at early stages of growth, and increased it at later stages. It is concluded that at least two main growth reducing mechanisms exist of which the relative importance varies with time. Firstly, reduced apparent assimilation rates, which are unrelated to a change in the water balance caused by the initial attack by the cyst nematodes. Secondly, a reduced dry matter accumulation resulting from a decrease of water uptake. Effects of drought and cyst nematode infection on plant growth and water relations were not always additive mainly because infected plants used up less water leading to less drought stress.  相似文献   

4.
穿刺巴斯德菌Pasteuria penetrans专性寄生于根结线虫Meloidogyne spp.,具有很好的生防潜力。为了进一步提高其产量,本研究比较了5个对南方根结线虫敏感的番茄栽培品种繁殖穿刺巴斯德菌的效率。结果表明,佳粉18和毛粉802繁殖效率最高,单株番茄上的产孢量分别为1.54×108孢子.株-1和1.47×108孢子.株-1。以佳粉18为根结线虫的寄主植物,研究线虫接种量、接种次数、线虫接入时的苗龄及接种后第1周的培养温度对穿刺巴斯德菌活体繁殖量的影响。研究表明,在番茄9片真叶时,每株番茄接种7500条线虫,分3次接入,根粉的产孢量可提高至1.86×108孢子g-1。在18~31℃温度范围内,温度越高,穿刺巴斯德菌对线虫的侵染率越高;31℃时,其孢子侵染率平均达44.57%。  相似文献   

5.
ABSTRACT Fusarium oxysporum f. sp. ciceris and the root-lesion nematode Pratylenchus thornei coinfect chickpeas in southern Spain. The influence of root infection by P. thornei on the reaction of Fusarium wilt-susceptible (CPS 1 and PV 61) and wilt-resistant (UC 27) chickpea cultivars to F. oxysporum f. sp. ciceris race 5 was investigated under controlled and field conditions. Severity of Fusarium wilt was not modified by coinfection of chickpeas by P. thornei and F. oxysporum f. sp. ciceris, in simultaneous or sequential inoculations with the pathogens. Root infection with five nematodes per cm(3) of soil and 5,000 chlamydospores per g of soil of the fungus resulted in significantly higher numbers of propagules of F. oxysporum f. sp. ciceris with the wilt-susceptible cultivar CPS 1, but not with the wilt-resistant one. However, infection with 10 nematodes per cm(3) of soil significantly increased root infection by F. oxysporum f. sp. ciceris in both cultivars, irrespective of fungal inoculum densities (250 to 2,000 chlamydospores per g of soil). Plant growth was significantly reduced by P. thornei infection on wilt-susceptible and wilt-resistant chickpeas in controlled and field conditions, except when shorter periods of incubation (45 days after inoculation) were used under controlled conditions. Severity of root necrosis was greater in wilt-susceptible and wilt-resistant cultivars when nematodes were present in the root, irrespective of length of incubation time (45 to 90 days), densities of nematodes (5 and 10 nematodes per cm(3) of soil), fungal inocula, and experimental conditions. Nematode reproduction on the wilt-susceptible cultivars, but not on the wilt-resistant one, was significantly increased by F. oxysporum f. sp. ciceris infections under controlled and field conditions.  相似文献   

6.
Xiao CL  Subbarao KV 《Phytopathology》1998,88(10):1108-1115
ABSTRACT Microplot and field experiments were conducted to evaluate the effects of inoculum density on Verticillium wilt and cauliflower growth. Soil containing Verticillium dahliae microsclerotia was mixed with various proportions of fumigated soil to establish different inoculum densities (fumigated soil was used as the noninfested control). Seven inoculum density treatments replicated four times were established, and the treatments were arranged in a randomized complete block design. Soil was collected from each microplot immediately after soil infestation for V. dahliae assay by plating onto sodium polypectate agar (NP-10) selective medium using the Anderson sampler technique. Five-week-old cauliflower was transplanted into two beds within each 1.2- by 1.2-m microplot. At the same time, several extra plants were also transplanted at the edge of each bed for destructive sampling to examine the disease onset (vascular discoloration) after planting. Cauliflower plants were monitored for Verticillium wilt development. Stomatal resistance in two visually healthy upper and two lower, diseased leaves in each microplot was measured three times at weekly intervals after initial wilt symptoms occurred. At maturity, all plants were uprooted, washed free of soil, and wilt incidence and severity, plant height, number of leaves, and dry weights of leaves and roots were determined. The higher the inoculum density, the earlier was disease onset. A density of 4 microsclerotia per g of dry soil caused 16% wilt incidence, but about 10 microsclerotia per g of soil caused 50% wilt incidence. Both wilt incidence and severity increased with increasing inoculum density up to about 20 microsclerotia per g of soil, and additional inoculum did not result in significantly higher disease incidence and severity. A negative exponential model described the disease relationships to inoculum levels under both microplot and field conditions. Stomatal resistance of diseased leaves was significantly higher at higher inoculum densities; in healthy leaves, however, no treatment differences occurred. The height, number of leaves, and dry weights of leaves and roots of plants in the fumigated control were significantly higher than in infested treatments, but the effects of inoculum density treatments were variable between years. Timing of cauliflower infection, crop physiological processes related to hydraulic conductance, and wilt intensity (incidence and severity) were thus affected by the inoculum density. Verticillium wilt management methods used in cauliflower should reduce inoculum density to less than four micro-sclerotia per g of soil to produce crops with the fewest number of infected plants.  相似文献   

7.
The effect of soil solarization on the viability of plant pathogens and disease was evaluated in Victoria. The treatment was tested in NW and S Victoria with natural soil inoculated with high inoculum levels of Eusarium oxysporum, Plasmodiophora brassicae, Sclerotium cepivorum, Sclerotinia minor, Sclerotinia sclerotiorum, Verticillium dahliae and the nematodes Meloidogyne javanica and Pratylenchus penetrans. Other experiments were established at sites with a previous history of disease.
Solarization of artificially inoculated soils reduced inoculum levels to at least a depth of 10 cm and effectively controlled diseases caused by P. brassicae on broccoli, and S. minor and S. sclerotiorum on lettuce. The treatment reduced inoculum levels but not disease of carnations and watermelons affected by E. oxysporum , tomatoes affected by M. javanica , celery affected by P. penetrans , and onions affected by S. cepivorum. Results were inconclusive for tomatoes affected by V. dahliae.
Experiments in naturally infested soils established that solarization reduced disease and increased yields of Chinese cabbage affected by P. brassicae , celery affected by P. penetrans , lettuce affected by S. minor and watermelon affected by root rot.
Solarization reduced disease of onions affected by S. cepivorum but did not significantly increase yield. At all sites the treatment reduced the number of viable propagules of the pathogens to at least a depth of 10 cm.  相似文献   

8.
A study was made of the effect of a single generation of the root-knot nematode Meloidogyne incognita on the growth of potted French bean plants ( Phaseolus vulgaris ) inoculated at different stages of plant maturity. In separate experiments. 3-, 11- and 13-day-old plants were inoculated before primary leaf expansion (BPLE). at the appearance of trifoliate leaves (TRIF) and at the flower bud (BDS) stages respectively, with 0, 2000, 4000 or 8000 second-stage juvenile nematodes and maintained in a growth chamber under controlled conditions. The photosynthetic rate of the plants inoculated at the TRIF and BDS stages decreased significantly with increasing inoculum level 7 days after inoculation. Although the respiration rate did not significantly change throughout the experimental period, the ratio of photosynthetic to respiration rate decreased significantly with increasing nematode inoculum level and duration of infection. Chlorophyll content, plant dry weight and the numbers of buds, flowers, pods and seeds were significantly lower in infected plants than in the controls; this effect increased with increasing levels of nematode inoculum for all three plant stages. The leaf area was significantly smaller only when nematode infection occurred at the BPLE stage. The plants which were youngest at the time of nematode infection produced the lowest yield; this appeared to result from the effect of nematodes on photosynthesis and related physiological processes.  相似文献   

9.
We used cover crops with demonstrated efficacy against Verticillium dahliae and Pratylenchus penetrans in combination with the biocidal practice of solarization to determine the importance of targeting both organisms for managing potato early dying, an issue relevant to the search for alternatives to soil fumigation. Two experiments were conducted in commercial fields using a split-plot design with cover crop treatments of rapeseed, marigold, forage pearl millet, sorghum-sudangrass, and corn as the main plot factor and solarization as the subplot factor. Cover crops were grown and solarization applied in year one, followed by potato in year two. The main effect of solarization was significant for reduced inoculum levels of both organisms in year two and increased tuber yields. The main effect of cover crop was also significant with lower population densities of P. penetrans following the marigold and millet treatments and of V. dahliae following rape and sorghum-sudangrass. The cover crop treatments influenced yield in only one of the experiments in the absence of solarization. The combinatorial effect of cover crops and solarization resulted in a wide range of pathogen population densities. Mean soil inoculum levels were negatively related to yield for V. dahliae in experiment 1, and for P. penetrans and the P. penetrans × V. dahliae interaction in both experiments.  相似文献   

10.
Root-knot nematodes (RKN) are obligate endoparasites that severely damage the host root system. Nutrient and water uptake are substantially reduced in infested plants, resulting into altered physiological processes and reduced plant growth. The effect of nematode infestation on the morphological changes of roots and subsequent physiological plant responses of infested tomatoes with the RKN Meloidogyne ethiopica was studied in a pot experiment. Plants were infested with two inoculum densities (10 or 50 eggs per cm3 substrate) and its effect was evaluated 74 and 102 days post inoculation (DPI). Morphological changes and root growth was determined by analysing scanned images of the whole root system. Nematode infestation reduced the portion of fine roots and increased that of coarse roots due to gall formation. Fine roots of non-infested control plants represented around 51% of the area of the whole root system at 74 and 102 DPI. In comparison to controls, plants inoculated with low and high nematode density had 2.1 and 3.2-times lower surface area of fine roots at 102 DPI. Root analyses revealed that plants had a very limited ability to mitigate the effects of the root-knot nematodes infestation by altering root growth. Root galls had a major influence on the hydraulic conductivity of the root system, which was significantly reduced. The low leaf water potential of infested plants coincided with decreased stomatal conductivity, transpiration and photosynthesis. The latter two were reduced by 60–70% when compared to non-infested control plants.  相似文献   

11.
Pratylenchus thornei -chickpea interactions were investigated under controlled and fluctuating environmental conditions in the growth chamber, greenhouse and shadehouse. Under controlled conditions, P. thornei infected chickpea lines 12071/10054 and P2245 and cultivars Andoum 1, JG62 and UC27. Line P 2245 and cv. JG 62 were the most susceptible genotypes on the basis of root damage and nematode reproduction, but nematode infection did not significantly reduce root and shoot weights. Cultivars Andoum 1 and UC27 and line 12071/10054 showed the least root damage and nematode reproduction. Inoculation of cv. Andoum 1 with 2500, 5000 or 10000 nematodes per plant in pots did not affect shoot weight, regardless of the conditions of water stress of the plants. However, root weight was significantly reduced by nematode infection in plants grown under water stress and fluctuating temperature conditions in the greenhouse, but was not affected by any other treatment. The nematode reproduction index was not affected by soil water content under shadehouse conditions, but was greater on plants watered to soil water-holding capacity than in water-stressed plants under greenhouse conditions. For both environments, the nematode reproduction index decreased when inoculum density was greater than 5000 nematodes per plant.  相似文献   

12.
Potatoes were grown under a permanent rain shelter in mobile containers in soil with or without potato cyst nematodes (Globodera pallida). The plants were subjected to an early drought stress period starting at planting until 43 days after planting, to a late drought stress period starting at 43 days until senescence at 92 days and to a drought control. Dry matter weight and characteristics of leaves, stems, stolons and roots were determined at periodic harvests. The early drought stress and nematode infection affected many plant organ characteristics in similar ways. Numbers of leaves, specific leaf area, plant height, specific stem weight, leaf area ratio, mean tuber weight and harvest index were reduced by both stress factors at early stages of growth.Later on, interactions between both stress factors which influence the development rate of the plants led to more diverse plant reactions. Plants of all treatments rapidly senesced at about 90 days after planting. Uninfected plants had then depleted the soil nutrient supply whereas the plants grown in the inoculated soil senesced as a result of the potato cyst nematode infection.  相似文献   

13.
ABSTRACT Digestive cysteine proteinases have been isolated from plant-parasitic nematodes as well as coleopteran and hemipteran insects. Phytocystatins, inhibitors of cysteine proteinases, are found in a number of plants where they may play a role in defense against pathogens and pests. The cDNAs of the phytocystatins from rice, oryzacystatin I (OC-I) and oryzacystatin II (OC-II), were expressed in alfalfa (Medicago sativa) plants under the control of the potato protease inhibitor II (PinII) promoter and the plants were evaluated for resistance to the root-lesion nematode (Pratylenchus penetrans). A PinII-beta-glucuronidase (GUS) gene was introduced into alfalfa to determine the pattern of gene expression from this promoter. Constitutive GUS expression was observed in leaf and root vascular tissue, and in some plants, expression was observed in leaf mesophyll cells. Mechanical wounding of leaves increased GUS expression approximately twofold over 24 h. Inoculation with root-lesion nematodes resulted in localized GUS expression. Populations of root-lesion nematodes in alfalfa roots from one line containing the PinII::OC-I transgene and one line containing the PinII::OC-II transgene were reduced 29 and 32%, respectively, compared with a transgenic control line. These results suggest that oryzacystatins have the potential to confer increased resistance to the root-lesion nematode in alfalfa.  相似文献   

14.
Mechanism of broccoli-mediated verticillium wilt reduction in cauliflower   总被引:2,自引:0,他引:2  
ABSTRACT Broccoli is resistant to Verticillium dahliae infection and does not express wilt symptoms. Incorporation of broccoli residues reduces soil populations of V. dahliae. The effects of broccoli residue were tested on the colonization of roots by V. dahliae, plant growth response, and disease incidence of both broccoli and cauliflower in soils with different levels of V. dahliae inoculum and with or without fresh broccoli residue amendments. The three soils included a low-Verticillium soil, a high-Verticillium soil, and a broccoli-rotation soil (soil from a field after two broccoli crops) with an average of 13, 38, and below-detectable levels of microsclerotia per g of soil, respectively. Cauliflower plants in broccoli-amended high-Verticillium soil had significantly (P 相似文献   

15.
The relation between log dosage of DD injected at 15 cm depth or of dazomet applied to the soil surface (all in November 1971) and probit mortality ofRotylenchus and trichodorids in the top 20 cm of a field on sandy soil was found to be linear. Dosage increase efficiencies of both chemicals against both nematode species were medium to high. Superficial application of dazomet was very effective against the nematodes that would have survived if only a low dosage of DD had been injected at 15 cm depth. Injection of 40 ml or 80 ml DD per m2 at 15 cm depth killed all nematodes between 20 cm and 60 cm deep. Gladiolus planted in the spring of 1972 grew better, flowered earlier and produced more weight of corms on treated than on untreated plots. The poor growth on the untreated plots cannot be ascribed to direct damage by nematodes or to the effect of TRV transmitted to the plants by the viruliferous trichodorids occurring in these plots in high densities. Symptoms of TRV infection in plants grown in 1973 from the corms harvested in the 1972 experimental field showed that only DD treatments had reduced the rate of TRV transmission considerably. However, even the highest dosages of DD had only reduced it from 26% (on untreated plots) to about 8%. Most probably, this residual TRV infection was due to transmission by trichodorids that had survived in soil layers below 60 cm depth. Therefore, soil treatment with nematicides, cannot prevent TRV transmission to gladiolus sufficiently where viruliferous trichodorids occur at great depths, as is the case in many sandy soils having a low water table.  相似文献   

16.
Plants of four potato (Solanum tuberosum L.) cultivars were grown in pots in a greenhouse at five densities ofGlobodera pallida between 0 and 300 eggs per gram of soil. Photosynthesis and transpiration of selected leaves were measured at 30, 37, 49 and 60 days after planting. Stem length was recorded at weekly intervals. Plants were harvested 70 days afteer planting and various plant variables were determined.At 30 days after planting, when second and third stage juveniles were present in roots, both photosynthesis and transpiration rates were severely reduced byG. pallida. In the course of time these effects became less pronounced. Water use efficiency was reduced byG. pallida between 30 and 49 days, but not at 60 days after planting. The results suggest independent effects ofG. pallida on stomatal opening and on photosynthesis reactions. There were no consistent differences among cultivars in the response of leaf gas exchange rates and water use efficiency to nematode infection. Reduction of photosynthesis byG. pallida appeared additive to photosynthesis reduction due to leaf senescence.Total dry weight was reduced by 60% at the highestG. pallida density. Weights of all plant organs were about proportionally affected. Shoot/root ratio was not affected and dry matter content was reduced. Stem length and leaf area were most strongly reduced during early stages of plant-nematode interaction. The number of leaves formed was only slightly reduced byG. pallida, but flowering was delayed or inhibited. Reduction of total dry weight correlated with reduction of both leaf area and photosynthesis rate. Leaf area reduction seems the main cause of reduction of dry matter production. Tolerance differences among cultivars were evident at 100 eggs per gram of soil only, where total dry weight of the intolerant partially resistant cv. Darwina was lower than that of the tolerant partially resistant cv. Elles and of the tolerant susceptible cv. Multa. The tolerance differences were not correlated with leaf photosynthesis and transpiration. Apparently these processes are not part of tolerance of plants.  相似文献   

17.
The effects of aldicarb on populations of root lesion nematodes (primarily Pratylenchus penetrans ) and on grain yields of spring barley and wheat were examined in the field over 3 years, 1981*83. The incidence of barley net blotch ( Pyrenophora teres ), wheat leaf blotch ( Leptosphaeria nodorum ), and common root rot ( Cochliobolus sativus ) was also recorded in 1982 and 1983. Aldicarb treatments reduced the size of root lesion nematode populations in soil and roots in all years, except in the mid-season soil sample in 1983. The severity of leaf disease was decreased only in 1982, but the incidence of root rot was not significantly affected by the nematticide. Although aldicarb increased cereal grain yields by approximately 15% there was no significant relationship between numbers of root lesion nematodes in roots and soil and fungal disease symptoms on barley and wheat.  相似文献   

18.
Using potato, eggplant and thorn apple as test plants, the relationship between soil inoculum density and plant infection was studied as a basis for the development of a quantitative bioassay of Verticillium dahliae. A linear relationship was demonstrated (P < 0.05) between soil inoculum density and population density on roots for all three test plants and for soil inoculum density and population density in sap extracted from stems for eggplant. Correlation coefficients were higher with densities on or in roots (R2 varying from 0.45 to 0.99) than with densities in stems (R2 varying from 0.04 to 0.26). With eggplant, population densities on/in root and in sap extracted from stems were significantly correlated at 20 and 25°C with Pearson's correlation coefficients of 0.41 and 0.53, respectively. For potato, root colonization was higher at 15 than at 20°C, whereas the reverse applied to eggplant. Stems of potato were less colonized than stems of eggplant. The pathozone sensu Gilligan (1985) was calculated to be <300 µm, indicating that infection was caused by microsclerotia which were located close to the roots. To assess the density of V. dahliae in plant tissue pipetting infested plant sap on solidified ethanol agar medium without salts yielded higher densities than using pectate medium or mixing sap with molten agar. A bioassay for determining effects of (a)biotic factors on development of V. dahliae in the plant is recommended with eggplants as a test plant, grown in soil infested with 300 single, viable microsclerotia g-1 soil at a matric potential of –6.2 kPa, and incubated at 20°C for 8 weeks.  相似文献   

19.
ABSTRACT The vertical distribution of Pratylenchus penetrans was monitored in four fields cropped with maize, black salsify, carrot, or potato. Soil samples were collected at 21-day intervals from May 2002 until April 2003 from five plots (2 x 5 m(2)) per field. Per plot, 15 cores were taken to a depth of 70 cm and split into seven segments of 10 cm each. Within the plots, segments from corresponding depths were pooled. After mixing, 200-g subsamples were taken and nematodes were extracted by zonal centrifugation from the root fraction and the mineral soil fraction separately. In most crops, the root fraction contained more than 50% of the total number of P. penetrans. Because the ratio between the numbers of nematodes in the root fraction and mineral soil fraction changes during the growing season, numbers of P. penetrans found in the mineral soil fraction cannot be used to estimate the total number in the soil. Therefore, both fractions have to be processed to obtain a reliable estimate of the density. No nematodes were recovered below 50 cm soil depth, except in the maize field where nematodes were found at 70 cm. The optimum sampling depth for maize, black salsify, carrot, and potato was 45, 25, 25, and 35 cm, respectively. The percentage of nematodes per soil layer was independent of the sampling date, indicating that a defined optimum sampling depth will be applicable throughout all seasons. The cumulative vertical distribution, modeled with a logistic equation, can be used to estimate the sampling error when samples are collected at different depths.  相似文献   

20.
穿刺巴斯德芽菌Pasteuriapenetrans是根结线虫的专性寄生菌,是最有潜力的根结线虫生防因子。为了解海南省穿刺巴斯德芽菌资源,本文首次对海南省根结线虫病区进行调查,发现穿刺巴斯德芽菌的分布与土壤类型、寄主植物、气温等因素相关。在获得的27个巴斯德芽菌16SrDNA克隆中,均与穿刺巴斯德芽菌具有较高同源性。其中,菌株wf2与穿刺巴斯德芽菌P.penetrans16SrDNA同源性为95.8%,在发育树上处于独立的分支,为巴斯德芽菌属的1个新种;菌株dal、da2、qh和th与P.penetrans16SrDNA同源性为97.5%~97.8%,在发育树上也处于独立的分支,很可能是巴斯德芽菌属的新种;另22株可归属为穿刺巴斯德芽菌。调查结果反映出海南省具有丰富的巴斯德芽菌资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号