首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics of enrofloxacin administered orally and i.v. to American alligators (Alligator mississippiensis) at 5 mg/kg was determined. Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured using high-performance liquid chromatography and the resulting concentration versus time curve analyzed using compartmental modeling techniques for the i.v. data and noncompartmental modeling techniques for the oral data. A two-compartment model best represented the i.v. data. Intravenous administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 4.19 +/- 4.23 microg/ml at time zero, with average plasma drug levels remaining above 1.0 microg/ml for an average of 36 hr. Plasma volume of distribution for i.v. enrofloxacin was 1.88 +/- 0.96 L/kg, with a harmonic mean elimination half-life of 21.05 hr and mean total body clearance rate of 0.047 +/- 0.021 L/hr/kg. Plasma levels of p.o. enrofloxacin remained below 1.0 microg/ml in all test animals, and average concentrations ranged from 0.08 to 0.50 microg/ml throughout the sampling period. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of 0.50 +/- 0.27 microg/ml at 55 +/- 29 hr after administration, with a harmonic mean terminal elimination half-life of 77.73 hr. Minimal levels of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration, with concentrations below minimum inhibitory concentrations for most susceptible organisms. On the basis of the results of this study, enrofloxacin administered to American alligators at 5 mg/kg i.v. q 36 hr is expected to maintain plasma concentrations that approximate the minimum inhibitory concentration for susceptible organisms (0.5 microg/ml). Enrofloxacin administered to American alligators at 5 mg/kg p.o. is not expected to achieve minimum inhibitory values for susceptible organisms.  相似文献   

2.
This study describes the pharmacokinetics of enrofloxacin following oral and i.v. administration to goral (Nemorrhaedus goral arnouxianus). The objective of this study was to expand upon current antimicrobial treatment options available for use in goral by measuring plasma concentrations and examining the pharmacokinetics of enrofloxacin in these animals. Two single-dose treatments of enrofloxacin were administered to four goral in a crossover design. Single-dose treatments consisted of administration of injectable enrofloxacin i.v. (5 mg/kg) and enrofloxacin tablets (136 mg chewable tablets) dissolved in a grain slurry and administered p.o. (10 mg/kg). Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured with the use of high-performance liquid chromatography with UV detection. Plasma volume of distribution for i.v. enrofloxacin was 2.15 - 1.01 L/kg, with a mean elimination half-life of 13.3 hr and total body clearance of 0.19+/-0.14 L/kg/hr. The maximum plasma concentration measured for oral enrofloxacin was 2.77 microg/ml, with a mean half-life of 5.2 hr and systemic availability of 14.6%. The area under the plasma concentration over time curve (AUC) for oral enrofloxacin was 21.06 microg/hr/ml. The area under the plasma concentration over time curve generated for oral enrofloxacin in goral yields an area under the plasma concentration over time curve to minimum inhibitory concentration ratio > 100 for many gram-positive and gram-negative bacterial pathogens common to small ruminants. Based on these results, oral enrofloxacin may be considered for further study as a treatment option for susceptible infections in goral.  相似文献   

3.
Plasma concentrations and pharmacokinetics of enrofloxacin were determined in 12 loggerhead sea turtles (Caretta caretta) after oral administration. Six turtles in group 1 and group 2 received enrofloxacin at 10 mg/kg and 20 mg/kg of body weight, respectively. Blood was collected from the cervical sinus before administration and at timed intervals up to 168 hr following administration. Plasma concentrations of enrofloxacin were determined using a microbiologic assay. The mean peak plasma concentration (Cmax) was 4.07 microg/ml and 21.30 microg/ml for groups 1 and 2, respectively. Plasma levels were detectable at 168 hr postadministration, with mean values of 0.380 microg/ml for group I and 2.769 microg/ml for group 2. The mean elimination half-life for enrofloxacin was 37.80 hr for group I and 54.42 hr for group 2. These findings indicated that enrofloxacin is absorbed following oral administration in loggerhead sea turtles, and blood levels are maintained up to 168 hr following administration.  相似文献   

4.
The pharmacokinetics of a long-acting oxytetracycline preparation administered i.v. and i.m. to American alligators (Alligator mississippiensis) at 10 mg/kg was determined. Plasma levels of oxytetracycline were measured using high-performance liquid chromatography, and the resulting concentration versus time curve was analyzed using compartmental modeling and noncompartmental modeling techniques for i.v. and i.m. samples, respectively. A two-compartment model best represented the i.v. data. Intravenous administration of oxytetracycline resulted in an extrapolated mean plasma concentration at time zero of 60.63 +/- 28.26 microg/ml, with average plasma drug levels of 2.82 +/- 0.71 microg/ml at the end of the 192-hr sampling period. Plasma volume of distribution for i.v. oxytetracycline was 0.20 +/- 0.09 L/kg, with a harmonic mean elimination half-life of 15.15 hr and mean total body clearance rate of 0.007 +/- 0.002 L/hr/kg. Intramuscular administration of oxytetracycline achieved a mean peak plasma concentration of 6.85 +/- 1.96 microg/ml at 1 hr after administration, with average plasma drug levels of 4.96 +/- 1.97 microg/ml at the end of the 192-hr sampling period. The harmonic mean terminal elimination half-life for i.m. oxytetracycline was 131.23 hr. Based on the results of this study, long-acting preparations of oxytetracycline administered parenterally to American alligators at 10 mg/kg q 5 days is expected to maintain plasma concentrations above the minimum inhibitory concentration of 4.0 microg/ml for susceptible organisms.  相似文献   

5.
OBJECTIVES: To determine pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after a single i.v. and i.m. administration of enrofloxacin and tissue residues after serial daily i.m. administration of enrofloxacin in pigs. ANIMALS: 20 healthy male pigs. PROCEDURE: 8 pigs were used in a crossover design to investigate pharmacokinetics of enrofloxacin after a single i.v. and i.m. administration (2.5 mg/kg of body weight). Twelve pigs were used to study tissue residues; they were given daily doses of enrofloxacin (2.5 mg/kg, i.m. for 3 days). Plasma and tissue concentrations of enrofloxacin and ciprofloxacin were determined. Residues of enrofloxacin and ciprofloxacin were measured in fat, kidney, liver, and muscle. RESULTS: Mean (+/-SD) elimination half-life and mean residence time of enrofloxacin in plasma were 9.64+/-1.49 and 12.77+/-2.15 hours, respectively, after i.v. administration and 12.06+/-0.68 and 17.15+/-1.04 hours, respectively, after i.m. administration. Half-life at alpha phase of enrofloxacin was 0.23+/-0.05 and 1.94+/-0.70 hours for i.v. and i.m. administration, respectively. Maximal plasma concentration was 1.17 +/-0.23 microg/ml, and interval from injection until maximum concentration was 1.81+/-0.23 hours. Renal and hepatic concentrations of enrofloxacin (0.012 to 0.017 microg/g) persisted for 10 days; however, at that time, ciprofloxacin residues were not detected in other tissues. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered i.m. at a dosage of 2.5 mg/kg for 3 successive days, with a withdrawal time of 10 days, resulted in a sum of concentrations of enrofloxacin and ciprofloxacin that were less than the European Union maximal residue limit of 30 ng/g in edible tissues.  相似文献   

6.
The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in goats given enrofloxacin alone or in combination with probenecid. Enrofloxacin was administered i.m. at a dosage of 5 mg x kg(-1) alone or in conjunction with probenecid (40 mg x kg(-1), i.v.). Blood samples were drawn from the jugular vein at predetermined time intervals after drug injection. Plasma was separated and analysed simultaneously for enrofloxacin and ciprofloxacin by reverse-phase high performance liquid chromatography. The plasma concentration-time data for both enrofloxacin and ciprofloxacin were best described by a one-compartment open pharmacokinetic model. The elimination half-life (t(1/2beta)), area under the plasma concentration-time curve (AUC), volume of distribution (V(d(area))), mean residence time (MRT) and total systemic clearance (Cl(B)) were 1.39 h, 7.82 microg x h x mL, 1.52 L x kg(-1), 2.37 h and 802.9 mL x h(-1) x kg(-1), respectively. Enrofloxacin was metabolized to ciprofloxacin in goats and the ratio between the AUCs of ciprofloxacin and enrofloxacin was 0.34. The t(1/2beta), AUC and MRT of ciprofloxacin were 1.82 h, 2.55 microg x h x mL and 3.59 h, respectively. Following combined administration of probenecid and enrofloxacin in goats, the sum of concentrations of enrofloxacin and ciprofloxacin levels > or = 0.1 microg x mL(-1) persisted in plasma up to 12 h.Co-administration of probenecid did not affect the t(1/2beta), AUC, V(d (area)) and Cl(B) of enrofloxacin, whereas the values of t(1/2beta) (3.85 h), AUC (6.29 microg x h x mL), MRT (7.34 h) and metabolite ratio (0.86) of ciprofloxacin were significantly increased. The sum of both enrofloxacin and ciprofloxacin levels was > or = 0.1 microg x mL(-1) and was maintained in plasma up to 8 h in goats after i.m. administration of enrofloxacin alone. These data indicate that a 12 h dosing regime may be appropriate for use in goats.  相似文献   

7.
The pharmacokinetic properties of ciprofloxacin and its metabolites were determined in healthy chickens after single i.v. and oral dosage of 8 mg ciprofloxacin kg(-1) bodyweight. After i.v. and oral administration, the plasma concentration-time graph was characteristic of a two-compartment open model. Mean (SD) elimination half-life and mean residence time of ciprofloxacin in plasma were 8.84 (2.13) and 8.54 (1.64) hours, respectively, after i.v. administration and 11.89 (1.95) and 13.32 (2.65) hours, respectively, after oral administration. Mean maximal plasma concentration of ciprofloxacin was 2.63 (0.20) microg ml(-1), and the interval from oral administration until maximum concentration was 0.36 (0.07) hours. The mean oral bioavailability of ciprofloxacin was found to be 69.12 (6.95) per cent. Ciprofloxacin was mainly converted to oxociprofloxacin and desethyleneciprofloxacin. Considerable kidney, liver, muscle and skin + fat tissue concentrations of ciprofloxacin and its metabolites oxociprofloxacin and desethyleneciprofloxacin were found when ciprofloxacin was administered orally (8 mg kg(-1) on 3 successive days). It was estimated that mean tissue concentrations of ciprofloxacin and its metabolites ranging between 0.011 to 0.75 microg g(-1) persisted for 5 days.  相似文献   

8.
The pharmacokinetics of oxytetracycline in 2-yr-old loggerhead sea turtles (Caretta caretta) after single i.v. and i.m. injections were studied for biologic marking and therapeutic applications. Twenty juvenile turtles were divided into two treatment groups. Ten animals received 25 mg/kg of oxytetracycline i.v. and 10 received the same dosage i.m. Plasma oxytetracycline concentrations were analyzed by reverse-phase high-performance liquid chromatography. Data from the i.v. route best fit a three-compartment model, whereas noncompartmental analysis was used to compare data from both the i.v. and i.m routes. For the i.v. route, means for maximum plasma concentration, terminal phase half-life, systemic clearance, and apparent volume of distribution at steady state were 6.6 microg/ml, 66.1 hr, 290.7 ml/hr/kg, and 18.4 L, respectively. For the i.m. route, means for systemic availability, maximum plasma concentration, and elimination half-life were 91.8%, 1.6 microg/ml, and 61.9 hr, respectively. The remarkably high apparent volume of distribution may possibly be associated with a deep compartment of drug disposition such as bone deposition associated with the large skeletal mass of turtles and the fact that these were well-nourished, growing juveniles. Although maximum plasma concentration by i.m. administration was lower than for the i.v. route, the long elimination time indicates that an infrequent dosing interval may be effective for sensitive bacteria.  相似文献   

9.
The purpose of this study was to establish the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the plasma and interstitial fluid (ISF) following subcutaneous (s.c.) administration of enrofloxacin. Ultrafiltration probes were placed in the s.c. tissue, gluteal musculature, and pleural space of five calves. Each calf received 12.5 mg/kg of enrofloxacin. Plasma and ISF samples were collected for 48 h after drug administration and analyzed by high pressure liquid chromatography. Plasma protein binding of enrofloxacin and ciprofloxacin was measured using a microcentrifugation system. Tissue probes were well tolerated and reliably produced fluid from each site. The mean +/- SD plasma half-life was 6.8 +/- 1.2 and 7.3 +/- 1 h for enrofloxacin and ciprofloxacin, respectively. The combined (ciprofloxacin + enrofloxacin) peak plasma concentration (Cmax) was 1.52 microg/mL, and the combined area under the curve (AUC) was 25.33 microg/mL. The plasma free drug concentrations were 54% and 81% for enrofloxacin and ciprofloxacin, respectively, and free drug concentration in the tissue fluid was higher than in plasma. We concluded that Cmax/MIC and AUC/MIC ratios for free drug concentrations in plasma and ISF would meet suggested ratios for a targeted MIC of 0.06 microg/mL.  相似文献   

10.
11.
OBJECTIVE: To compare pharmacokinetics of enrofloxacin administered IV and in various oral preparations to ewes. ANIMALS: 5 mature Katahdin ewes weighing 42 to 50 kg. PROCEDURE: Ewes received 4 single-dose treatments of enrofloxacin in a nonrandomized crossover design followed by a multiple-dose oral regimen. Single-dose treatments consisted of an IV bolus of enrofloxacin (5 mg/kg), an oral drench (10 mg/kg) made from crushed enrofloxacin tablets, oral administration in feed (10 mg/kg; mixture of crushed enrofloxacin tablets and grain), and another type of oral administration in feed (10 mg/kg; mixture of enrofloxacin solution and grain). The multiple-dose regimen consisted of feeding a mixture of enrofloxacin solution and grain (10 mg/kg, q 24 h, for 7 days). Plasma concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life for oral administration was 14.80, 10.80, and 13.07 hours, respectively, for the oral drench, crushed tablets in grain, and enrofloxacin solution in grain. Oral bioavailability for the oral drench, crushed tablets in grain, and enrofloxacin in grain was 4789, 98.07, and 94.60%, respectively, and median maximum concentration (Cmax) was 1.61, 2.69, and 2.26 microg/ml, respectively. Median Cmax of the multiple-dose regimen was 2.99 microg/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered orally to sheep has a prolonged half-life and high oral bioavailability. Oral administration at 10 mg/kg, q 24 h, was sufficient to achieve a plasma concentration of 8 to 10 times the minimum inhibitory concentration (MIC) of any microorganism with an MIC < or = 0.29 microg/ml.  相似文献   

12.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin in neonatal kittens and compare the pharmacokinetics of enrofloxacin in young and adult cats. ANIMALS: 7 adult cats and 111 kittens (2 to 8 weeks old). PROCEDURE: A single dose of 5 mg of enrofloxacin/kg was administered to adults (i.v.) and kittens (i.v., s.c., or p.o.). Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined. RESULTS: The half-life of enrofloxacin administered i.v. in 2-, 6-, and 8-week-old kittens was significantly shorter and its elimination rate significantly greater than that detected in adults. The apparent volumes of distribution were lower at 2 to 4 weeks and greater at 6 to 8 weeks. This resulted in lower peak plasma concentration (Cmax) at 6 to 8 weeks; however, initial plasma concentration was within the therapeutic range after i.v. administration at all ages. Compared with i.v. administration, s.c. injection of enrofloxacin in 2-week-old kittens resulted in similar Cmax, half-life, clearance, and area under the curve values. Enrofloxacin administered via s.c. injection was well absorbed in 6- and 8-week-old kittens, but greater clearance and apparent volume of distribution resulted in lower plasma concentrations. Oral administration of enrofloxacin resulted in poor bioavailability. CONCLUSIONS AND CLINICAL RELEVANCE: In neonatal kittens, i.v. and s.c. administration of enrofloxacin provided an effective route of administration. Oral administration of enrofloxacin in kittens did not result in therapeutic drug concentrations. Doses may need to be increased to achieve therapeutic drug concentrations in 6- to 8-week-old kittens.  相似文献   

13.
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria.  相似文献   

14.
Single-dose pharmacokinetics of sulfadimethoxine were determined in six adult camels (Camelus dromedarius) following administration of a mean dosage of 17.5 +/- 2.7 mg/kg both i.v. and p.o. Serial blood samples were collected through an indwelling jugular catheter intermittently for 5 days for both routes. Sulfadimethoxine was assayed using high-performance liquid chromatography. Serum drug concentration versus time data for each animal was subjected to linear regression, with the best-fit model selected based on residual analysis. The data fit best into a two-compartment open model, with first-order input for oral administration. For orally administered drug, mean maximum serum concentration of 19.3 +/- 1.7 microg/ml was reached at 11.41 +/- 2.59 hr, with an elimination rate constant of 0.09/hr +/- 0.05/hr and an elimination half-life of 11.7 +/- 3 hr. Mean peak serum concentration following i.v. administration was 223 +/- 48 microg/ml. Mean volume of distribution at steady state was 0.393 +/- 0.049 L/kg. Elimination rate constants differed with i.v. and oral administration, suggesting a flip-flop model. Oral bioavailability was 103% +/- 38%. Comparison of maximum serum concentrations to the microbial breakpoint concentration reported for sulfadimethoxine (512 microg/ml) suggests that the dose used in this study, 17.5 +/- 2.7 mg/kg, is insufficient for achieving therapeutic serum levels.  相似文献   

15.
The pharmocodynamics of single injections of florfenicol in yearling loggerhead sea turtles (Caretta caretta) were determined. Eight juvenile loggerhead sea turtles weighing 1.25 (+/- 0.18) kg were divided into two groups. Four animals received 30 mg/kg of florfenicol i.v., and four received the same dose i.m. Plasma florfenicol concentrations were analyzed by reverse-phase high performance liquid chromatography. After the i.v. dose, there was a biphasic decline in plasma florfenicol concentration. The initial steep phase from 3 min to 1 hr had a half-life of 3 min, and there was a longer slow phase of elimination, with a half-life that ranged from 2 to 7.8 hr among turtles. The volume of distribution varied greatly and ranged from 10.46 to -60 L/kg. Clearance after the i.v. dose was 3.6-6.3 L/kg/hr. After the i.m. injection, there was a peak within 30 min of 1.4-5.6 microg/ml, and florfenicol was thereafter eliminated with a half-life of 3.2-4.3 hr. With either route, florfenicol plasma concentrations were below the minimum inhibitory concentrations for sensitive bacteria within 1 hr. Florfenicol does not appear to be a practical antibiotic in sea turtles when administered at these doses.  相似文献   

16.
Mycoplasma iguanae proposed species nova was isolated from vertebral abscesses of two feral iguanas (Iguana iguana) from Florida. Three strains were evaluated for sensitivity to a variety of antibiotics. The minimum inhibitory concentrations for M. iguanae, assessed by broth dilution methods, of clindamycin, doxycycline, enrofloxacin, oxytetracycline, and tylosin (all <1 microg/ml) were lower than those of chloramphenicol (32 micro/ml) and erythromycin (64 microg/ml). The profile was identical to that of Mycoplasma alligatoris, previously isolated from American alligators (Alligator mississippiensis). M. iguanae strain 2327T was subcultured without antibiotics to assess mycoplasmacidal activity. Clindamycin, doxycycline, oxytetracycline, and tylosin were bacteriostatic from 0.1 to 0.5 microg/ml, whereas enrofloxacin was bactericidal at 20 ng/ml. An enrofloxacin dosage of 5-10 mg/kg achieves peak plasma concentrations >1 microg/ml, with an elimination half-life of 6-20 hr, in alligators. Although concentrations achieved in the vertebrae by i.m. or i.v. injection are probably lower than those in plasma, these data suggest that enrofloxacin may be useful to treat M. iguanae mycoplasmosis in iguanas.  相似文献   

17.
The plasma disposition of ciprofloxacin was studied in carp, African catfish and trout after intravenous (IV) and intramuscular (IM) administration at a dose rate of 15 mg/kg. Pharmacokinetic analysis of IV data showed that ciprofloxacin was well distributed (distribution volume Vd(area): 3.08-5.59 litre/kg) and exhibited a similar elimination half-life of about 14 h in these 3 fish species. After IM administration to carp and trout a rapid absorption was noticed; the maximum ciprofloxacin plasma concentrations (mean: 3.49 and 2.37 micrograms/ml, respectively), were achieved within 1 h after injection. At the dose level applied, ciprofloxacin has potential therapeutic value for 2-5 days especially against gram-negative bacterial fish pathogens.  相似文献   

18.
Rung, K., Riond, J.-L. & Wanner, M. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and oral administration of enrofloxacin in dogs. J. vet
Four dogs were given 5 mg/kg body weight enrofloxacin intravenously (i.v.) and orally (p.o.) in a cross-over study. Plasma concentrations of the active ingredient enrofloxacin and its main metabolite ciprofloxacin were determined by a reversed phase liquid chromatographic method. Pharmacokinetic parameters of both substances were calculated by use of statistical moments and were compared to those of enrofloxacin described in the veterinary literature. Mean enrofloxacin t ½λZ was 2.4 h, mean Cls was 27.1 ml/min-kg, and mean Vss was 7.0 1/kg. After i.v. and p.o. administration, concentrations of ciprofloxacin exceeding minimal inhibitory concentrations of several microorganisms were reached (Cmax= 0.2 ng/ml, max = 2.2 h after intravenous administration; Cmax= 0.2 (ig/ml, t max= 3.6 h after oral administration). A considerable part of the antimicrobial activity is due to ciprofloxacin, the main metabolite of enrofloxacin.  相似文献   

19.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin after oral administration to captive elephants. ANIMALS: 6 clinically normal adult Asian elephants (Elephas maximus). PROCEDURE: Each elephant received a single dose of enrofloxacin (2.5 mg/kg, PO). Three elephants received their complete diet (pellets and grain) within 2 hours after enrofloxacin administration, whereas the other 3 elephants received only hay within 6 hours after enrofloxacin administration. Serum concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life after oral administration was 18.4 hours for all elephants. Mean +/- SD peak serum concentration of enrofloxacin was 1.31 +/- 0.40 microg/mL at 5.0 +/- 4.2 hours after administration. Mean area under the curve was 20.72 +/- 4.25 (microg x h)/mL. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of enrofloxacin to Asian elephants has a prolonged elimination half-life, compared with the elimination half-life for adult horses. In addition, potentially therapeutic concentrations in elephants were obtained when enrofloxacin was administered orally at a dosage of 2.5 mg/kg. Analysis of these results suggests that enrofloxacin administered with feed in the manner described in this study could be a potentially useful antimicrobial for use in treatment of captive Asian elephants with infections attributable to organisms, such as Bordetella spp, Escherichia coli, Mycoplasma spp, Pasteurella spp, Haemophilus spp, Salmonella spp, and Staphylococcus spp.  相似文献   

20.
The pharmacokinetic behaviour of enrofloxacin in greater rheas was investigated after intramuscular (IM) administration of 15 mg/kg. Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined by high performance liquid chromatography. Enrofloxacin peak plasma concentration (C(max)=3.30+/-0.90 microg/mL) was reached at 24.17+/-9.17 min. The terminal half-life (t(1/2lambda)) and area under the curve (AUC) were 2.85+/-0.54 h and 4.18+/-0.69 microg h/mL, respectively. The AUC and C(max) for ciprofloxacin were 0.25+/-0.06 microg/mL and 0.66+/-0.16 microg h/mL, respectively. Taking into account the values obtained for the efficacy indices, an IM dose of 15 mg/kg of enrofloxacin would appear to be adequate for treating infections caused by highly susceptible bacteria (MIC(90)<0.03 microg/mL) in greater rheas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号