首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
交联辛烯基琥珀酸淀粉酯微球对阿司匹林的吸附性能研究   总被引:1,自引:0,他引:1  
马祥英  陈其锋 《安徽农业科学》2013,41(8):3291-3293,3313
采用反相微乳法制备交联辛烯基琥珀酸淀粉酯微球,利用红外光谱、粒度分析仪、扫描电镜和X射线衍射仪对微球进行表征,研究微球对阿司匹林的吸附性能,采用单因素固定变量法探讨投药量、交联剂用量、反应时间对吸附量的影响。结果表明:原淀粉已成功酯化交联合成变性淀粉微球,微球平均粒径为42.61μm,粒径在80μm以下占93.7%;微球表面粗糙多孔,外观圆整,由原淀粉颗粒的晶体形态变为无定性态;在交联剂用量1.5 g,反应时间3.5 h,投药量22 mg的最佳制备条件下,微球的载药量达到21.48%,包封率达到97.63%,可以作为一种优良的阿司匹林吸附载体。  相似文献   

2.
以研究交联淀粉微球(CSM)制备工艺和降解性能为目的,采用单因素试验方法,分析了反应时间、反应温度、引发剂浓度、交联剂浓度对淀粉微球平均粒径的影响规律,用扫描电镜观测了样品形貌,用FT-IR对其结构进行了表征,利用In-Vitro消化模型,对不同粒径淀粉微球在人体内的降解性能进行了测定.结果表明:反应温度和反应时间与制备的淀粉微球平均粒径大小呈负相关.微球平均粒径随引发剂用量和交联剂用量增加而减小,达到最小值后又不断增大;交联淀粉微球形态圆整,表面略显粗糙,粒度均匀.红外光谱在1539cm-1处出现N-H弯曲振动的吸收峰,微球中存在酰胺基结构;CSM在人工胃液中的消化率与降解时间几乎成线性关系,4h内的消化率低于15%,在人工小肠液中的降解分两个阶段,前60min速度较快,60min后CSM的消化速度明显减慢,5h后消化率低于50%;CSM在人工消化液中的消化速度与其直径呈反比.表明交联淀粉微球可被人体缓慢降解,具有应用于药物缓释、靶向给药和栓塞治疗的前景.  相似文献   

3.
淀粉微球广泛应用于化妆品、食品及医药领域,已成为近年的研究热点之一。采用反相乳液聚合法(IEP)制备藜麦淀粉微球,通过单因素及正交试验优化淀粉微球制备工艺,以期得到吸附性能良好的藜麦淀粉微球。进一步采用扫描电镜(SEM)、显微数码测量分析仪及热重分析仪(TG)对藜麦淀粉微球进行性能表征。结果表明:最佳制备工艺为淀粉质量分数9%,大豆油相用量100 mL/120mL,交联剂环氧氯丙烷1 mL/120mL,搅拌速度400 r/min,乳化剂用量3 mg/mL,反应时间3 h,此条件下藜麦淀粉微球亚甲基蓝吸附量为0.828 mg/g。性能表征结果表明,藜麦淀粉微球粒径分布均匀,平均粒径为28.5μm,藜麦淀粉微球表面分布大量较小的孔洞。  相似文献   

4.
罗华丽  张秀娟  杨毅  贾小宁 《安徽农业科学》2011,(11):6548-6549,6619
[目的]研究壳聚糖微球的制备以及其对动物皮内的刺激影响,为壳聚糖微球进一步临床应用提供依据。[方法]以壳聚糖(CS)为原料,通过乳化交联法制备CS微球,显微镜观察壳聚糖微球微观形态,研究微球理化特性受壳聚糖脱乙酰度、壳聚糖醋酸溶液浓度、交联剂用量等工艺条件影响,并将壳聚糖微球进行兔子皮内刺激试验。[结果]优化得出壳聚糖微球制备工艺为壳聚糖醋酸质量浓度0.3 g/L,Span80为油相体积的8%,油水相体积比3∶1,交联时间1 h。该壳聚糖微球不会对兔子产生损害。[结论]壳聚糖微球符合医疗器械生物学评价要求,为壳聚糖微球进一步临床应用奠定了基础。  相似文献   

5.
[目的]研究替米考星淀粉微球的制备工艺。[方法]以可溶性淀粉为原料,以N,N’-亚甲基双丙烯酰胺为交联剂,以过硫酸钾和亚硫酸氢钠为引发剂,采用包埋法制备替米考星淀粉微球。以载药量和包封率为指标,通过正交试验,采用综合平衡法对替米考星淀粉微球的制备工艺进行优化,在扫描电子显微镜下观察替米考星交联微球的形貌及表面形态。[结果]替米考星淀粉微球的最佳制备工艺如下:替米考星0.02 g,可溶性淀粉4 g,交联剂(N,N’-亚甲基双丙烯酰胺)0.95 g,乳化剂(m_(Span80):m_(Tween80)=2∶1)0.75 g,反应时间1.5 h,在优化工艺参数下制得的替米考星淀粉微球载药量为1.63%,包封率为81.4%;微球大小分布均匀,外观圆整,表面粗糙多孔。[结论]该制备工艺可行,扩大了替米考星的应用,为替米考星的剂型改进提供了参考。  相似文献   

6.
以高压均质为乳化方式,采用细乳液交联法合成淀粉纳米微球。对W/O细乳液制备条件的研究结果表明:Span-80与Tween-80质量比为84∶16,淀粉溶液中NaCl与H2O质量比为6∶100时可制得圆整性和分散性较好的粗乳液;复合乳化剂与环己烷的质量体积比为0.04~0.08g/mL时,细乳液粒径和多分散系数(PDI)变化不明显;随着均质压力的提高,细乳液粒径和PDI逐渐减小;随着均质次数的增加,细乳液粒径和PDI先是逐渐减小,均质5次后变化趋于平缓。以环氧氯丙烷为交联剂,成功制得了粒径约50~100nm淀粉纳米微球。  相似文献   

7.
[目的]探讨聚乙烯醇(PVA)空心微球的优化制备条件及其在尿素缓释肥生产中的应用。[方法]采用乳状液化学交联法制备PVA空心微球,通过FT-IR、SEM和TEM等技术对其组成、形貌和粒径进行表征,探讨乳化剪切速率、交联反应温度和交联剂用量等因素对空心微球形貌和粒径的影响;以得到的最佳制备工艺条件为基础,通过包裹尿素制得PVA载肥微球,研究其对尿素的缓释作用。[结果]PVA空心微球制备的最佳工艺条件为乳化剪切速率6000 r/min、反应温度35℃和交联剂用量25 ml。PVA载肥微球具有明显的缓释作用,交联时间以3 h为宜。[结论]该研究为新型缓释肥的开发提供了理论依据。  相似文献   

8.
[目的]分析优化阴离子淀粉微球吸附姜黄素的工艺条件。[方法]以姜黄素作为载药体,研究响应面法优化阴离子淀粉微球吸附姜黄素吸附量的最佳工艺条件。通过单因素试验和Plackett-Burman试验确定了乳化剂用量、交联剂用量、三聚磷酸钠用量和浸泡时间4个主要因素对阴离子微球吸附姜黄素的影响,根据中心组合设计原理采用4因素3水平的响应面分析法,获得阴离子淀粉微球吸附姜黄素的最佳工艺条件。[结果]试验表明,阴离子淀粉微球吸附姜黄素的最佳条件为:乳化剂用量0.599 g,交联剂的用量为3.001ml,三聚磷酸钠用量为0.8 g,浸泡时间为8.5 h,姜黄素吸附量预测值为2.332 mg/g,验证值为2.367 mg/g,与预测值的相差0.035 mg/g。[结论]研究可为阴离子淀粉微球的载药性能和开发利用以及淀粉的深加工开发利用提供依据。  相似文献   

9.
一种新型兽药载体——淀粉微球的制备及其特性   总被引:1,自引:0,他引:1  
以可溶性淀粉为原料,环氧氯丙烷为交联剂,用乳化交联法制备淀粉微球,采用L16(45)正交设计筛选出最佳制备条件,对微球形态、粒径分布进行观察;用吸附载药法制备阿司匹林淀粉微球,对载药量、包封率和体外释药性能进行了研究。所得微球形态圆整,平均粒径为38.75μm,粒径分布在20~60μm,载药量为8.38%,包封率为84.2%,体外释放符合一级动力学方程,并具有明显的缓释作用。  相似文献   

10.
玉米交联淀粉的制备研究   总被引:1,自引:0,他引:1  
于海莲 《安徽农业科学》2011,39(4):2308+2426-2308,2426
[目的]探讨甲醛用量、pH值、反应温度、反应时间对玉米交联淀粉交联度(即沉降积)的影响。[方法]以玉米淀粉为原料,甲醛为交联剂,制备玉米交联淀粉。[结果]确定最佳工艺条件为:甲醛与淀粉的质量比为0.020、反应时间为1 h、反应pH值为9.0、反应温度为42.5℃,所制备的交联淀粉沉降积为2.7 ml。[结论]该试验筛选出了制备玉米交联淀粉的最佳工艺条件,该法具有工艺简单、快速、高效等特点。  相似文献   

11.
[目的]制备大米多孔淀粉,测定其吸附性能。[方法]以浸碱法自制的大米淀粉为原料,采用糖化酶、α-淀粉酶复合酶水解的方法制备大米多孔淀粉,以吸油率、比孔容及对桔子香精的缓释性能等指标评价大米多孔淀粉吸附性能。[结果]制备大米多孔淀粉的最佳酶解工艺条件为:反应温度35℃,时间16 h,pH 4.5,糖化酶、α-淀粉酶酶配比10∶1,底物浓度为0.2 g/ml,颗粒粒度40目。在此条件下制备的大米多孔淀粉吸油率最高,达到58.14%。[结论]大米多孔淀粉有较高的吸油率,较大的比孔容,较好的缓释桔子香精的功能,可作为多种物质的吸附载体并广泛应用。研究可为我国大米资源综合开发提供有效途径,并对我国的多孔淀粉工业化生产起到一定推动作用。  相似文献   

12.
杨静  蒋剑春  张宁  卫民  赵剑 《安徽农业科学》2012,40(33):16362-16365
[目的]研究橡实淀粉的组成成分、结构及理化性质。[方法]采用理化检测方法对橡实淀粉的性质进行了研究,较系统地考察了橡实淀粉的组成、颗粒、淀粉糊等方面的性质。[结果]橡实淀粉中淀粉含量为59.61%,直链淀粉的含量为31.40%;其颗粒相对玉米淀粉颗粒较小,与木薯淀粉相近;晶体结构为C型;橡实淀粉的溶解度、膨胀度比玉米淀粉低,与木薯淀粉相近;橡实淀粉糊凝沉速度居于玉米淀粉和木薯淀粉之间。DSC分析显示,橡实淀粉的糊化温度(61.72℃)较木薯淀粉(70.22℃)和玉米淀粉(66.78℃)低,这说明橡实淀粉较玉米淀粉和木薯淀粉易糊化。[结论]研究可为橡实资源的开发利用提供基础数据。  相似文献   

13.
[目的]研究南疆引种的马铃薯(Solanum tuberosum)在不同生态条件下的淀粉含量及淀粉产量,以确定特定生态地区适宜种植的马铃薯品种类型,为种植者及加工企业跨地区引种栽培马铃薯提供科学依据。[方法]将南疆引种的7个不同马铃薯品种在南疆2种不同生态类型的新疆建设兵团农一师四团和九团2个地区进行种植,进行淀粉含量和淀粉产量的测定和评价。[结果]费乌瑞它是淀粉含量高且稳定性比较好的品种,定选2号是淀粉含量最低且稳定性比较差的品种。在四团和九团淀粉产量比较高的品种是大西洋和费乌瑞它。[结论]马铃薯品种自身的遗传特性对淀粉含量起主导作用,而生态条件对淀粉产量形成起着重要作用。  相似文献   

14.
[目的]优化淀粉制取高吸水树脂的工艺条件。[方法]以过硫酸铵为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,采用溶液聚合法合成了淀粉接枝丙烯酸类高吸水性树脂,并研究了糊化温度、聚合反应时间、丙稀酸单体中和度等因素对接枝产物吸水性能的影响,比较了树脂吸自来水、蒸馏水和盐水情况。[结果]用淀粉制备高吸水树脂的最佳工艺条件为:淀粉/丙烯酸=1/15,淀粉/水=1/30,淀粉/引发剂=40/1,交联剂的质量为淀粉质量的0.6%,丙烯酸的最佳中和度为70%,淀粉的最佳糊化温度为90℃,最佳聚合反应时间为3 h。在以上条件下合成的产品的吸水率达到115 g/g。[结论]该研究为研制淀粉与丙烯酸接枝共聚制备高吸水性树脂的最佳工艺提供科学依据。  相似文献   

15.
[目的]为莲藕产品的开发、工艺制定和品质控制提供理论依据。[方法]从特定品种的莲藕中分离纯化出莲藕淀粉,研究莲藕淀粉及其级分的颗粒特性。[结果]莲藕淀粉成分含量为:水分14.17%、灰分0.95%、粗蛋白0.34%、粗脂肪0.28%、总磷14.50 mg/100 g、直链淀粉24.76%。莲藕淀粉有圆形和椭圆形颗粒,其粒径分别为14.30、61.48μm。天然莲藕淀粉的晶体结构为B型,直链淀粉为V型,支链淀粉无明显晶体结构。天然淀粉及其级分的晶体崩解温度与起始玻璃化温度均较接近,但晶体崩解所需热量差别较大。莲藕淀粉的糊化温度为65.8~73.8℃。淀粉溶解度和膨胀度随温度的升高而增大。[结论]莲藕淀粉在95℃的膨胀度为24.497,属于中等膨胀型淀粉。  相似文献   

16.
[目的]研究微胚乳玉米籽粒中淀粉积累规律。[方法]以高油115玉米作为对照,对微胚乳玉米胚和非胚部位中淀粉的积累规律进行研究。[结果]微胚乳玉米胚部位的淀粉积累速度稍低于高油115,非胚部位的淀粉积累速度则远低于高油115,收获时高油115的淀粉百分含量达微胚乳玉米的3.4—4.5倍。高油115收获时的胚淀粉重比只有3%-4%,而微胚乳玉米中胚淀粉重比可达16%-22%。此外,不同微胚乳玉米材料淀粉积累速度不尽一致,收获时不同微胚乳玉米材料的淀粉含量也具有较大差异。[结论]微胚乳玉米籽粒中淀粉积累缓慢。  相似文献   

17.
大豆蛋白与大豆肽对淀粉糊性能的影响   总被引:2,自引:0,他引:2  
孙旸  孙春玉  陈光 《安徽农业科学》2010,38(17):9161-9162,9177
[目的]研究添加大豆肽和大豆蛋白对淀粉糊化、凝沉过程中物理性质的影响。[方法]研究淀粉糊化和凝沉过程中大豆肽和大豆蛋白对淀粉糊黏度、抗剪切性能和凝沉性的影响。[结果]添加1.00%大蛋白使淀粉糊最高黏度升高30.72%,而添加1.00%的大豆肽使其最高黏度下降26.63%。添加1.00%的大豆肽使崩解值上升55.10%,而添加1.00%大豆蛋白使其崩解值升高77.78%。添加1.00%的大豆肽使回生值上升16.32%,而添加1.00%的大豆肽使其回生值下降82.28%。[结论]大豆蛋白使淀粉糊的最高黏度上升,大豆肽使淀粉糊的最高黏度下降;二者均使淀粉糊的抗剪切能力降低;大豆蛋白有助于淀粉凝胶的形成,大豆肽极强地阻碍了淀粉凝胶的形成。  相似文献   

18.
[目的]为合成高效保水剂奠定良好基础。[方法]通过一系列试验对提高淀粉糊化率方法进行探讨,采用GB5009.7-85直接滴定法计算在不同条件下淀粉糊化率的大小,考察盐酸、水用量、糊化温度、糊化时间等对糊化率的影响。[结果]95℃下的水解率明显高于同等盐酸用量时低温下的水解率;淀粉水解程度与盐酸用量具有同向增长趋势,在95℃条件下,水解率随着盐酸用量的增加而提高,当盐酸用量高于6 ml时,水解率反而下降;水解后溶液所测葡萄糖含量会随着糊化时间的增大而升高,而在90 min左右,葡萄糖含量会达到极大值;在加入150 ml水时,葡萄糖含量最大。[结论]5 g淀粉在150 ml水中95℃条件下,使用6 ml HCl(1∶1)糊化90 min,最大水解率可达到52.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号