首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study was conducted to compare carcass EPD predicted using yearling live animal data and/or progeny carcass data, and to quantify the association between the carcass phenotype of progeny and the sire EPD. The live data model (L) included scan weight, ultrasound fat thickness, longissimus muscle area, and percentage of intramuscular fat from yearling (369 d of age) Simmental bulls and heifers. The carcass data model (C) included hot carcass weight, fat thickness, longissimus muscle area, and marbling score from Simmental-sired steers and cull heifers (453 d of age). The combined data model (F) included live animal and carcass data as separate but correlated traits. All data and pedigree information on 39,566 animals were obtained from the American Simmental Association, and all EPD were predicted using animal model procedures. The genetic model included fixed effects of contemporary group and a linear covariate for age at measurement, and a random animal genetic effect. The EPD from L had smaller variance and range than those from either C or F. Further, EPD from F had highest average accuracy. Correlations indicated that evaluations from C and F were most similar, and L would significantly (P < 0.05) re-rank sires compared with models including carcass data. Progeny (n = 824) with carcass data collected subsequent to evaluation were used to quantify the association between progeny phenotype and sire EPD using a model including contemporary group, and linear regressions for age at slaughter and the appropriate sire EPD. The regression coefficient was generally improved for sire EPD from L when genetic regression was used to scale EPD to the appropriate carcass trait basis. The EPD from C and F had similar linear associations with progeny phenotype, although EPD from F may be considered optimal because of increased accuracy. These data suggest that carcass EPD based on a combination of live and carcass data predict differences in progeny phenotype at or near theoretical expectation.  相似文献   

2.
Angus steers of known age (265 +/- 17 d) and parentage were used in a 2-yr study (yr 1, n = 40; yr 2, n = 45) to evaluate the relationship between percentage of i.m. fat content of the longissimus dorsi at the 12th rib and carcass characteristics during growth of nonimplanted steers. Steers were sorted by age and EPD of paternal grandsire for marbling into high- and low-marbling groups so that steers with varying degrees of genetic potential for marbling were evenly distributed across slaughter groups. All steers were fed a 90% concentrate corn-based diet. Steers were allotted to five slaughter groups targeted to achieve hot carcass weights (HCW) of 204, 250, 295, 340, and 386 kg over the course of the feeding period. Data were analyzed as a completely random design with a factorial arrangement of treatments (year, marbling group, and slaughter group). Marbling group did not affect backfat, LM area, yield grade (YG), or marbling score. Regression equations were developed to quantify the change in carcass characteristics and composition over slaughter groups. Hot carcass weight increased in a linear fashion and differed (P < 0.01) among the slaughter groups as anticipated by design. Yield grade followed a quadratic upward pattern (P < 0.01) as HCW increased. Slaughter group affected the degree of marbling linearly (P < 0.01). There were no slaughter group x marbling group interactions, indicating that no differences occurred in the pattern of marbling attributable to paternal grandsire EPD. Carcasses expressed small degrees of marbling at 266 kg of HCW and obtained a YG of 3.0 at 291 kg of HCW. Fractional growth rates decelerated with increasing HCW. Greater advances in marbling relative to total carcass fatness occurred at HCW less than 300 kg. Management practices early in growth may influence final quality grade if compensatory i.m. fat content development does not occur.  相似文献   

3.
Thirty-three steer calves were used to determine the effect of sire breed (Angus or Charolais), time of weaning [normal weaned at approximately 210 d of age (NW) or late weaned at approximately 300 d of age (LW)], and muscle type [LM and semitendinosus muscle (STN)] on fatty acid composition. The whole plot consisted of a 2 (sire breed) × 2 (time of weaning) treatment arrangement, and the subplot treatment was muscle type. Body weights were recorded at 28-d intervals to determine animal performance. Muscle biopsies were collected on d 127 and 128 of finishing. All calves were slaughtered on d 138, and carcass data were collected. Angus-sired steers had lighter initial BW (271 vs. 298 kg; P = 0.02), and LW steers were heavier (351 vs. 323 kg; P = 0.03) on d 28, but no other differences in BW were noted. Charolais-sired steers had larger LM area (P = 0.03), reduced yield grades (P = 0.01), less 12th-rib fat (P < 0.01), and less marbling (P < 0.01) than Angus-sired steers. Carcass measures overall indicate Angus-sired steers were fatter. Hot carcass weight was heavier (348 vs. 324 kg; P = 0.04) in LW steers than NW steers. No other differences (P > 0.05) were observed for feedlot performance or carcass characteristics. Total lipids were extracted from muscle biopsies, derivatized to their methyl esters, and analyzed using gas chromatography. The LM had greater SFA (43.94 vs. 35.76%; P < 0.01) and decreased unsaturated fatty acids (UFA; 56.90 vs. 66.19%; P < 0.01) compared with the STN. Percent total MUFA was greater in STN than LM (51.05 vs. 41.98%; P < 0.01). Total SFA, UFA, and MUFA did not differ due to sire breed or time of weaning. Total PUFA differed (P = 0.04) due to a sire breed × time of weaning interaction but did not differ due to muscle type, with greater PUFA in NW Charolais than any other sire breed × time of weaning combination. Observed changes in percent MUFA may be a result of greater Δ(9)-desaturase activity. The calculated desaturase index suggests STN has a greater Δ(9)-desaturase activity than LM, but no differences (P > 0.05) between sire breed or time of weaning were observed. These results indicate that sire breed, time of weaning, and muscle type all affect fatty acid composition in beef. This information provides insight into factors for manipulation of beef fatty acids. More research is needed to identify beef cuts based on fatty acid profile and healthfulness.  相似文献   

4.
Angus x Hereford steers (n = 48) similar in frame size and in muscle thickness were allotted to eight groups (n = 6) of similar mean live weight for serial slaughter at 28-d intervals (0 to 196 d). Except for d-0 steers, which served as grass-fed controls, all steers were fed a high-concentrate diet during the finishing period. Upon slaughter, one side of each carcass was trimmed of subcutaneous fat in the wholesale rib region. Postmortem longissimus muscle (LM) temperature was monitored for each side during the 24-h chilling period. After quality and yield grade data were collected, rib steaks were removed and aged (7 d) and sensory traits of the steaks were evaluated. Most carcass grade traits increased linearly (P less than .01) with days on feed, whereas most sensory panel variables and marbling increased curvilinearly (P less than .05). Generally, after 56 d on feed, carcasses chilled at slower rates (P less than .05) with increased days fed. Taste panel tenderness, amount of perceived connective tissue, and shear force values peaked at 112 d and were slightly less desirable for cattle fed longer than 112 d (quadratic term, P less than .01). Postmortem muscle temperature at 2.5 h was the chilling time most highly correlated with tenderness values among untrimmed sides. Correlations for shear force with 2.5-h LM temperature, marbling score, days fed, fat thickness, and carcass weight were -.63, -.61, -.56, -.55, and -.53, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A total of 42 F(1) Red Angus progeny from sires divergent in maintenance energy (ME(M)) EPD were analyzed to determine whether selecting for sire ME(M) would alter end-product meat quality. Data from animals were grouped based on the divergence of the ME(M) EPD of their sire from the Red Angus Association-reported breed average and defined as either high or low, the assumption being that high-ME(M) cattle are less efficient because their maintenance requirements represent a larger proportion of their dietary intake. Steer progeny (n = 7) from the high group produced bottom round steaks with a greater a* (redness) color value (P = 0.02) after 5 d in a simulated retail display when compared with bottom round steaks from the low group (n = 18). Bottom round steaks from the high group had a greater b* (yellowness) color value at d 1 (P = 0.03) and d 5 (P = 0.01) of retail display. Samples from the biceps femoris were taken at 12 mo (from both steers and heifers) and 15 mo (from steers only) of age for fiber type proportion analysis. At 12 mo of age, steers from the low group had more type I fibers (P = 0.02), whereas steers from the high group had more type IIb fibers (P = 0.01). Furthermore, samples from steers in the low group at 15 mo had more type I fibers (P = 0.02), and steers from the high group maintained more type IIb fibers (P = 0.02). No changes in fiber type proportions were observed between the high- and low-ME(M) EPD heifers (n = 17). Relative mRNA abundance of genes involved in the synthesis, storage, and breakdown of glycogen were analyzed as a variable important for meat quality, but no statistical differences were observed. At 12 mo age, glycogenin (glyc) was negatively correlated with the proportion of type IIa fibers (r = -0.32 and P = 0.12) as well as with the proportion of type IIb fibers (r = -0.42 and P = 0.03) in the biceps femoris of the steers. In samples taken from the biceps femoris at 15 mo age, glyc was negatively correlated with the proportion of type IIa fibers (r = -0.42 and P = 0.03) in the steers. This indicates that relative mRNA expression of glyc may serve as a marker of muscle glycogen storage capacity in steers. Thus, selection for efficient Red Angus beef cattle based on sire ME(M) EPD does not adversely affect meat quality in F(1) progeny, based on the variables assessed in this study. Furthermore, selection for progeny from low-ME(M) EPD sires may improve fresh meat quality within Red Angus beef cattle.  相似文献   

6.
The objective of this experiment was to provide a current evaluation of the seven most prominent beef breeds in the United States and to determine the relative changes that have occurred in these breeds since they were evaluated with samples of sires born 25 to 30 yr earlier. Carcass (n = 649), yield (n = 569), and longissimus thoracis palatability (n = 569) traits from F(1) steers obtained from mating Hereford, Angus, and MARC III cows to Hereford (H), Angus (A), Red Angus (RA), Charolais (C), Limousin (L), Simmental (S), or Gelbvieh (G) sires were compared. Data were adjusted to constant age (445 d), carcass weight (363 kg), fat thickness (1.1 cm), fat trim percent (25%), and marbling (Small(35)) endpoints. For Warner-Bratzler shear force and trained sensory panel traits, data were obtained on LM from steaks stored at 2 degrees C for 14 d postmortem. The following comparisons were from the age-constant endpoint. Carcasses from L-, G-, and H-sired steers (361, 363, and 364 kg, respectively) were lighter (P < 0.05) than carcasses from steers from all other sire breeds. Adjusted fat thickness for carcasses from A-, RA-, and H-sired steers (1.5, 1.4, and 1.3 cm, respectively) was higher (P < 0.05) than for carcasses from steers from all other sire breeds (0.9 cm). Longissimus muscle areas were largest (P < 0.05) for carcasses from L-, C-, S-, and G-sired steers (89.9, 88.7, 87.6, and 86.5 cm(2), respectively) and smallest for carcasses from H- and RA-sired steers (79.5 and 78.4 cm(2)). A greater (P < 0.05) percentage of carcasses from RA- and A-sired steers graded USDA Choice (90 and 88%, respectively) than from carcasses from other sire breeds (57 to 66%). Carcass yield of boneless, totally trimmed retail product was least (P < 0.05) for RA- and A-sired steers (59.1 and 59.2%, respectively) and greatest (P < 0.05) for G, L-, C-, and S-sired steers (63.0 to 63.8%). Longissimus muscle from carcasses of A-sired steers (4.0 kg) had lower (P < 0.05) Warner-Bratzler shear force values than LM from carcasses of G- and C-sired steers (4.5 to 4.3 kg, respectively). Trained sensory panel tenderness and beef flavor intensity ratings for LM did not differ (P < 0.05) among the sire breeds. Continental European breeds (C, L, S, and G) were still leaner, more heavily muscled, and had higher-yielding carcasses than did British breeds (H, A, and RA), with less marbling than A or RA, although British breeds have caught up in growth rate.  相似文献   

7.
Experiments were conducted at 3 US locations (California, Idaho, and Texas) to determine the effects of dietary zilpaterol hydrochloride and duration of zilpaterol feeding on carcass composition and beef palatability. At each site, 160 steers and 160 heifers were stratified within sex by initial BW (study d -1) and assigned randomly within BW strata to 1 of 4 treatments in a randomized complete block design (4 blocks/treatment for each sex). The 4 treatments were arranged in a 2 (no zilpaterol vs. zilpaterol) x 2 (20- or 40-d duration of zilpaterol feeding) factorial. When included in the diet, zilpaterol was supplemented at 8.3 mg/kg (DM basis). Each pen consisted of 10 animals. After slaughter 2 carcasses per pen (n=64 per trial site) were selected. The entire right side of the selected carcasses was collected for dissection and chemical analysis of the soft tissue. Additionally, the left strip loin was collected for Warner-Bratzler shear force determinations and aged to 28 d postmortem. Sensory analysis was conducted on the Idaho trial site samples only. All data were pooled for analyses. Feeding zilpaterol hydrochloride increased carcass muscle deposition (P<0.01) of both steer and heifer carcasses. However, carcass percentage fat of steers and heifers was not affected (P>0.11) by the zilpaterol treatment. In heifer carcasses, carcass moisture percentage was increased (P=0.04) and bone percentage was decreased (P=0.02), whereas in steer carcasses, carcass moisture and bone percentage were not affected (P>0.10). In heifer carcasses, carcass ash percentage was not affected (P=0.61) by zilpaterol, whereas in steer carcasses, carcass ash percentage tended (P=0.07) to be increased. The protein-to-bone ratio was increased (P<0.001) by zilpaterol hydrochloride treatment in both steers and heifers, whereas the protein-to-fat ratio was not affected (P=0.10). Cooking loss of the LM was not affected (P=0.41) by zilpaterol treatment of steers or heifers. However, LM Warner-Bratzler shear force was increased (P=0.003) on average (3.3 vs. 4.0 kg) due to zilpaterol hydrochloride treatment of both steers and heifers. In both steers and heifers, LM sensory panel scores of overall juiciness (6.2 vs. 6.0), tenderness (6.2 vs. 6.0), and flavor intensity (6.2 vs. 6.0) tended (P=0.06) to be decreased in cattle supplemented with zilpaterol. Zilpaterol hydrochloride is a repartitioning agent that seems to affect carcass composition primarily through protein deposition. However, zilpaterol treatment can adversely affect tenderness and other palatability traits.  相似文献   

8.
The objective of this study was to evaluate the effect of growth implants on the carcass characteristics and tenderness of steers and heifers with different genetic potentials for growth, lean meat yield production, and marbling. Two experiments were conducted. Experiment 1 evaluated Angus steers sired by bulls with high EPD for retail product yield or marbling. Implant treatment was imposed randomly within sire groups. Loins (Institutional Meat Purchasing Specifications 180) were collected from each carcass and cut into three 2.54-cm steaks aged for 7, 14 and 21 d to evaluate tenderness. The second experiment evaluated steers and heifers of British and Continental breed descent. Steers and heifers were slaughtered after 120 d on feed. Loin sections were collected, and one 2.54-cm steak aged 7 d was used for tenderness analysis. When implants were used in Angus steers, HCW and LM area increased, whereas internal fat and marbling decreased (P < 0.01). In Angus steers, sire type did not affect shear force values of steaks; however, implant use significantly increased shear force values (P < 0.01). Carcasses from cattle of Continental breed descent were significantly heavier than carcasses of British breed descent with larger LM area, slightly less fat, and a reduced yield grade (P < 0.01). Also, steer carcasses were heavier than heifer carcasses with larger LM (P < 0.05), but no effect of sex on fat depth, internal fat, yield grade or marbling was observed. No significant interactions were seen between growth implant and breed or between growth implant and sex for shear force values. Shear force values were significantly less for steaks from steers and heifers of British decent compared with steers and heifers of Continental descent (P < 0.01). Steaks from implanted steers and heifers had significantly (P < 0.01) greater shear force values than steaks from steers and heifers not implanted. Use of growth implants in growing cattle resulted in significantly heavier carcass weights, larger LM area, and reduced internal fat. However, implant use also reduced the amount of marbling along with contributing to reduced tenderness. Complicating the tenderness issue is the increased shear force values reported for heifers as well as steers of Continental breed descent. Use of implants may contribute to tenderness variability because of different animal responses to implants.  相似文献   

9.
Steers from research crossbreeding projects (n = 406) were serially scanned using real-time ultrasound at 35-d intervals from reimplant time until slaughter. Cattle were evaluated for rump fat depth, longissimus muscle area (ULMA), 12th-rib fat thickness (UFAT), and percentage of intramuscular fat (IMF) to determine the ability of ultrasound to predict carcass composition at extended periods before slaughter. Additional background information on the cattle, such as live weight, ADG, breed of sire, breed of dam, implant, and frame score was also used. Carcass data were collected by trained personnel at "chain speed," and samples of the 12th-rib LM were taken for ether extract analysis. Simple correlation coefficients showed positive relationships (P < 0.01) between ultrasound measures taken less than 7 d before slaughter and carcass measures: ULMA and carcass LM area (CLMA, r = 0.66); UFAT and carcass 12th-rib fat thickness (CFAT, r = 0.74); and IMF and carcass numeric marbling score (r = 0.61). The same correlation coefficients for ultrasound measures taken 96 to 105 d before slaughter and carcass values (P < 0.01) were 0.52, 0.58, and 0.63, respectively. Steers were divided into source-verified and nonsource-verified groups based on the level of background information for each individual. Regression equations were developed for the carcass measurements; 46% of the variation could be explained for CLMA and 44% of CFAT at reimplant time, 46% of the variation in quality grade and 42% of the variation in yield grade could be explained. Significant predictors of quality grade were IMF (P < 0.001), natural log of 12th-rib fat thickness (LUFAT, P < 0.001), and ADG (P < 0.01), whereas LUFAT (P < 0.001), ULMA (P < 0.01), live weight (P < 0.001), hip height (P < 0.001), and frame score (P < 0.001) were significant predictors of yield grade. Regressions using ultrasound data taken 61 to 69 d before slaughter showed increasing R2. Live ultrasound measures at reimplant time are a viable tool for making decisions regarding future carcass composition.  相似文献   

10.
Yearling steers (n = 2,552; 314 kg of initial BW) were used to evaluate the effects of ractopamine-HCl (RAC) and days on feed on performance, carcass characteristics, and skeletal muscle gene expression in finishing steers. Treatment groups included serial slaughter dates of 150, 171, or 192 d on feed. Within each slaughter date, steers either received RAC (200 mg/steer) daily for the final 28 d or were not fed RAC. All steers were initially implanted with Revalor-IS and were reimplanted with Revalor-S after 75 d on feed. At slaughter, muscle samples from the semimembranosus were collected for mRNA analysis of the beta-adrenergic receptors (beta-AR). Ractopamine administration increased (P < 0.05) ADG, G:F, and HCW and increased (P = 0.08) LM area. Ractopamine did not affect the dressing percentage, USDA yield grade, or quality grade (P > 0.3). There was no change in overall feed intake across the entire feeding period; however, feed intake was increased during the 28-d period during which the steers were fed RAC (P < or = 0.05). Greater days on feed decreased (P < 0.05) ADG, G:F, DMI, and the number of yield grade 1 and 2 carcasses. Also, greater days on feed increased (P < 0.05) HCW, dressing percentage, and the number of prime and choice carcasses, as well as the number of yield grade 4 and 5 carcasses. Increasing days on feed decreased (P < 0.05) the abundance of beta(1)-AR and beta(3)-AR mRNA and increased (P < 0.05) the abundance of beta(2)-AR mRNA in skeletal muscle samples obtained at slaughter. Ractopamine had no effect (P > 0.10) on the abundance of beta(1)-AR or beta(3)-AR mRNA, but tended (P = 0.09) to increase beta(2)-AR mRNA. Additional time-course studies with primary muscle cell cultures revealed that advancing time in culture increased (P < 0.001) beta(2)-AR mRNA but had no effect (P > 0.10) on beta(1)-AR or beta(3)-AR mRNA. We conclude that days on feed and RAC are affecting beta-AR mRNA levels, which could, in turn, impact the biological response to RAC feeding in yearling steers.  相似文献   

11.
Carcass (n = 854) and longissimus thoracis palatability (n = 802) traits from F1 steers obtained from mating Hereford, Angus, and MARC III cows to Hereford or Angus (HA), Tuli (Tu), Boran (Bo), Brahman (Br), Piedmontese (Pm), or Belgian Blue (BB) sires were compared. Data were adjusted to constant age (444 d), carcass weight (333 kg), fat thickness (1.0 cm), fat trim percentage (21%), and marbling (Small00) end points. Results presented in this abstract are for age-constant data. Carcasses from BB- and HA-sired steers were heaviest (P < 0.05) and carcasses from Bo- and Tu-sired steers were lightest (P < 0.05). Adjusted fat thickness was greatest (P < 0.05) on carcasses from HA-sired steers and least (P < 0.05) on carcasses from BB- and Pm-sired steers. Numerical USDA yield grades were lowest (P < 0.05) for carcasses from Pm- and BB-sired steers and highest (P < 0.05) for carcasses from HA- and Br-sired steers. Marbling scores were highest (P < 0.05) for carcasses from HA- and Tu-sired steers and lowest (P < 0.05) for carcasses from Br-, BB-, and Pm-sired steers. Longissimus thoracis from carcasses of HA-, Pm-, and Tu-sired steers had the lowest (P < 0.05) 14-d postmortem Warner-Bratzler shear force values. Carcasses from HA-sired steers had longissimus thoracis with the highest (P < 0.05) tenderness ratings at 7 d postmortem. Longissimus thoracis from carcasses of Br- and Bo-sired steers had the highest (P < 0.05) Warner-Bratzler shear forces and the lowest (P < 0.05) tenderness ratings at 7 d postmortem. Adjustment of traits to various slaughter end points resulted in some changes in sire breed differences for carcass traits but had little effect on palatability traits. Carcasses from BB- and Pm-sired steers provided the most desirable combination of yield grade and longissimus palatability, but carcasses from HA-cross steers provided the most desirable combination of quality grade and longissimus palatability. Tuli, a breed shown to be heat-tolerant, had longissimus tenderness similar to that of the non-heat-tolerant breeds and more tender longissimus than the heat-tolerant breeds in this study.  相似文献   

12.
Calpastatin (CAST) is a naturally occurring protein that inhibits the normal tenderization of meat as it ages postmortem. A SNP was identified in the CAST gene (a G to C substitution) and genotyped on crossbred commercially fed heifers (n = 163), steers (n = 226), and bulls (n = 61) from beef feedlots, and steers (n = 178) from a University of Guelph feeding trial. The association of the CAST SNP with carcass and meat quality traits was studied. Carcass traits included fat, lean, and bone yield; grade fat; LM area; and HCW. Meat quality traits included marbling grade; i.m. fat content of LM; tenderness evaluation of LM (Warner-Bratzler shear force) at 2, 7, 14, and 21 d of postmortem aging; and tenderness evaluation of semitendinosus muscle at 7 d of postmortem aging. The mixed model used in the analyses included fixed effects of CAST genotype, sex, slaughter group, and breed composition (linear covariate); sire was a random effect. For the analysis of shear force, i.m. fat content of LM was also included in the model as a linear covariate. Shear force measures were analyzed within days of postmortem aging and by repeated measures analysis. The CAST SNP allele C was more frequent (63%) in the crossbred population than allele G. The CAST SNP was associated with shear force across days of postmortem aging (P = 0.005); genotype CC yielded beef that was more tender than GG (-0.32 kg +/- 0.13), and CG had intermediate tenderness. The corresponding average allele substitution effect (G to C substitution) was also highly significant (-0.15 +/- 0.05 kg, P = 0.002). A lower percentage of unacceptably tough steaks (shear force > 5.7 kg) at 2 and 7 d postmortem was associated with an increasing number of C alleles (P < or = 0.05). At 7 d postmortem, the percentage of unacceptably tough steaks decreased by 24 and 35%, respectively, for animals carrying 1 and 2 copies of the C allele relative to animals with no C alleles. However, genotype CC had a greater fat yield (+1.44 +/- 0.56%; P = 0.037) than genotype GG, with a corresponding allele substitution effect of 0.67 +/- 0.27% (P = 0.015). Therefore, the CAST SNP allele C was associated with increased LM tenderness across days of postmortem aging and, importantly for the beef industry, had a significant reduction in the percentage of steaks rated unacceptably tough by consumers based on an assumed threshold level.  相似文献   

13.
The effects of propylene glycol (PEG) on performance, ruminal fermentation, blood glucose and insulin, carcass traits, and abundance of IGF-1 mRNA in LM and leptin mRNA in adipose tissue were examined in 20 Korean native steers, with 10 each in control and PEG-fed groups, respectively. Propylene glycol mixed with concentrate diet was provided daily at a rate of 2.5 mL/kg BW(0.75). Experimental animals were fed a concentrate diet to 1.8% of BW twice daily plus rice straw ad libitum during the 4-mo period before marketing. Daily DMI and ADG did not differ between control and PEG-fed steers. Steers receiving PEG displayed an increase (P = 0.044) in propionate concentration, whereas acetate concentration decreased (P = 0.032). Although blood glucose was not affected, serum insulin was increased (P = 0.047) by PEG feeding. Propylene glycol did not affect carcass weight, 13th-rib fat depth, marbling score, or lipid content of LM. The backfat of PEG-fed steers did not differ in leptin mRNA from control steers, whereas increased leptin mRNA was found in i.m. fat with PEG feeding. There was no treatment effect on the level of IGF-1 mRNA in the LM of the tested steers. These results indicate that the amount of PEG fed to steers was not sufficient to improve marbling score through enhanced ruminal propionate and insulin. The role of increased i.m. leptin mRNA level in PEG-fed steers remains to be further elucidated.  相似文献   

14.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in frame size, muscle score, and carcass fat thickness to study the effectiveness of live evaluation and ultrasound as predictors of carcass composition. Three trained personnel evaluated cattle for frame size, muscle score, fat thickness, longissimus muscle area, and USDA quality and yield grade. Live and carcass real-time ultrasound measures for 12th-rib fat thickness and longissimus muscle area were taken on a subset of the cattle. At the time of slaughter, carcass ultrasound measures were taken at "chain speed." After USDA grade data were collected, one side of each carcass was fabricated into boneless primals/subprimals and trimmed to .64 cm of external fat. Simple correlation coefficients showed a moderately high positive relationship between 12th rib fat thickness and fat thickness measures obtained from live estimates (r = .70), live ultrasound (r = .81), and carcass ultrasound (r = .73). The association between estimates of longissimus muscle area and carcass longissimus muscle area were significant (P < .001) and were higher for live evaluation (r = .71) than for the ultrasonic measures (live ultrasound, r = .61; carcass ultrasound, r = .55). Three-variable regression equations, developed from the live ultrasound measures, explained 57% of the variation in percentage yield of boneless subprimals, followed by live estimates (R2 = .49) and carcass ultrasound (R2 = .31). Four-variable equations using frame size, muscle score, and selected fat thickness and weight measures explained from 43% to 66% of the variation for the percentage yield of boneless subprimals trimmed to .64 cm. Live ultrasound and(or) live estimates are viable options for assessing carcass composition before slaughter.  相似文献   

15.
Influence of early postmortem protein oxidation on beef quality   总被引:8,自引:0,他引:8  
The objective of this study was to examine the effect of early postmortem protein oxidation on the color and tenderness of beef steaks. To obtain a range of oxidation levels, the longissimus lumborum muscles (LM) from both strip loins of 20 steers fed either a finishing diet with vitamin E (1,000 IU per steer daily, minimum of 126 d [VITE]; n = 10 steers) or fed the same finishing diet without vitamin E (CON; n = 10 steers) were used. Within 24 h after slaughter, the LM muscle from each carcass was cut into 2.54-cm-thick steaks and individually vacuum packaged. Steaks from each steer were assigned to a nonirradiated group or an irradiated group. Steaks were irradiated within 26 h postmortem, and were aged at 4 degrees C for 0, 1, 3, 7, and 14 d after irradiation. Steaks from each diet/irradiation/aging time treatment were used to determine color, shear force, and degree of protein oxidation (carbonyl content). Steaks from steers fed the VITE diet had higher (P < 0.01) alpha-tocopherol contents than steaks from steers fed the CON diet. Immediately following irradiation, steaks that had been irradiated had lower (P < 0.05) L* values regardless of diet. Irradiated steaks, regardless of diet, had lower a* (P < 0.05) and b* (P < 0.01) values than nonirradiated steaks at all aging times. Carbonyl concentration was higher (P < 0.05) in proteins from irradiated steaks compared to nonirradiated steaks at 0, 1, 3, and 7 d postirradiation. Immunoblot analysis showed that vitamin E supplementation decreased the number and extent of oxidized sarcoplasmic proteins. Protein carbonyl content was positively correlated with Warner-Bratzler shear force values. These results indicate that increased oxidation of muscle proteins early postmortem could have negative effects on fresh meat color and tenderness.  相似文献   

16.
This study evaluated the effect of barley varieties in the diets of finishing steers on carcass composition, fat, and lean color and the fatty acid profile of subcutaneous fat. Crossbred steers (391 kg initial BW) were assigned randomly to one of five finishing diets composed primarily of corn (n = 9), Morex barley (n = 9), Steptoe barley, (n = 9), or two experimental barley varieties SM3 (n = 9) and SM5 (n = 9). Grains were cracked prior to feeding. Diets were formulated (DM basis) to be isonitrogenous (2.24% N) and isocaloric (2.01 Mcal/kg NEm and 1.35 Mcal/kg NEg). Steers were slaughtered according to industry-accepted procedures when it was visually estimated that 70% of carcasses would grade USDA Choice. After a 24-h chill at 4 degrees C, carcass quality and yield grade data were collected by trained, experienced university personnel. Objective color (L*, a*, and b*) of both the LM and subcutaneous fat were measured, and samples of subcutaneous fat were removed from the 10th- to 12th-rib region for fatty acid analysis. Diet did not affect hot carcass weight (P = 0.15), fat thickness (P = 0.58), LM area (P = 0.57), percentage of internal fat (P = 0.52), yield grade (P = 0.96), marbling (P = 0.73), or quality grade (P = 0.10). However, the LM from steers fed diets formulated with Morex and SM5 barley varieties tended to be lighter (higher L* values, P = 0.08) than the LM from steers fed the corn-based diet. Additionally, fat from steers fed corn tended to be more yellow (higher Hunter b* values, P = 0.09) than fat from steers fed barley-based diets. Although grain source had only minimal effects on the fatty acid composition of subcutaneous fat samples, pentadecanoic acid (15:0) was greater (P < 0.05) in fat from steers fed SM3 and Steptoe barley varieties than in fat from steers fed corn. Stearic acid (18:0) concentrations were higher (P < 0.05) in fat samples from steers fed corn than in those fed the experimental barley lines (SM3 and SM5). Conversely, fat samples from steers fed Steptoe and SM5 barley had greater (P < 0.05) gadoleic acid (20:1) concentrations than fat from steers fed corn or Morex variety. Although the variety/line of barley included in the finishing diet may affect LM and fat color, grain-source (barley vs. corn) had little effect on beef carcass quality and yield grades and did not greatly alter the fatty acid composition of subcutaneous fat.  相似文献   

17.
Angus-cross steers (n = 198; 270 kg; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on 9-10-11th-rib composition, color, and palatability. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stocking phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or to a pasture (PAST) finishing system. All steers were finished to an equal time endpoint to minimize confounding due to animal age. At the end of the finishing phase, steers were transported to a commercial packing plant for slaughter and a primal rib (NAMP 107) was removed from 1 side of each carcass. The 9-10-11th-rib section was dissected into lean, fat, and bone, and LM samples were analyzed for palatability and collagen content. Hot carcass weight and 9-10-11th-rib section weight were greater (P = 0.01) for high than low or medium. Winter stocker growth rate did not alter 9-10-11th rib composition. The percentage of fat-free lean, including the LM and other lean trim, was greater (P = 0.001) for PAST than CONC. Total fat percentage of the 9-10-11th-rib section was 42% lower (P = 0.001) for PAST than CONC due to lower percentages of s.c., intermuscular, and i.m. fat. The percentage of total bone in the 9-10-11th-rib section was greater (P = 0.001) for PAST than CONC. Finishing beef cattle on PAST increased (P = 0.001) the percentage of lean and bone and reduced (P = 0.001) the percentage of fat in the carcass based on published prediction equations from 9-10-11th rib dissection. Stocker growth rate did not influence the objective color scores of LM or s.c. fat. Longissimus muscle color of PAST was darker (lower L*; P = 0.0001) and less red (lower a*; P = 0.002) than CONC. Juiciness scores were greater (P = 0.02) for CONC than PAST. Initial and overall tenderness scores as well as Warner-Bratzler shear force values did not differ (P > or = 0.28) among finishing systems. Beef flavor intensity was lower (P = 0.0001) and off-flavor intensity greater (P = 0.0001) for PAST than CONC. Total collagen content was greater (P = 0.0005) for PAST than CONC; however, there were no differences in percentage soluble or insoluble collagen. Growth rate during the winter stocker period did not influence rib composition, color, or beef palatability. Finishing steers on forage reduced fat percentages in the rib and LM without altering tenderness of beef steaks.  相似文献   

18.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

19.
The objective of this study was to benchmark carcasses and muscles from commercially identified fed (animals that were perceived to have been fed an increased plane of nutrition before slaughter) and nonfed cull beef and dairy cows and A-maturity, USDA Select steers, so that the muscles could be identified from cull cow carcasses that may be used to fill a void of intermediately priced beef steaks. Carcass characteristics were measured at 24 h postmortem for 75 carcasses from 5 populations consisting of cull beef cows commercially identified as fed (B-F, n = 15); cull beef cows commercially identified as nonfed (B-NF, n = 15); cull dairy cows commercially identified as fed (D-F, n = 15); cull dairy cows commercially identified as nonfed (D-NF, n = 15); and A-maturity, USDA Select grade steers (SEL, n = 15). Nine muscles were excised from each carcass [m. infraspinatus, m. triceps brachii (lateral and long heads), m. teres major, m. longissimus dorsi (also termed LM), m. psoas major, m. gluteus medius, m. rectus femoris, and m. tensor fasciae latae] and subjected to Warner-Bratzler shear force testing and objective sensory panel evaluation after 14 d of postmortem aging. Carcass characteristics differed (P < 0.05) among the 5 commercially identified slaughter groups for the traits of lean maturity, bone maturity, muscle score, HCW, fat color, subjective lean color, marbling, ribeye area, 12th-rib fat thickness, and preliminary yield grade. Carcasses from commercially identified, fed cull cows exhibited more (P < 0.01) weight in carcass lean than did commercially identified, nonfed cull cows. There was a group x muscle interaction (P = 0.02) for Warner-Bratzler shear force. Warner-Bratzler shear force and sensory overall tenderness values demonstrates that muscles from the SEL group were the most tender (P < 0.01), whereas muscles from the B-NF group were the least tender (P < 0.01). Sensory, beef flavor intensity was similar (P > 0.20) among cull cow carcass groups and more intense (P < 0.01) than the SEL carcass group. Muscles from the SEL group exhibited less (P < 0.01) detectable off-flavor than the cull cow carcass groups, whereas the B-NF group exhibited the most (P < 0.01) detectable off-flavor. Although carcass and muscle quality from commercially identified, fed, cull beef and dairy cows was not similar to A-maturity, USDA Select beef, they did show improvements when compared with nonfed, cull, beef and dairy cow carcasses and muscles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号