首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东北黑土区农田土壤风蚀的影响因素及其数量关系   总被引:4,自引:2,他引:2  
为明确东北黑土区农田土壤风蚀的主要影响因素,通过室内模拟试验,对比分析了黑土在不同风速(5~14m/s)、土壤含水量(2%~11%)以及秸秆覆盖率(0~80%)下的风蚀速率差异,进而分析了风蚀速率与各因素之间的数量关系。结果表明,黑土起沙风速略大于5m/s,其风蚀速率随风速增大呈指数增加,风速14m/s(含水量2%)时的风蚀速率比8m/s时增加了11.6~42.7倍。黑土风蚀速率随土壤含水量升高呈先增加后降低趋势;在土壤含水量小于5%时随含水量升高而逐渐增加,至含水量5%时达到峰值并逐渐降低,至含水量11%时接近零。秸秆覆盖显著降低了黑土风蚀速率,二者成近似指数函数关系;秸秆覆盖率20%(含水量2%)时的风蚀速率比无覆盖减少了72.6%~92.3%,但秸秆覆盖率由20%增加至80%(含水量2%)后风蚀速率仅降低了0.02~1.20g/(m2·s),幅度有限。研究表明,风速、土壤含水量以及秸秆覆盖率均可显著影响东北黑土区农田土壤风蚀速率,其权重依次为风速土壤含水量秸秆覆盖率。  相似文献   

2.
[目的]为解决干旱荒漠区沙丘造林成活率低的技术难题,从荷兰Groasis引进Waterboxx保水、节水造林器及技术,并分析其应用效果。[方法]在甘肃省民勤县流动沙丘和半固定沙丘上,用梭梭、花棒、柠条锦鸡儿、柽柳等固沙植物进行造林试验,采用直观统计观测的方法,研究Groasis Waterboxx在沙丘上造林后的风蚀、温度、保水和苗木成活率情况。[结果](1)春季用Groasis Waterboxx沙丘造林技术,流动沙丘风蚀情况比半固定沙丘严重2.0~6.0倍,造林效果差;从沙丘迎风面不同部位的风蚀情况来看,流动沙丘和半固定沙丘总体均表现为:顶部中部底部;(2)Groasis Waterboxx沙丘造林技术在高温季节能有效降低苗木根际土壤地温近50%,保护苗木免受高温灼伤,促进苗木生长;低温季节还能有效保持根际表面地温在5℃左右,防止苗木遭受低温冻害;(3)Groasis Waterboxx沙丘造林技术能使苗木周边0—40cm表土层含水量长期保持在6%~12%,保证苗木成活期的水分持续供给;(4)Groasis Waterboxx沙丘造林技术能显著提高苗木成活率30%~60%。[结论]Groasis Waterboxx沙丘造林技术在半固定沙丘造林效果优于流动沙丘,能够显著提高苗木成活率。  相似文献   

3.
[目的]分析雅鲁藏布江江当宽谷区流沙治理技术(砾石覆盖+人工植被+围封)对流沙理化性质的改良效应,为区域荒漠化治理工作提供理论指导。[方法]对比分析固沙区和流动沙丘土壤机械组成、有机质和养分等指标开展研究。[结果]采用植物和工程相结合的固沙措施,在流沙表面覆盖砾石、播种固沙植物,并对该区域进行围封后,沙丘表面植被盖度增加,流沙基本固定。与流动沙丘相比,固沙区土壤的黏粒、粉粒明显增多。固沙区土壤的有机质、全氮、碱解氮、全磷、速效磷、速效钾含量比流动沙丘高;尤其是土壤表层0—5cm,分别比流动沙丘高出634.3%,268.0%,506.5%,38.3%,343.8%,66.7%。固沙区0—5cm土层的pH值比流动沙丘降低了11.5%;电导率比流动沙丘增加了268.1%。[结论]该项流沙治理技术(砾石覆盖+人工植被+围封)的固沙和改良土壤理化性质作用明显,适宜在该区推广使用。  相似文献   

4.
库布齐沙漠发展沙产业,风沙防护是必要举措。通过风洞试验与野外观测探讨了砾石覆盖固沙措施的风沙防护效益及其对土壤温湿度的影响,旨在为砾石覆盖在库布齐沙漠防风固沙中的应用提供科学依据。研究表明:3cm粒径砾石床面具有显著的防风固沙效应:10~16m/s试验风速下,10%~90%覆盖度砾石床面风蚀防护效应介于49.4%~100%,其中,50%覆盖度砾石床面空气动力学粗糙度达到最大值,风蚀防护效应在96%以上,已达到理想的防风固沙效果。鉴于库布齐沙漠风况特征,从工程防护角度讲,40%覆盖度砾石覆盖固沙措施能够达到防风蚀的目的,风蚀防护效应在93%以上,且能起到白天降温、夜间保温的作用,减少极端气温对作物的伤害,还能提高土壤含水量。本研究可为砾石覆盖固沙措施在干旱区风蚀防护中的应用提供借鉴作用。  相似文献   

5.
科尔沁沙地流动沙丘塑料防沙网防风固沙效果试验   总被引:3,自引:0,他引:3  
为了检测塑料防沙网的防风固沙效果,在科尔沁沙地开展不同设置方式(立式、平铺及组合)、不同间距(立式)塑料防沙网的固沙效果比较研究.结果表明:塑料防沙网的设置可以提高植被恢复速度,防护区短期内物种数量、植被盖度迅速增加,其中以平铺防沙网与立式防沙网相结合效果较好;立式防沙网能够明显降低风速,最大可降低风速达48.2%,间距6 m的防沙网降低风速效果好于间距10 m的防沙网;立式防沙网具有较好的阻沙效果,可阻拦沉降较大粒径的沙尘,但对土壤水分无明显影响;平铺式防沙网具有较强的抗风蚀作用,固着沙表面效果显著.塑料防沙网固沙方式可在植物生存困难区域设置有效的防风固沙系统.  相似文献   

6.
PAM对土壤抗风蚀能力的影响   总被引:3,自引:0,他引:3  
利用室内风洞试验装置模拟了不同地面坡度、不同地表风速、不同PAM处理的土样在净风和挟沙风作用下的风蚀情况。研究发现,PAM施用量为0.2 g/m2和6 g/m2时可分别抵御18 m/s的净风和挟沙风而使土壤不发生风蚀,施用量为0.1 g/m2时可使净风风蚀率降低90%~98%,施用量为4 g/m2且地面坡度不超过10°时可以抑制18 m/s的挟沙风而使土壤不发生风蚀,施用量为2 g/m2时可使挟沙风风蚀率降低23%~99%。  相似文献   

7.
两种仿真固沙灌木防风效应的野外观测   总被引:1,自引:1,他引:0  
仿照沙旱生灌木构型制成无叶和有叶两种仿真固沙灌木,在野外观测了这两种仿真固沙灌木对风速变化的影响。结果表明,当风速为2.2~5.5m/s时,40cm高度的仿真固沙灌木削弱风速率随风速增大而增加。仿真固沙灌木平均风速削减率小于沙蒿,但统计分析差异不显著。无叶仿真固沙灌木平均降低风速率小于有叶仿真固沙灌木。仿真固沙灌木是结合多种植物优势组合而成,是对植物治沙措施的优化,具有显著的防风效应。  相似文献   

8.
流动沙丘不同部位风蚀积沙特征研究   总被引:1,自引:0,他引:1  
[目的]探究和利用流动沙丘各部位的风蚀积沙规律,为提升固沙技术措施提供依据。[方法]在典型新月型沙丘上设置3台光电子式积雪深度测定仪观测流动沙丘不同部位的风蚀和积沙规律。[结果]在特定风速下落沙坡随着起沙风速变化其积沙深度由1cm逐渐增加到12cm,并在起沙风速下降时形成一个强烈的积沙过程;迎风坡在起沙风速时处于最大的风蚀状态,并随风速变化形成一个由强风蚀到弱风蚀的转变过程;沙丘顶部在临近起沙风速时处于风蚀过程,并随起沙风速的逐渐增加又处于积沙过程。此外,流动沙丘迎风坡在12月至翌年5月间净风蚀深度月均值约为29.85cm;落沙坡在12月至翌6月间积沙深度月均值净增加139.5cm;而沙丘顶部在3—11月为风蚀发生期,平均风蚀深度变化值为27.3cm,12月至翌年3月为积沙发生期,平均积沙深度变化值为29.47cm。[结论]风速对流动沙丘不同部位风蚀积沙特征变化具有重要影响,而且不同部位风蚀积沙程度存在明显差异。  相似文献   

9.
醋酸乙烯酯类固沙剂固沙效果的风洞实验   总被引:1,自引:0,他引:1  
通过室内风洞模拟实验,研究了不同净风、挟沙风风速和沙面坡度条件下3种醋酸乙烯酯类固沙剂(WGS-3、WGS-4和CS-204)不同喷洒浓度时的土壤风蚀控制效果。研究结果表明:3种固沙剂均具有较好的抗风蚀能力,相同条件下,固沙剂CS-204的抗风蚀性能稍强于WGS-4,WGS-3的抗风蚀性能相对较差;与净风相比,挟沙风更易使喷施固沙剂后的沙面产生风蚀;挟沙风条件下,沙面累积风蚀量随固沙剂使用量的增加而减小,随沙面坡度的增加而增大;从经济意义上考虑,建议固沙剂WGS-3喷洒浓度稍高于3.0%,WGS-4和CS-204使用浓度为2.0%~3.0%,且喷洒量为1L/m2,能有效固沙。  相似文献   

10.
粉煤灰和聚丙烯酰胺固沙效果的风洞试验   总被引:3,自引:2,他引:1  
寻找经济高效的固沙措施对于防治风沙危害具有重要意义。该文采用室内风洞试验,研究了不同粉煤灰施用率(10%,20%和30%)的固沙效果及在粉煤灰最佳施用率的基础上不同聚丙烯酰胺(PAM)施用率(0.05%和0.1%)对其的强化作用。试验研究结果表明,沙土施加粉煤灰后起动风速显著提高,施加PAM进一步小幅提高其起动风速;粉煤灰施用率为20%的沙土可以最有效地抵御8m/s净风和风沙流历时10min的吹蚀;施加粉煤灰的沙土在14m/s净风和风沙流历时10min的吹蚀条件下发生中度风蚀,其风蚀率随着粉煤灰施用率的增大而呈逐步降低的趋势;施加粉煤灰和PAM的沙土可以有效地抵御14m/s风沙流历时30min的吹蚀;从经济意义上考虑,推荐粉煤灰施用率为20%和PAM施用率为0.05%的用量水平处理用于风蚀防治。  相似文献   

11.
辽西北地区土壤沙漠化形成的主要原因是土壤风蚀,为了定量评价辽西北沙化土壤在风力作用下的侵蚀状况,研究采用埋钎法,观测风速与土壤剥蚀深度及堆积厚度的关系。研究得出固定沙丘和流动沙丘的土壤剥蚀深度均随着风速的加大而增加;流动沙丘和固定沙丘,随着风速的加大,背风坡的坡中与坡脚的土壤堆积厚度均有不同程度的增加,而由于风力的剥蚀作用,坡顶的堆积厚度与风速呈负相关;一年内观测到的流动沙丘,半流动沙丘,固定沙丘的平均风蚀强度分别为167.9,57.8,4.2 mm/d。  相似文献   

12.
和田地区绿洲外围农田防护林带的防护效益   总被引:3,自引:1,他引:2  
在和田地区新垦农地外围的流动沙地种植新疆杨乔木+沙拐枣灌木复合防护林,通过布设风速风向观测仪、沙尘通量梯度仪、温湿度和辐射等测定仪于林带前后,研究防护林网的防护效益,为营建绿洲外围防护林和合理开发利用荒漠区的土地资源提供理论依据。结果表明,防护林带的防风效能随着高度的增加而减弱,大于起沙风速(6m/s)时,新疆杨林带、沙拐枣林带在0.5m处的防风效能分别为67.2%和94.5%,在3m处的防风效能分别为31.3%和33.7%。随着风速的增大,沙拐枣林带和新疆杨林带的防风效能均减弱,新疆杨林带的减弱更为明显。防护林带有效地降低了地表风速,减轻地表风蚀。林带内的输沙量仅为外围的10%左右。此外,林带内的太阳辐射强度下降,温度降低,湿度显著增加。由此可见,防护林可以有效地起到防风固沙,改善区域小气候的作用。  相似文献   

13.
干旱风沙区农田防护林网空间风速与地表风蚀特征   总被引:8,自引:5,他引:3  
为准确了解和评价干旱风沙区在典型大风环境下农田防护林空间风速分布,以及林网内风蚀状况,分别利用三杯风速仪和诱捕法,对干旱风沙区盐池县农田防护林网空间风速与地表风蚀特征开展了林网内不同水平距离内的距地表50、200 cm高度风速分布与地表风蚀状况监测。研究表明:1)随着防护距离的逐渐增大,风蚀量呈先增加后减少的变化趋势,而风速变化规律正好相反;50和200 cm高度的风速变化规律均一致,均呈先逐渐降低后逐渐升高的变化,以12H处对风力减小作用最明显,50和200 cm高度的风速降幅分别达到了51%和46%;林带防风效益与距离呈先增加后减小趋势,以12H(12倍的防护林带树高,下同)处200 cm高度最佳,为53.65%;侵蚀模数由林带内的轻度、1H处的强度到3H、7H处的剧烈,12H处为极强度,以3H处最大,为21 944.62 t/km~2。2)沙粒粒径以73.99、87.99、104.6μm区间为主,其中82.53%~99.93%沙粒均集中在248.9μm以下,为细沙粒,而旷野对照组沙粒粒径主要集中在104.6~148μm,沙粒明显较粗。因此,干旱风沙区沙质农田防护林网在典型大风日内对风速的减缓非常有效。但由于林网内沙物质源丰富,风蚀现象依然严重,对当地沙尘暴发生影响较大。该研究对准确掌握当地林网风蚀,科学评价林网防护功能等有一定的借鉴作用。  相似文献   

14.
施用PAM防治松散土风蚀的机理及其抵御风沙流能力研究   总被引:7,自引:1,他引:6  
采用室内风洞试验方法,研究了内蒙古西部干旱半干旱地区荒漠沙地松散土风蚀规律、风沙流对风蚀量的影响和施用PAM防治松散土壤风蚀的机理及其抗风沙流的能力。风沙流对风蚀量的影响试验,采用试样接续放置的方法,前一试样为后一试样提供风沙流;施用PAM试样抗风沙流的能力试验,采用PAM使用量为1g/m2,2 g/m2和4 g/m2等3个处理水平和0,17.6%,36.4%,7.7%等4个吹角水平。试验结果表明,相同的风速条件下风沙流对土壤的侵蚀程度比净风侵蚀程度高得多,侵蚀量显著不同;PAM用量为1 g/m2时,在7~8m/s风速的风沙流作用下只能经历5~10 min的吹蚀试样即破坏;PAM用量为2 g/m2时可以抵御8~10 m/s风速的风沙流历时30 min的吹蚀;PAM用量达4 g/m2时,可以抵御10 m/s风速的风沙流历时30 min的吹蚀试样仍未破坏,几乎可以防止自然界99%的各级风速所引起的土壤风蚀。从经济方面考虑,推荐PAM用量为2g/m2可以防止自然界中大部分风力(约97%~99%)造成的风蚀,经济上是可行的。经PAM处理的试样破坏过程和切片分析得出,在松散土表面喷施PAM之所以能够有效地防止风蚀,最根本的原因是施用PAM溶液后松散土表面可形成较厚的结皮。  相似文献   

15.
碳酸钙含量对土壤风蚀强度的影响   总被引:1,自引:0,他引:1  
研究选取内蒙古东部的两种土壤,经过后期的培育使土壤中的CaCO_3含量分别达到0%,2%,5%,8%,10%,通过风洞试验分析了CaCO_3含量与起动风速、风蚀速率之间的关系。结果表明:(1)随着CaCO_3含量的增加,土壤的起动风速呈现先增加后减小的趋势,当土壤中的CaCO_3含量约为5%时,起动风速达到最大;(2)不论土壤中CaCO_3含量如何变化,风蚀速率都随着风速的增大而增大,但不同风速下,当CaCO_3含量约为5%时,风蚀强度最小,风蚀强度随风速的变化趋势较平缓;(3)风蚀速率与CaCO_3含量的关系符合二次函数。当碳酸钙含量约为5%时,风蚀速率较小,但由于土壤性质的差异,两种土壤累积风蚀强度不同;(4)将土壤中的CaCO_3含量控制在5%左右,风速降低到10m/s以下时,对防治草原地区土壤风蚀有显著的效果。  相似文献   

16.
挟沙风对土壤风蚀的影响研究   总被引:14,自引:1,他引:14  
风沙流的危害是多方面的,不仅破坏地表结构,削弱土壤的抗风蚀性,而且影响到植物的生长,损坏工农业设施。通过在便携式风洞内模拟挟沙气流,研究了风沙流对土壤风蚀的影响。结果表明,风沙流可不同程度地降低土壤地表结构的临界起沙风速,使土壤变得更易风蚀。风沙流因子对于土壤风蚀的影响,在不同的风速段具有不同的特征。在较低风速段,风蚀量随风速增加缓慢,当风速进一步加大,风蚀量则急剧增加,其差异最多可达4倍之多;而当风速增大到10m/s以上时,风蚀量反而有所减小,说明随着风速的加大,更多的沙粒具有了更大的动能,其运行高度增加,对土壤表面的影响作用减小,但风蚀量仍大于净风时的风蚀量。由于风沙流的磨蚀和撞击作用,削弱了土壤的抗风蚀性,使土壤变得更易风蚀。因此,采取综合措施对风沙源进行彻底治理,是控制沙漠化发展,改善生态环境的关键。  相似文献   

17.
沙地土壤风蚀动力因子分析   总被引:13,自引:1,他引:12  
地表粗糙度反映地表对风速减弱的作用以及对风沙流的影响 ,其值大小取决于地形、植被覆盖及作物的播种方向 ,粗糙度越大风蚀强度越小。吉林省西部流动沙丘的起沙风速为 1 0 3m/s,风蚀耕地的起沙风速为 6 3~ 7.9m/s。春季侵蚀性风能为 1 72 1 8(v·u)。该区风蚀性气候因子和侵蚀性风能自东向西递增 ,西北部的通榆为最大  相似文献   

18.
以流动沙丘和小叶锦鸡儿群落为研究对象,通过对各样地内风速、空气温度、空气相对湿度和地温等指标的观测分析,研究了不同恢复年限的人工植被对小气候的改善效应.结果表明:(1)小叶锦鸡儿群落对近地表风速有很大的阻滞作用,在30 cm高度上,6 a生和11a生小叶锦鸡儿灌木林内的风速比流动沙丘分别降低了71.9和76.0%.(2)小叶锦鸡儿林内夏季白天平均温度明显低于流动沙丘,6a生和11a生小叶锦鸡儿林内日均气温分别比流动沙丘低3.7℃和4.9℃.(3)小叶锦鸡儿群落内空气相对湿度较流动沙丘显著提高.(4)小叶锦鸡儿林内土壤浅层温度日变幅较流动沙丘减小.研究结果对于进一步探讨极端干旱条件下人工植被近地表物质和能量交换具有重要意义.  相似文献   

19.
为了探究不同作物残茬和生物篱的防风蚀效果及距驼绒藜下风向不同距离处的风蚀规律,采用地表埋放风蚀圈的方法对研究区土壤风蚀情况进行了监测。结果表明:不同作物残茬及驼绒藜对间作秋翻裸地的保护作用明显,驼绒藜冠幅越大防护效果越好,草谷子和油菜2种残茬相比,草谷子残茬由于秸秆密集,防护效果好于油菜茬,草谷子和油菜残茬加上驼绒藜冠幅的保护,裸地中土壤风蚀量下降73.40%~88.90%;与大面积秋翻裸地相比,不同残茬和生物篱均对间作秋翻裸地有防护作用,土壤风蚀量降低率为38.57%~76.45%,其防护效果大小顺序为草谷子茬4年驼绒藜莜麦茬油菜茬2年驼绒藜草玉米茬油葵秆;驼绒藜下风向不同距离处的风蚀趋势为,距驼绒藜2m之内,土壤沉降量逐渐降低,3~5m土壤沉降量又逐渐增大,5~8.5m土壤沉降量又逐渐减小,距驼绒藜8.5m外开始发生风蚀,而且随距离增加土壤风蚀量逐渐增大。秋翻裸地中距4年驼绒藜1m到10m不同距离处,较大面积秋翻裸地土壤风蚀量降低率为65.84%~132.40%;距4年驼绒藜10m之外的区域还能显现驼绒藜的防护效果。  相似文献   

20.
秸秆覆盖对农田土壤风蚀及细颗粒物释放的影响   总被引:2,自引:0,他引:2  
为了确定保护性耕作措施对北京周边农田土壤风蚀及颗粒物释放的影响,通过风洞模拟试验,对比不同风速和不同覆盖度下农田土壤风蚀速率及TSP、PM_(10)、PM_(2.5)、PM_1的释放差异,并分析了4种细颗粒物在风蚀物中的占比。结果表明:(1)当风速12 m/s时,秸秆覆盖度达到20%能显著降低风蚀速率,当风速16 m/s时,秸秆覆盖度需达到40%才能达到理想的防风蚀效果。(2)TSP、PM_(10)、PM_(2.5)、PM_1 4种细颗粒物的释放量与风速呈正指数函数关系,与覆盖度呈负指数函数关系;随风速的增加,4种细颗粒物的释放能力为AB1B2B3B4B5,当覆盖度10%或60%时,细颗粒物的释放量随风速增大差异逐渐减小;覆盖度达60%以上时,细颗粒物的释放量基本达到稳定值。(3)TSP、PM_(10)、PM_(2.5)、PM_1 4种细颗粒物在风蚀物中的占比随风速的增加而降低,当覆盖度60%时占比接近稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号