首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two-year field experiments were conducted to investigate the effect of alternate partial root-zone drip irrigation on fruit yield, fruit quality and water use efficiency of table grape (Vitis vinifera L. cv Rizamat) in the arid region of northwest China. Three irrigation treatments were included, i.e. CDI (conventional drip irrigation, both sides of the root-zone irrigated), ADI (alternate drip irrigation, both sides of the root-zone irrigated alternatively with half the water) and FDI (fixed drip irrigation, only one side of the root system irrigated with half the water). Results indicated that compared to CDI, ADI kept the same photosynthetic rate (Pn) but reduced transpiration rate, thus increased leaf water use efficiency (WUE) of table grape. And diurnal variation of leaf water potential showed no significant differences during 7.00 a.m. to 14.00 p.m. in both years. ADI also produced similar yield and improved WUEET by 26.7–46.4% and increased the percentage of edible grape by 3.88–5.78%, vitamin C content in the fruit by 15.3–42.2% and ratio of total soluble solid concentration/titrated acid in both years as compared to CDI. Thus ADI saved irrigation water, improved the water use efficiency and fruit quality of table grape without detrimental effect on the fruit yield in arid region.  相似文献   

2.
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.  相似文献   

3.
为了探讨热带特色经济作物云南小粒咖啡的节水高效生产模式,通过3种滴灌模式(常规滴灌、交替滴灌和固定滴灌)和2个保水剂水平(有保和无保)的完全组合试验,研究灌水方式和保水剂对小粒咖啡生理生态、生物量积累及水分利用效率的影响.结果表明:与常规滴灌相比,交替滴灌和固定滴灌的叶绿素、脯氨酸、丙二醛、可溶性糖含量均大幅提高;交替滴灌的根系活力显著提高,而固定滴灌的根系活力减小.交替滴灌能使小粒咖啡减少耗水量32.07%,提高水分利用效率29.87%.施用保水剂的叶片脯氨酸、丙二醛、可溶性糖含量减小,而生物量积累和水分利用效率分别增大24.81%和33.03%.与常规滴灌不加保水剂相比,交替滴灌配施保水剂能显著提高小粒咖啡叶绿素、根系活力和可溶性糖含量,而减少丙二醛和脯氨酸累积,同时增加总生物量13.80%,提高水分利用效率73.41%.因此,交替灌溉配施保水剂是一种小粒咖啡适宜的节水综合调控措施.  相似文献   

4.
Field experiments were conducted for 2 years to investigate the effects of various levels of nitrogen (N) and methods of cotton planting on yield, agronomic efficiency of N (AEN) and water use efficiency (WUE) in cotton irrigated through surface drip irrigation at Bathinda situated in semi-arid region of northwest India. Three levels of N (100, 75 and 50% of recommended N, 75 kg ha−1) were tested under drip irrigation in comparison to 75 kg of N ha−1 in check-basin. The three methods of planting tried were; normal sowing of cotton with row to row spacing of 67.5 cm (NS), normal paired row sowing with row to row spacing of 35 and 100 cm alternately (NP) and dense paired row sowing with row to row spacing of 35 and 55 cm alternately resulting in total number rows and plants to be 1.5 times (DP) than NS and NP. In NS there was one lateral along each row, but in paired sowings there was one lateral between each pair of rows. Consequently the number of laterals and quantity of water applied was 50 and 75% in NP and DP, respectively, as compared with NS in which irrigation water applied was equivalent to check-basin.Drip irrigation under NS resulted in an increase of 258 and 453 kg ha−1 seed cotton yield than check-basin during first and second year, respectively, when same quantity of water and N was applied. Drip irrigation under dense paired sowing (DP) in which the quantity of irrigation water applied was 75% as compared with NS, further increased the yield by 84 and 101 kg ha−1 than NS during first and second year, respectively. Drip irrigation under NP, in which the quantity of water applied and number of laterals used were 50% as compared with drip under NS, resulted in a reduction in seed cotton yield of 257 and 112 kg ha−1 than NS during first and second year, respectively. However, the yield obtained in NP under drip irrigation was equivalent to yield obtained in NS under check-basin during first year but 341 kg ha−1 higher yield was obtained during second year. The decrease in N applied, irrespective of methods of planting, caused a significant decline in seed cotton yield during both the years. Water use efficiency (WUE) under drip irrigation increased from 1.648 to 1.847 and from 0.983 to 1.615 kg ha−1 mm−1 during first and second year, respectively, when the same quantity of N and water was applied. The WUE further increased to 2.125 and 1.788 kg ha−1 mm−1 under DP during first and second year, respectively. The agronomic efficiency of nitrogen was higher in drip than check-basin during both the years when equal N was applied. The WUE decreased with decrease in the rate of N applied under fertigation but reverse was true for AEN. It is evident that DP under drip irrigation resulted in higher seed cotton yield, WUE and AEN than NS and also saved 25% irrigation water as well as cost of laterals.  相似文献   

5.
The present investigation was undertaken to evaluate the effect of various levels of water and N application through drip irrigation on seed cotton yield and water use efficiency (WUE). In this experiment three levels of water (Epan 0.4, 0.3, and 0.2) and three levels of N (100, 75, and 50% of recommended N, 75 kg/ha) through drip were compared with check-basin method of irrigation under two methods of planting (normal sowing, NS; paired sowing, PS). The results revealed that when the same quantity of irrigation water and N was applied through drip irrigation system, it increased the seed cotton yield to 2144 from 1624 kg/ha (an increase of 32%) under check-basin method of irrigation. When the quantity of water through drip was reduced to 75%, the increase in seed cotton yield was 12%; however, when water was reduced to 50%, it resulted 2% lower yield than check-basin. The decrease in N through fertigation resulted in reduction in seed cotton yield at all the levels of water supply, but the magnitude of reduction was the highest at highest level of water supply. In paired sowing (PS), 20% higher seed cotton yield was obtained as compared with check-basin method under NS along with 50% saving of water. In paired sowing the sacrifice of 9% seed cotton yield as compared with NS resulted in saving of 50% water as well as the cost of laterals because there was one lateral for two paired rows. The WUE increased by 26% (22.1 from 17.6 kg/ha cm) in drip irrigation system when same quantity of water and N fertilizer was applied as compared with check-basin. WUE was not affected with quantity of water but decrease in rate of N caused a decrease in WUE at all the quantities of water applied. In general, WUE was higher in PS as compared with NS. The agronomic efficiency of nitrogen increased from 21.65 to 28.59 kg of seed cotton per kg of N applied when same quantity of water and N was applied through drip irrigation as compared with check-basin. However, decrease in quantity of water applied resulted in a decrease in agronomic efficiency of N but reverse was true for rates of N applied. When the same quantity of water and N was applied under both the methods of planting, PS produced 22% higher seed cotton yield and along with reduced cost owing to half the number of laterals required.  相似文献   

6.
通过比较典型绿洲灌区(新疆石河子市下野地灌区)6个不同膜下滴灌年限棉田总盐、盐分离子分布,尝试揭示长期应用膜下滴灌技术对土壤化学性质的影响,结果表明,受干旱气候条件影响绿洲区膜下滴灌棉田土壤中总盐及Na~+、Ca~(2+)、Mg~(2+)、SO~(2-)_4和Cl~-在垂直方向均呈现出"浅集表聚"的分布特征。以膜下滴灌年限为横坐标的水平方向表现出,总盐和盐分离子随膜下滴灌年限的延长逐渐降低。但由于棉田土壤中盐分离子本底含量以及化学性质的差异,5种离子年平均降低速率有所不同。结果表明绿洲区现行灌溉制度下膜下滴灌棉田盐胁迫作用逐年减轻的同时棉田土壤化学性质也在发生变化。研究拟为膜下滴灌技术的可持续推广提供一定的理论支持。  相似文献   

7.
The field experiments were conducted for 2 years to evaluate the response of normally sown and paired sown cotton in terms of seed cotton yield and water use efficiency (WUE) at various levels of water applied through drip system. Drip irrigation under normal sowing resulted in an increase in seed cotton yield of 14 and 32% during first and second year, respectively, when same quantity of water was applied through drip and check-basin. Drip irrigation under dense paired sowing, in which the quantity of water applied was 75% as compared to drip under normal sowing, produced equal seed cotton yield during first year but yield increase of 27% was observed during second year. Drip irrigation under normal paired sowing, in which the quantity of water applied was 50% as compared with drip under normal sowing, resulted in a reduction in seed cotton yield of 11 and 15% than normal sowing during first and second year, respectively. However, at equal levels of water applied, dense paired sowing produced 12 and 23% higher seed cotton yield than normal sowing during first and second year, respectively. Similarly, normal paired sowing produced 6 and 14% higher seed cotton yield than normal sowing during first and second year, respectively, The present study revealed that dense paired sowing produced highest yield and water use efficiency along with reduction in cost owing to lower number of laterals required.  相似文献   

8.
为探索滴灌条件下棉花优质高效灌溉指标,在新疆石河子研究了地下滴灌(SSDI)和膜下滴灌(SDI)条件下不同灌水控制下限对棉花耗水量、品质以及水分利用率的影响.结果表明,相同滴灌模式,棉花蕾期耗水量随灌水控制下限的提高而增加,花铃期水分胁迫处理的棉花阶段耗水量普遍低于对照处理;蕾期适度水分胁迫(灌水控制下限为60% FC)花铃期充分供水(灌水控制下限为75% FC)处理(SDI-7和SSDI-7)有利于籽棉产量的提高,与对照处理相比,籽棉产量提高了14.48%(SDI-7)和11.60%(SSDI-7);水分处理对棉花衣分、棉纤维整齐度的影响不明显,蕾期和花铃期水分胁迫对棉纤维上半部平均长度的影响随水分胁迫程度的加重而加剧,蕾期适度水分胁迫(灌水控制下限为60% FC)有利于棉纤维断裂比强度的提高.相同水分处理,地下滴灌棉花产量和灌溉水利用率均高于膜下滴灌棉花.与对照处理相比,蕾期和花铃期灌水控制下限分别为60% FC和75% FC,灌水定额为30 mm处理在节约灌溉水的同时提高了籽棉产量并改善了棉纤维品质,可作为石河子垦区滴灌棉花适宜的灌水指标.  相似文献   

9.
为了解决滴灌水直接输送根际和滴头堵塞的技术问题,开发研制了一种可埋于地下的多变量抗堵塞滴头。经山地红枣不同灌溉试验证明,滴灌、渗灌、根际滴灌产量比不灌溉分别增产12 075、15 145和15 150kg/hm2;WUE分别提高66.94%、72.07%、72.07%,净收入分别增加62 536.0、73 494.0、76 086.0元/hm2。滴灌、渗灌、根际滴灌年使用折旧期分别为8、6、12年。  相似文献   

10.
为探讨干旱区农业节水的途径,以棉花为供试作物,采用2种不同的灌水方式,研究了干旱区分根交替膜下滴灌对棉花生长和水分利用效率的影响。结果表明,在大田条件下,交替滴灌与常规滴灌的光合速率相比差异未达到显著水平,棉花株高在交替滴灌处理下均大于常规滴灌处理,而交替滴灌处理下蒸腾速率在整个生育期均低于常规滴灌处理。交替滴灌使棉花根系经受一定程度的水分胁迫锻炼,从而刺激根系的生长发育,因此交替滴灌对棉花根系生长有显著促进作用。相比常规滴灌,交替滴灌抑制了棉花蒸腾速率,即交替滴灌通过减少棵间蒸发和作物蒸腾耗水来提高了棉花的水分利用效率。同等产量水平下与常规滴灌相比,干旱区棉花交替滴灌可节省20.3%的灌水量,节水效果明显。  相似文献   

11.
为彻底打破"水稻水作"的种植模式,创造性的将膜下滴灌技术与水稻种植成功结合,提出水稻膜下滴灌技术;并根据其农艺要求,研制出一种水稻铺膜铺管播种机。将水稻旱作铺膜、铺管、种行覆土一体机械作业相结合,解决了水稻不易大规模机械化生产的难题。田间试验表明:播种密度(4.50~5.25)×105穴/hm2,播种深度2~3cm,穴粒数合格率≥90%,种行覆土率≥94%。该机能够适应西北干旱区水稻种植农艺要求,有助于推动西北干旱半干旱地区水稻膜下滴灌技术的快速发展。  相似文献   

12.
典型绿洲区长期膜下滴灌棉田残膜分布现状研究   总被引:3,自引:0,他引:3  
【目的】优化管理农田地膜。【方法】于2016年9月在新疆典型绿洲区石河子121团对6块覆膜滴灌棉田(应用膜下滴灌年限分别为5、9、11、13、15和19 a)土壤进行取样,研究了样品中的残膜面积和残膜质量。【结果】6块棉田地膜残留密度分别为127.11、215.85、250.63、294.17、327.83和348.83 kg/hm~2,残膜密度以每年16.37 kg/hm~2的趋势递增;残膜主要集中分布在土壤0~15 cm土层内,且面积大于30 cm~2,随着覆膜年限的增加,逐渐下移到15 cm以下土层内,且这部分残膜逐渐碎裂并均匀分布在土壤20~30 cm土层。随着覆膜年限的增加,棉田土壤中残膜的数量和密度均呈逐年上升趋势,表层土壤中面积较大的残膜在耕作过程中逐年碎裂并向深层土壤下移且均匀分布;同时随着覆膜年限的增加,在35~40 cm深层土壤中面积和质量较小的残膜呈明显增多的趋势。【结论】新疆绿洲区棉田地膜残留远超国家标准限值,应采用厚度大于0.008 mm地膜,同时采取措施提高农田地膜回收率。  相似文献   

13.
土壤盐分与灌溉水质对滴灌棉花出苗率的影响   总被引:1,自引:1,他引:0  
试验研究了灌溉水质与土壤初始含盐率对滴灌棉花出苗率的影响.试验结果表明,土壤不舍盐时,灌溉水质d对内行棉花出苗率影响不显著,对外行棉花出苗率影响显著;自来水处理的内行与外行棉花出苗率均大于微成水处理;在4种微咸水中,EC小的水质对应的出苗率高,EC值相同时,SAR值小的内行出苗率高,SAR值大的外行出苗率高.当土壤舍盐...  相似文献   

14.
新疆地下滴灌无膜移栽棉花水分生产函数试验分析   总被引:1,自引:1,他引:0  
通过田间小区试验,设置不同灌水处理,开展地下滴灌方式下,不同灌溉定额处理无膜移栽棉花水分生产函数的试验研究。结果表明,地下滴灌条件下,灌水量和耗水量呈良好的线性关系,籽棉产量与棉花灌水量、耗水量呈二次抛物线关系,当灌水量为444.26mm,耗水量为540.73mm,此时棉花产量和灌水生产效率均较高。综合考虑籽棉产量和灌...  相似文献   

15.
膜下滴灌技术是干旱农业区高效节水灌溉的重要手段,以玛纳斯河流域石河子试验站实测数据为基础,运用HYDRUS-2D模型对1膜4行方式下新疆棉田的土壤水运动进行了二维模拟,探讨膜下滴灌在1膜4行覆膜方式下土壤水平衡状况。结果表明,1膜4行覆膜方式下的膜下滴灌技术使新疆棉田无效水分蒸发量以及深层渗漏量大大减少,数值模拟方法可较好地模拟新疆棉田的土壤水平衡状态。上述研究可为宏观尺度上的膜下滴灌模拟与研究提供借鉴,同时对保障干旱区农业生产也有积极作用。  相似文献   

16.
塔里木灌区棉田的水盐动态和水盐平衡问题探讨   总被引:9,自引:0,他引:9  
利用2004年在极端干旱的塔里木盆地绿洲棉田灌溉试验数据,对常规地面沟灌和膜下滴灌棉田在不同灌溉定额下水盐动态进行了研究,对节水灌溉与农田水盐平衡问题进行了深入探讨。主要结论包括:①在2700m3/hm2灌溉定额时,常规地面沟灌和膜下滴灌棉田在生育期0~60 cm土层积盐,膜下滴灌的积盐率(12.4%)要高于常规地面沟灌的积盐率(3.4%);②在小于6000 m3/hm2的4种不同灌溉定额条件下,生育期棉田1 m土体上总体表现为积盐;③对于土壤初始含盐量高的新垦荒地,灌溉淋洗的作用要好于土壤盐分本底值低的土壤;④为了保持农田的水盐平衡,在极端干旱区需要进行非生育期以淋洗盐分为目的的灌溉。  相似文献   

17.
The irrigation efficiency of cotton was increased by planting in twin rows with one solid trickling lateral installed within each twin. A yield of 6050 kg/ha was obtained by this method compared to 5329 kg/ha under single row conventional planting with one trickling lateral installed each second row. The amount of effluent applied in both cases was approximately 5000 m3/ha.The improved yield is a composite result of a restricted root zone, increased reproductive growth and proper irrigation management. The method of growing cotton in twin rows is especially applicable to lands in arid zones and may maximize the use of marginal water such as treated wastewater and saline water.  相似文献   

18.
Drip irrigation of cotton with saline-sodic water   总被引:3,自引:0,他引:3  
Summary A two-year study was conducted in the Negev region of Israel, using the drip method, to determine the effect of four levels of water quality (EC =1.0, 3.2, 5.4 and 7.3 dS/m) in combination with three soil amendment treatments (gypsum spread on the soil surface along the drip laterals after planting, injection of H2SO4 into the water during each irrigation, and a control) on plant response, salt distribution in the soil profile, and soil sodification processes. Salinity did not reduce yields even at the highest level, in spite of sodium and chloride accumulation. The highest seed cotton yield (6.4 t/ha) was obtained with the local well water (EC =3.2 dS/m), indicating an optimal response to salinity. The addition of soil amendments during the irrigation season, although reducing exchangeable sodium accumulation near the emitter, endangers the next crop by increasing sodium accumulation under the plant row. It is therefore, recommended that the amendment be applied only before the winter.Contribution from the Agricultural Research Organization, Israel. No. 1131-E, 1984 series  相似文献   

19.
水肥耦合对棉花产量、收益及水分利用效率的效应   总被引:4,自引:0,他引:4  
研究滴灌施肥条件下水肥耦合对棉花籽棉产量、水分利用效率和净收益的影响,并运用多元二次回归与归一化及3种不同目标值组合方式相结合的方法,探索满足多目标综合效益最大化的滴灌水肥用量。采用田间试验的方法,于2012年和2013年棉花生长季,设置5个N-P2O5-K2O施肥水平150-60-30、200-80-40、250-100-50、300-120-60、350-140-70 kg/hm2(分别记为F150、F200、F250、F300、F350)和3个灌溉水平(60%ETC:W1、80%ETC:W2、100%ETC:W3,ETC是作物蒸发蒸腾量)。结果表明,籽棉产量、水分利用效率和净收益的水肥耦合效应明显,60%ETC灌水水平显著抑制籽棉产量并降低净收益,100%ETC灌水水平能够显著提高籽棉产量和净收益,但水分利用效率低于60%ETC灌水水平。2012年灌水量为100%ETC且施肥量300-120-60 kg/hm2(N-P2O5-K2O)时籽棉产量最高,但净收益并未增加,2 a灌水量为100%ETC且施肥量250-100-50 kg/hm2(N-P2O5-K2O)时的净收益最高。二次回归分析结果表明,3种组合方式均可用于水肥多目标优化,其中乘法组合方式2 a水肥投入量差异更小且各目标值变化也更小,2012年灌水量92%ETC、施肥量278-111-56 kg/hm2(N-P2O5-K2O)以及2013年灌水量90%ETC、施肥量268-107-53 kg/hm2(N-P2O5-K2O)可作为籽棉产量、水分利用效率和净收益综合效益最大化的水肥管理策略。  相似文献   

20.
Summary Control of optimal soil water status for high productivity of cotton can be achieved more easily when the volume of the root system is restricted than with an extended root system. The restricted root system was obtained by planting on a pre-dried soil profile and by irrigation with a drip irrigation system applying small quantities of water at high frequencies. The effects of plant population, row and drip lateral densities and the amount of water per application, on soil water distribution and on cotton growth and productivity under these conditions were determined during 3 years of field trials. Cotton (Gossypium hirsutum L. cv. Acala SJ-2) was grown in a loess-brown loam soil in the northern Negev of Israel. The crop was planted on a dry soil profile between the end of May and early June and harvested during October and early November. There was no rainfall during the irrigation season. Water moved to a greater distance vertically than horizontally from the emitter, but there was no movement of water below a depth of 50 cm unless large quantities of water were applied. Maximal lint production was obtained within a narrow range of irrigation water quantities. Quantities below this range reduced production due to water stress, while quantities above this range enhanced vegetative growth and plant height and reduced lint formation. It was concluded that an optimal moisture regime can be obtained more easily by restricting the size of the root zone, but that over-irrigation may easily occur under such conditions. An increase in population over 10 plants/m2 resulted in enhanced vegetative growth associated with a reduction in lint yield with all irrigation regimes. At the optimal plant population and with maximum quantities of water applied, higher lint production and higher rates of water withdrawal were obtained at a row spacing of 50 cm as compared with 100 cm. When sub-optimal quantities of water were applied lint production was less reduced at row spacing of 100 cm. A row-to-lateral ratio of 2, and location of the laterals between alternate rows led to a greater vertical gradient in soil water content as compared with a row-to-lateral ratio of 1. Lint production was increased and vegetative growth was decreased at a row-to-lateral ratio of 2, at both row spacings of 50 and 100 cm.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 1781 E, 1986 Series  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号