首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine the mechanical properties of Equine Interlocking Nail (EIN; JD Wheat Veterinary Orthopedic Research Laboratory, University of California, Davis) stabilized osteotomized tibiae and compare these variables with estimated in vivo loads. STUDY DESIGN: In vitro biomechanical investigation. ANIMALS: Twelve adult equine cadaveric tibiae. SAMPLE POPULATION: EIN-stabilized tibiae were tested monotonically under compression, 3- and 4-point bending, and torsion. Mechanical properties were compared with estimated in vivo loads. RESULTS: EIN-tibial composite mean compressive yield load (11 kN) and bending moment (216 Nm) were greater than loads expected postoperatively in vivo; however, the mean torsional yield load (156 Nm) was less than that expected in vivo. CONCLUSIONS: EIN-stabilized tibiae had compressive and bending strengths greater than those expected to maintain stability during walking in adult horses. Torsional yield strength did not appear sufficient to provide stability during walking in vivo. CLINICAL RELEVANCE: The EIN is not a feasible method of fracture repair for adult equine tibial fractures at this time, because its mechanical properties appear inadequate to withstand the postoperative torsional loads encountered during walking. Because this method of fracture repair may offer biological advantages, further modification of an interlocking nail for adult horses appears warranted.  相似文献   

2.
The compressive, bending and torsional mechanical properties of osteotomized adult equine tibiae stabilized with an interlocking intramedullary nail (nail-tibia composite) were compared with those of intact tibiae to determine the clinical applicability of the nail for repair of tibial fractures in adult horses. The mean yield load, failure load, and stiffness for the nail-tibia composites were significantly less ( P < .05) than those for the intact tibiae in all loading configurations. The mean compressive yield load for the nail-tibia composites was greater than the compressive load calculated from previously reported in vivo data for walking and trotting, and was equal to the load calculated for recovery from anesthesia. The mean yield bending moment for the nail-tibia composites was greater than the bending moment previously calculated for standing, walking, and recovery from anesthesia. The mean torsional yield load for the nail-tibia composites was less than the torsional load determined for the walk from another in vivo study. The design of the interlocking nail evaluated in the present study should be modified to increase torsional and compressive yield strengths and torsional stiffness before reasonable success could be expected for the treatment of adult equine tibial fractures.  相似文献   

3.
OBJECTIVE: To compare structural properties of a plate-rod combination-bone construct (PRCbc) and interlocking nail-bone construct (ILNbc) by use of an experimentally induced gap fracture in canine tibiae. SAMPLE POPULATION: 12 paired canine tibiae. PROCEDURE: Specimens were implanted with a plate-rod combination consisting of a 3.5-mm, limited-contact, dynamic-compression plate combined with an intramedullary rod or 6-mm interlocking nail. Ostectomy (removal of 10-mm segment) was performed. Paired constructs were loaded for bending, compression, or torsion measurements (4 constructs/group). Compliance was determined by fitting regression lines to the load-position curves at low (initial compliance) and high (terminal compliance) loads. RESULTS: Bending compliances did not differ significantly between constructs. For the ILNbc, initial compliance was greater than terminal compliance in compression and torsion. Initial compliance and terminal compliance for the PRCbc were similar in compression and torsion. Initial compliance in compression and torsion was greater for the ILNbc, compared with initial compliance for the PRCbc. Maximum deformations in bending and compression were similar between constructs; however, maximum torsional angle was significantly greater for the ILNbc, compared with values for the PRCbc. CONCLUSIONS AND CLINICAL RELEVANCE: The study documented that for an experimentally induced gap fracture in canine tibiae, a plate-rod combination is a significantly less compliant fixation method in torsion and compression, compared with an interlocking nail. Considering the deleterious effects of torsional deformation on bone healing, a plate-rod combination may represent a biomechanically superior fixation method, compared with an interlocking nail, for the treatment of dogs with comminuted tibial diaphyseal fractures.  相似文献   

4.
OBJECTIVE--To compare the mechanical properties of 2 interlocking-nail systems for fixation of ostectomized equine third metacarpi (MC3): (1) a standard interlocking nail with 2 parallel screws proximal and distal to a 1-cm ostectomy; and (2) a modified interlocking nail with 2 screws proximal and distal to a 1-cm ostectomy with the screws offset by 30 degrees. ANIMAL OR SAMPLE POPULATION--Twelve pairs of adult equine forelimbs intact from the midradius distally. METHODS--Twelve pairs of equine MC3 were divided into 2 test groups (6 pairs each): torsion and caudocranial 4-point bending. Standard interlocking nails (6-hole, 13-mm diameter, 230-mm length) were placed in 1 randomly selected bone from each pair. Modified interlocking nails (6-hole, 13-mm, 230-mm length, screw holes offset by 30 degrees) were placed in the contralateral bone from each pair. All bones had 1-cm mid-diaphyseal ostectomies. Six construct pairs were tested in caudocranial 4-point bending to determine stiffness and failure properties. The remaining 6 construct pairs were tested in torsion to determine torsional stiffness and yield load. Mean values for each fixation method were compared using a paired t test within each group. Significance was set at P <.05. RESULTS--Mean (+/-SEM) values for the MC3-standard interlocking-nail composite and the MC3-modified interlocking-nail composite, respectively, in 4-point bending were: composite rigidity, 3,119 +/- 334.5 Nm/rad (newton. meter/radian) and 3,185 +/- 401.2 Nm/rad; yield bending moment, 205.0 +/- 18.46 Nm and 186.7 +/- 6.17 Nm; and failure bending moment, 366.4 +/- 21.82 Nm and 378.1 +/- 20.41 Nm. There were no significant differences in the biomechanical values for bending between the 2 fixation methods. In torsion, mean (+/-SEM) values for the MC3-standard interlocking-nail composite and the MC3-modified interlocking-nail composite were: composite rigidity, 135.5 +/- 7.128 Nm/rad and 112.5 +/- 7.432 Nm/rad; gap stiffness, 207.6 +/- 10.57 Nm/rad and 181.7 +/- 12.89 Nm/rad; and yield load, 123.3 +/- 2.563 Nm and 107.5 +/- 8.353 Nm, respectively. Composite rigidity and gap stiffness for standard interlocking-nail fixations were significantly higher than the modified interlocking-nail fixation technique in torsion. Yield load had a tendency to be higher for the standard interlocking-nail fixation (P =.15). CONCLUSIONS--No significant differences in biomechanical properties were identified between a standard interlocking nail and one with the screw holes offset by 30 degrees in caudocranial 4-point bending. The standard interlocking nail was superior to the modified interlocking nail in torsional gap stiffness and composite rigidity. The torsional yield load also tended to be higher for the standard interlocking nail. CLINICAL RELEVANCE--The standard interlocking nail with parallel screw holes is superior to a modified interlocking nail with the screw holes offset by 30 degrees in ostectomized equine MC3 bones in vitro when tested in torsion.  相似文献   

5.
Objective — To determine the monotonic mechanical properties of osteotomized adult equine tibiae stabilized with two dynamic compression plates (DCP) and to compare the mechanical properties with those of intact tibiae and in vivo loads.
Study Design — The compressive, bending, and torsional mechanical properties of plated and intact tibiae were assessed in vitro.
Animals or Sample Population — Twelve pairs of adult equine tibiae.
Methods — Tibiae were loaded in axial compression, craniocaudal 3-point bending, or torsion in external rotation in a single cycle to failure. Mechanical properties were determined from load-displacement data.
Results — Compared to intact tibiae, the mean yield load, failure load and stiffness of plated tibiae were significantly lower ( P <.05) (compression and torsion); and the mean yield and failure bending moments, and bending stiffness, of the plated tibiae were lower ( P <.075 for yield), or significantly lower, respectively. The mean compression and bending yield loads for plated tibiae were greater than in vivo loads. The mean torsional yield load for plated tibiae approximated the torsional load determined for the adult horse at a walk.
Conclusions — Simple, anatomically reduced, DCP plated tibiae should have adequate strength to withstand immediate, postoperative in vivo compressive loads and bending moments placed on the tibia in vivo during immediate postoperative activities, however, may not have adequate torsional strength during immediate postoperative weight-bearing at a walk.
Clinical Relevance — Additional supportive methods, to decrease torsional loads, may be beneficial in maintaining stability of plate repaired tibiae during recovery from anesthesia and postoperative healing.  相似文献   

6.
OBJECTIVE: To compare the structural properties of an 8 mm model 11 interlocking nail (IN) with 2 proximal and 2 distal screws (2/2) to 2 proximal and 1 distal screws (2/1) in an unstable canine fracture model. STUDY DESIGN: Ex vivo biomechanical investigation. SAMPLE POPULATION: Eight pairs of adult canine femurs. METHODS: A simple transverse distal metaphyseal femoral fracture with a 1 cm gap was created. The unstable fracture in 1 femur was repaired with a nail with 2 distal and 2 proximal screws and the paired femur with a nail with 1 distal and 2 proximal screws. Cyclic mechanical testing in torsion was performed to assess fatigue life, peak torque, stiffness, and mode of failure. RESULTS: All 2/1 IN-femoral constructs, but only 2 of eight 2/2 constructs, failed before completion of 50,000 loading cycles. The 2/2 constructs had significantly greater peak torque to failure (P = .002) and longer fatigue life (P = .00003) compared with 2/1 constructs. There were no significant differences in stiffness between 2/2 and 2/1 constructs when the non-failed constructs were compared (P > .5). All constructs failed by screw deformation. CONCLUSIONS: An 8 mm model 11 IN used for fixation of unstable canine distal femoral fractures has a longer fatigue life and is stronger under torsional loads when 2 rather than 1 distal screws are placed. CLINICAL RELEVANCE: When repairing unstable canine distal femoral fractures with an IN system, 2 distal screws should be inserted to avoid catastrophic implant failure before bone healing is achieved.  相似文献   

7.
OBJECTIVE: To compare monotonic mechanical properties of gap-ostectomized third metacarpal bones (MC3) stabilized with an MP35N interlocking nail system with contralateral intact bones. ANIMALS OR SAMPLE POPULATION: Twenty-four pairs of cadaveric equine MC3s. METHODS: Third metacarpal bones were divided into 4 mechanical testing groups (6 pairs per group): compression, palmarodorsal (PD) and mediolateral (ML) 4-point bending, and torsion. One MC3 from each pair was randomly selected as an intact specimen, and the contralateral gap ostectomized bone was stabilized with a 4-hole, 14-mm-diameter, 250-mm-long, MP35N intramedullary nail, and four, 7-mm-diameter, 60-mm-long MP35N interlocking screws (constructs). Mechanical testing properties were compared between intact specimens and constructs with a paired t test (significance set at P <.05). RESULTS: Intact specimens were significantly stronger and stiffer than constructs in all testing modes except PD bending. Constructs achieved mean yield strengths that were 57% (compression), 81% (PD bending), 68% (ML bending), and 78% (torque) of intact specimens. Constructs achieved mean stiffnesses that were 53% (compression), 58% (PD bending), 41% (ML bending), and 47% (torque) of intact specimens. CONCLUSION: Monotonic yield mechanical properties of MP35N intramedullary interlocking nail-stabilized, gap-ostectomized MC3 were lower than those of paired intact bones but exceeded reported in vivo loads for dorsopalmar bending and compression and estimated in vivo torsional loads. CLINICAL RELEVANCE: Considering the benefits associated with intramedullary interlocking nail fixation of fractures, this system should be considered for use for repair of MC3 fractures with applicable fracture configurations.  相似文献   

8.
OBJECTIVE: To compare the mechanical properties of two stabilization methods for ostectomized equine third metacarpi (MC3): (1) an interlocking nail system and (2) two dynamic compression plates. Animal or Sample Population-Ten pairs of adult equine forelimbs intact from the midradius distally. METHODS: Ten pairs of equine MC3 were divided into two test groups (five pairs each): caudocranial four-point bending and torsion. Interlocking nails (6 hole, 13-mm diameter, 230-mm length) were placed in one randomly selected bone from each pair. Two dynamic compression plates one dorsally (12 hole, 4.5-mm broad) and one laterally (10 hole, 4.5-mm broad) were attached to the contralateral bone from each pair. All bones had 1 cm mid-diaphyseal ostectomies. Five construct pairs were tested in caudocranial four-point bending to determine stiffness and failure properties. The remaining five construct pairs were tested in torsion to determine torsional stiffness and yield load. Mean values for each fixation method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean (+/-SEM) values for the MC3-interlocking nail composite and the MC3-double plate composite, respectively, in four-point bending were: composite rigidity, 3,454+/-407.6 Nm/rad and 3,831+/-436.5 Nm/rad; yield bending moment, 276.4+/-40.17 Nm and 433.75+/-83.99 Nm; failure bending moment, 526.3+/-105.9 Nm and 636.2+/-27.77 Nm. There was no significant difference in the biomechanical values for bending between the two fixation methods. In torsion, mean (+/-SEM) values for the MC3-interlocking nail composite and the MC3-double plate composite were: composite rigidity, 124.1+/-16.61 Nm/rad and 262.4+/-30.51 Nm/rad; gap stiffness, 222.3+/-47.32 Nm/rad and 1,557+/-320.9 Nm/rad; yield load, 94.77+/-7.822 Nm and 130.66+/-20.27 Nm, respectively. Composite rigidity, gap stiffness, and yield load for double plate fixation were significantly higher compared with interlocking nail fixation in torsion. CONCLUSIONS: No significant differences in biomechanical properties were identified between an interlocking nail and double plating techniques for stabilization of ostectomized equine MC3 in caudocranial four-point bending. Double plating fixation was superior to interlocking nail fixation in torsion.  相似文献   

9.
OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a broad, limited contact, dynamic compression plate (LC-DCP) fixation with a broad, dynamic compression plate (DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An LC-DCP (8-hole, 4.5 mm) was applied to the dorsal surface of 1 randomly selected bone from each pair. One DCP (8-hole, 4.5 mm broad) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean 4-point bending yield load, yield bending moment, composite rigidity, failure load, and failure bending moment of LC-DCP fixation were significantly greater (P<.01) than those of broad DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.001) greater for broad DCP fixation compared with broad LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion was significantly (P<.02) greater for broad LC-DCP fixation compared with broad DCP fixation. CONCLUSION: Broad LC-DCP offers increased stability in static overload testing, however, it offers significantly less stability in cyclic fatigue testing. CLINICAL RELEVANCE: The clinical relevance of the cyclic fatigue data supports the conclusion that the broad DCP fixation is biomechanically superior to the broad LC-DCP fixation in osteotomized equine MC3 bones despite the results of the static overload testing.  相似文献   

10.
Objective— To compare monotonic biomechanical properties and fatigue life of a broad locking compression plate (LCP) fixation with a broad limited contact dynamic compression plate (LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population— Cadaveric adult equine MC3 bones (n=12 pairs). Methods— MC3 were divided into 3 groups (4 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 4.5 mm LCP was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm LC‐DCP) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment, under 4‐point bending, single cycle to failure, of the LCP fixation were significantly greater than those of the LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly greater for the LCP fixation compared with LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad LCP fixation compared with the LC‐DCP fixation. Conclusion— The 4.5 mm LCP was superior to the 4.5 mm LC‐DCP in resisting the static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for the repair of equine long bone fractures.  相似文献   

11.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

12.
OBJECTIVES: To compare the monotonic biomechanical properties of a prototype equine third metacarpal dynamic compression plate (EM-DCP) fixation with a double broad dynamic compression plate (DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional testing. The EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of one randomly selected bone from each pair. Two DCPs, 1 dorsally (10-hole, 4.5 mm broad) and 1 laterally (9-hole, 4.5 mm broad) were applied to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the EM-DCP fixation were significantly greater (P<.0001) than those of the double broad DCP fixation. Mean cycles to failure in 4-point bending of the EM-DCP fixation was significantly greater (P<.0008) than that of the double broad DCP fixation. Mean yield load, composite rigidity, and failure load in torsion of the EM-DCP fixation were significantly greater (P<.0035) than that of the double broad DCP fixation. CONCLUSION: The EM-DCP provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: Results of this in vitro study support the conclusion that the prototype EM-DCP fixation is biomechanically superior to the double broad DCP fixation for the stabilization of osteotomized equine MC3.  相似文献   

13.
Objective: To determine whether the fatigue properties of an interlocking nail (ILN) construct are influenced by metaphyseal or diaphyseal location of the locking bolt. Study Design: Ex vivo mechanical investigation. Sample Population: Adult canine femora (n=19 pairs). Methods: Femora were implanted with a 6‐mm diameter ILN. In 1 femur, the ILN was locked with a 2.7 mm bolt placed in the diaphysis; the ILN in the contralateral femur was locked with a bolt placed in the metaphysis. Constructs were tested to failure in axial loading (9 pairs) or torsion (10 pairs), with failure defined as displacement>2 mm or a total of 500,000 cycles for axial loading, and rotation>45° for torsional loading. Outcome measures included initial construct stiffness, number of cycles to failure, peak load, and peak torque. After testing, microradiography and histology were used to determine the location and nature of construct failure. Results: Metaphyseal bolts failed at higher axial loads than diaphyseal bolts (P=.03), with bolt failure because of bending at the nail‐bolt interface. All of the metaphyseal bolt constructs survived torsional testing whereas 9 of 10 diaphyseal bolt constructs failed catastrophically because of spiral fracture through the adjacent cortical bone. Conclusions: Placement of a locking bolt in metaphyseal bone extends fatigue life under axial loading and decreases the incidence of catastrophic failure under torsional loading.  相似文献   

14.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

15.
OBJECTIVES: To evaluate the effects of plate luting on the biomechanical properties of a broad limited contact-dynamic compression plate (LC-DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by LC-DCP fixation, with 1 of the pair luted with polymethylmethacrylate (PMMA). ANIMAL POPULATION: Ten pairs of adult equine cadaveric MC3 bones. METHODS: Ten pairs of equine MC3 were divided into 2 test groups (5 pairs each) for (1) palmarodorsal 4-point bending single cycle to failure testing and (2) palmarodorsal 4-point bending cyclic fatigue testing. The LC-DCP (8 hole, 4.5 mm) was applied to the dorsal surface of each pair of MC3 bones. All plates and screws were applied using standard AO/ASIF techniques. All MC3 bones had mid-diaphyseal osteotomies. One of the matched pairs of LC-DCP-MC3 constructs were randomly chosen to be luted with PMMA. Mean test variable values for each method were compared using a paired t-test within each group; significance was set at P<.05. RESULTS: Mean palmarodorsal 4-point bending yield bending moment, failure bending moment of the LC-DCP fixation with luting was not significantly different (P>.05) than those of the LC-DCP fixation without luting. Mean cycles to failure for palmarodorsal 4-point bending was significantly (P<.0003) greater, with a 7.2-fold increase, for the LC-DCP fixation with luting compared with the LC-DCP fixation without luting. CONCLUSION: Luting the broad LC-DCP with PMMA in the fixation osteotomized equine MC3 bones increases the fatigue life of cyclic loading for palmarodorsal 4-point bending under the in vitro conditions studied. CLINICAL RELEVANCE: The cyclic fatigue data supports the conclusion that luted broad LC-DCP fixation is biomechanically superior to the non-luted broad LC-DCP fixation in osteotomized equine MC3 bones.  相似文献   

16.
This study biomechanically evaluates solid and tubular interlocking nails in bovine neonatal femurs. Paired femurs from 40 neonatal dairy calves were obtained for mechanical testing. Intact femurs and four combinations of experimentally manipulated femurs (intact or ostectomized femurs with either a solid or tubular interlocking nail) were tested in craniocaudal and lateromedial bending, eccentric axial compression, and external torsion to evaluate composite rigidity, local/gap stiffness, and load to failure (compression and torsion only). In torsional composite rigidity, femurs with tubular interlocking nails were more compliant than intact femurs or intact femurs with solid interlocking nails (P <.001). Ostectomized femurs with solid interlocking nails were similar to intact femurs with tubular interlocking nails. Within femurs with tubular interlocking nails, ostectomized femurs were more compliant than intact femurs (P <.0001). In craniocaudal and lateromedial bending rigidity, ostectomized femurs were more compliant than intact femurs, regardless of interlocking nail type (P <.001). Within ostectomized femurs, tubular interlocking nails were more compliant than solid interlocking nails in craniocaudal bending (P <.05) and there was a similar trend in lateromedial bending (P=.06). In eccentric axial compression, local/ gap stiffness was significantly greater in intact femurs compared with intact femurs with solid (48% of intact bone) or tubular (45% of intact bone) interlocking nails and ostectomized femurs with solid (18% of intact bone) or tubular (11 % of intact bone) interlocking nails (P <.0001). In torsional testing, local/gap stiffness was not significantly different between intact femurs and intact femurs with interlocking nails, but was significantly lower in ostectomized femurs with solid (2% of intact bone) and tubular (0.2% of intact bone) interlocking nails (P <.0001). In torsional and compressive failure testing, plastic deformation of the tubular interlocking nail occurred at the unoccupied screw hole at the ostectomy site before bone failure. Interlocking nails should be considered as an optional repair method for neonatal bovine femoral fractures. Until the actual physiological loading characteristics of neonatal calf femurs are measured, it is uncertain whether solid or tubular interlocking nails tested in this study will provide sufficient strength and stiffness to stabilize neonatal bovine femoral fractures and facilitate healing.  相似文献   

17.
Objectives— To compare monotonic biomechanical properties and fatigue life of a 5.5 mm broad limited‐contact dynamic compression plate (5.5‐LC‐DCP) fixation with a 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Sample Population— Adult equine cadaveric MC3 bones (n=18 pair). Methods— MC3 were divided into 3 test groups (6 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 5.5 mm broad LC‐DCP (5.5‐LC‐DCP) was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) was applied dorsally to the contralateral bone from each pair. Plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t–test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment under 4‐point bending, single cycle to failure, of the 5.5‐LC‐DCP fixation were significantly greater (P<.024) than those of the 4.5‐LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly (P<.05) greater for the 4.5‐LC‐DCP fixation compared with the 5.5‐LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion for the 5.5‐LC‐DCP fixation was not significantly different (P>.05) than those with the 4.5‐LC‐DCP fixation. Conclusion— 5.5‐LC‐DCP fixation was superior to 4.5‐LC‐DCP fixation in resisting the static overload forces under palmarodorsal 4‐point bending. There was no significant difference between 5.5‐LC‐DCP fixation and 4.5‐LC‐DCP fixation in resisting static overload forces under torsion; however, the 5.5‐LC‐DCP offers significantly less stability (80% of that of the 4.5‐LC‐DCP) in cyclic fatigue testing. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for long bone fracture repair in horses.  相似文献   

18.
OBJECTIVE: To describe a novel interlocking nail (ILN) and locking system and compare the torsional properties of constructs implanted with the novel ILN or a standard 8-mm ILN (ILN8) by use of a gap-fracture model. SAMPLE POPULATION: 8 synthetic specimens modeled from canine tibiae. PROCEDURES: An hourglass-shaped ILN featuring a tapered locking mechanism was designed. A synthetic bone model was custom-made to represent canine tibiae with a 50-mm comminuted diaphyseal fracture. Specimens were repaired by use of a novel ILN or an ILN8 with screws. Specimens were loaded for torsional measurements. Construct compliance and angular deformation were compared. RESULTS: Compliance of the ILN8 was significantly smaller than that of the novel ILN. Mean +/- SD maximum angular deformation of the ILN8 construct (23.12 +/- 0.65 degrees) was significantly greater, compared with that of the novel ILN construct (9.45 +/- 0.22 degrees). Mean construct slack for the ILN8 group was 15.15 +/- 0.63 degrees, whereas no slack was detected for the novel ILN construct. Mean angular deformation for the ILN8 construct once slack was overcome was significantly less, compared with that of the novel ILN construct. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of results of this study suggests that engineering of the locking mechanism enabled the novel hourglass-shaped ILN system to eliminate torsional instability associated with the use of current ILNs. Considering the potential deleterious effect of torsional deformation on bone healing, the novel ILN may represent a biomechanically more effective fixation method, compared with current ILNs, for the treatment of comminuted diaphyseal fractures.  相似文献   

19.
A closed comminuted diaphyseal tibial fracture in an adult dog was stabilised with a custommade interlocking intramedullary nail. The fracture progressed to union by 14 weeks, by secondary bone healing. The use of interlocking intramedullary nails in human and veterinary orthopaedics is discussed.  相似文献   

20.
OBJECTIVE: To compare the biomechanical properties of intact immature horse femurs and 3 stabilization methods in ostectomized femurs. Animal or SAMPLE POPULATION: Eighteen pairs of femurs from immature horses aged 1 to 15 months, and weighing 68 to 236 kg. METHODS: Thirty-four immature horse femurs were randomly assigned to 1 of 5 test groups: 1) interlocking intramedullary nail (IIN) (n = 6); 2) IIN with a cranial dynamic compression plate (I/DCP) (n = 6); 3) 2 dynamic compression plates (2DCP) (n = 8); 4) intact femurs tested to failure in lateromedial (LM) bending (n = 6); and 5) intact femurs tested to failure in caudocranial (CaCr) bending (n = 8). Mid-diaphyseal ostectomies (1 cm) were performed in all fixation constructs. Biomechanical testing consisted of 4 nondestructive tests: CaCr bending, LM bending, compression, and torsion, followed by bending to failure. All groups were tested to failure in LM bending with the exception of 1 group of intact femurs tested to failure in CaCr bending. Stiffness and failure properties were compared among groups. RESULTS: The 2DCP-femur construct had greater structural stiffness in nondestructive bending than the IIN-femur construct in either LM or CaCr bending, and the I/DCP-femur construct in LM bending. Only the I/DCP and 2DCP fixations were similar to intact bone in nondestructive-bending tests. In addition, the 2DCP-femur construct had greater structural and gap torsional stiffness than the I/DCP-femur construct, and greater gap torsional stiffness than the IIN-femur construct. However, all of the fixation methods tested, including the 2DCP-femur construct, had lower structural stiffness in torsional loading compared with intact bone. No significant differences in structural stiffness were found between intact bones and femur constructs tested nondestructively in compression. In resistance to LM bending to failure, the 2DCP-femur construct was superior to the IIN-femur construct, yet similar to the I/DCP-femur construct. Also, evaluation of yield and failure loads revealed no significant differences between intact bone and any of the femur constructs tested to failure in LM bending. CONCLUSIONS: In general, the 2DCP-femur construct provided superior strength and stiffness compared with the IIN and I/DCP-femur constructs under bending and torsion. CLINICAL RELEVANCE: Double plating of diaphyseal comminuted femoral fractures in immature horses may be the best method of repair, because in general, it provides the greatest strength and stiffness in bending and torsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号