首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
一代杉木人工林(29年生)林分生物量结构   总被引:18,自引:6,他引:18  
对 2 9年生的一代杉木人工林采伐时的林分生物量积累和分布进行了研究 ,结果表明 ,试验区 2 9年生杉木最大木、平均木和最小木单株各器官生物量分配比率大小顺序均为 :干 >根 >皮 >枝 >叶 ,并且干和皮器官的分配比率均较为接近 ;林分中不同径阶杉木单株各器官生物量的分配比率差异不是太大 (除了最大木的叶比率略小、枝的比率较大外 ) ,用平均木的各器官生物量来估计林分各器官生物量总量完全能满足精度要求 ;密度对林分乔木层生物量的影响较大 ;叶、干生物量及其分配比率随着密度的增大而增大 ,枝、皮生物量分配比率随密度的增大而减小 ;地被物生物量基本上是随着林分地位指数的提高、林分密度和郁闭度的降低而增加的  相似文献   

2.
银杏生物量分配格局及异速生长模型   总被引:3,自引:1,他引:2  
以苏北地区银杏人工林为研究对象,选取13株进行整株挖掘,分析不同器官生物量的分配格局,以及地上和地下生物量之间的关系;再分别以胸径(D)、树高(H)、D2H、DaHb为自变量建立银杏各器官生物量模型,选择调整决定系数(Radj2)、残差平方和(SSE)、平均偏差(ME)、平均绝对偏差(MAE)和平均相对误差(MPE)作为选择最优模型的检验指标,根据检验结果筛选出各器官的最优模型。结果表明:13株银杏的整株生物量变化范围为28.50~320.27 kg,树干生物量占总生物量的49.4%~56.6%,树枝生物量占总生物量的12.1%~18.9%,树叶生物量占总生物量的3.8%~5.5%,根生物量占总生物量的26%;地上部分生物量与地下生物量线性方程的斜率为0.35,具有显著的线性相关性(P<0.01);枝和叶生物量都集中于树冠中部,树冠上层和下层的枝、叶生物量明显低于树冠中层生物量(P<0.05),上层和下层生物量之间差异不显著(P>0.05),70%根生物量集中0~1.0 m的土层;枝水平上,基于基径和枝长的枝生物量模型解释量超过95%;在各器官生物量最优模型选择上,以D为自变量的W=aDb的叶、枝、地上部分生物量模型要优于其他模型;树干、根和全株生物量则是以W=aDbHc模型最优。银杏各器官生物量表现为干>根>枝>叶,枝和叶生物量垂直分配上,中冠层占最大比例;基于树高和胸径的相对生长模型可以实现对银杏各器官生物量的准确拟合,银杏生物量及碳储量的有效估算。   相似文献   

3.
采用样方收获和分级取样测定法,对16a生马尾松人工林生物量的积累及分配进行了研究.结果表明:马尾松人工林各器官生物量模型与测树因子(D^2H)存在极显著相关关系.16a生马尾松人工林分总生物量为110.449t·hm^-2群落生物量分布格局为乔木层〉死地被物〉草本〉灌木;马尾松人工林乔木层生物量主要集中在10—20cm径阶范围,占整个乔木层生物量的83.01%,优势木和被压木对林分生物量的贡献不大,平均木构成了乔木层的主林层.乔木层各器官生物量的分布顺序为干材〉枝条〉根〉干皮〉叶;各器官生物量所占比例随着胸径的增大呈现不同趋势:干材与干皮积累的生物量所占比例逐步减小,而树枝、树叶、树根的相对比例在增加,马尾松的干、枝生物量差别逐渐缩小,生物量结构随着胸径的增大趋于稳定.  相似文献   

4.
在生物量调查和热值测定的基础上,分析了24年生樟子松人工林生物量、热值及能量的结构与分布状态。群落总生物量为124.71t/hm2,其中樟子松林木的生物量占92.36%,林下植被仅为7.64%;樟子松林木以及林下植被中的水曲柳和榆树的生物量分配均为干>根>枝>叶>皮;樟子松林木热值高于林下植被热值;樟子松林木各器官热值排序为:叶>皮>枝>干>根,热值变动范围是17.01~21.46kJ/g;生长势旺盛的部位热值相对较高,如地上部分的叶,地下部分的细根;林下植被热值变动范围是14.86~19.18kJ/g,榆树以茎中热值最高,为19.18kJ/g;水曲柳以细根中热值最高,为18.77kJ/g;草本热值为16.28kJ/g。系统能量总现存量为2356.07×109J/hm2,其中,樟子松林木能量现存量为2191.85×109J/hm2,占群落总能量的93.00%,在樟子松体内各器官能量现存量的排序为干>根>枝>皮>叶。  相似文献   

5.
秃杉人工林生物量与生产力的变化规律   总被引:7,自引:0,他引:7  
对广西南丹山口林场秃杉人工林的生物量和生产力及其随林分年龄(8、14和28年生)增长的变化趋势进行了研究。结果表明,林分平均木和各器官(除树叶和枯枝外)生物量随林分年龄增加而增加,平均木和林分以14~28年生的增加量最大。林木各器官比例与林分年龄相关,林分年龄增加,干材和干皮生物量组成比例随之增加,而树叶和活枝则呈下降趋势。8和14年生各器官所占百分比由大到小依次为:干>枝>叶或根>皮,28年生则为:干>根>枝>皮>叶。林分生物量随林分年龄的增大而逐渐积累,8、14和28年生的林分乔木层生物量分别为60.17、112.98和247.61t·hm-2,其中经济生物量(干材)分别为26.92、60.27和155.72t·hm-2,林分乔木层净生产力分别为7.52、8.07和8.84t·hm-2·a-1,林下植被生物量也有相似的变化趋势。  相似文献   

6.
秦岭火地塘林区3种森林类型乔木层碳密度和碳储量研究   总被引:1,自引:0,他引:1  
以秦岭火地塘林区锐齿栎(Quercus aliena var.acuteserrata)、华山松(Pinus armandi)和油松(Pinus tabulaeformis)3种主要森林类型为研究对象,通过标准地调查和生物量回归模型计算其碳储量,并在此基础上估算了碳密度以及不同器官的碳储量。结果表明:不同森林类型碳密度具有显著差异,其中锐齿栎最高(118.724t/hm2),油松次之(106.062t/hm2),华山松最低(94.227t/hm2);3种森林类型的碳储量均随着林分径级的增大呈现出上升、下降和再上升的趋势,而大径级碳储量的上升主要取决于大径级单株林木的出现,具有明显的随机性;碳储量在不同树种各器官的分布表现为:干>枝>根>皮>叶(锐齿栎),干>枝>根>叶>皮(华山松),干>枝>叶>根>皮(油松),且不同树种同一器官及同一树种不同器官之间的碳储量所占比重差异显著。  相似文献   

7.
福建省沿海防护林不同相思树种生物量及其分配的探讨   总被引:2,自引:0,他引:2  
林盛 《安徽农学通报》2008,14(14):100-101
该文阐述了通过对大叶相思、肯氏相思、纹荚相思、厚荚相思、卷荚相思这5种相思的实地调查,测定其生物量及生物量分配率。研究结果表明:厚荚相思的总生物量最大,而卷荚相思的总生物量低于其他相思树种。从各种相思树生物量分配率上看,厚荚相思各器官的体现为枝〉叶〉根〉干〉皮;肯氏相思体现为根〉枝〉叶〉干〉果〉皮;大叶相思体现为叶〉枝〉根〉果〉干〉皮;卷荚相思体现为枝〉根〉叶〉干〉皮;纹荚相思则表现为根〉叶〉枝〉干〉皮。  相似文献   

8.
福建青冈人工林的生物生产力研究   总被引:1,自引:1,他引:1  
通过对福建青冈人工林的系统调查,进行福建青冈人工林生物生产力的研究,结果表明:福建青冈人工林胸径生长明显慢于杉木,但其树高生长高于杉木 35年生福建青冈林分平均木生物量是22年生木荚红豆人工林和35年生杉木人工林的3 9和1 8倍,虽然杉木的胸径生长快于福建青冈,但福建青冈人工林具有较高光合速率,比杉木更有利于其乔木层光合产物的积累 福建青冈平均木生物量在各器官的分配比例表现为:干>枝>根>叶>皮,不同林分乔木层生物量大小排序为:福建青冈人工林>杉木人工林>木荚红豆人工林,其中35年生福建青冈人工林林分乔木层生物量分别是35年生杉木人工林和22年生木荚红豆人工林的2 8和2 5倍 因福建青冈木材容积密度大的缘故,导致人们认为福建青冈生长比较慢,研究结果对于纠正人们对福建青冈传统认识上的误区具有重要现实意义  相似文献   

9.
为了解干热河谷地区造林树种在不同恢复模式下生物量及其分配的差异,进而评价该地区树种的混交效益.以元谋干热河谷9年生印楝Azadirachta indica和大叶相思Acacia auriculiformis为研究对象,对印楝纯林、大叶相思纯林及印楝与大叶相思混交林林木生物量及其分配特征进行了研究.结果表明:①混交林内印楝单株生物量(5.713 kg·株-1)比纯林印楝(4.898 kg·株-1)高16.6%;大叶相思(14.943 kg·株-1)比纯林大叶相思(17.377 kg· 株-1)低14.0%,但差异均未达到95%显著水平(P>0.05).混交林林分生物量(16.525 t·hm-2)介于印楝纯林(7.837 t·hm-2)和大叶相思纯林(27.802 t·hm-2)之间.②在纯林和混交林恢复模式下,印楝各器官生物量大小顺序分别为干>根>枝>皮>叶和干>枝>根>叶>皮;大叶相思分别为枝>干>根>叶>皮和干>枝>根>叶>皮.混交林印楝根冠比(0.280)较纯林(0.400)小(P<0.05),而混交林大叶相思(0.163)较纯林(0.132)大(P>0.05).(③印楝和大叶相思各器官之间及其与测树因子(D或D2H)均呈异速生长关系,不同恢复模式下印楝和大叶相思各器官之间异速生长速率差异较小,印楝表现现为枝>叶/干>根,地上部分>地下部分;而大叶相思为枝>干/根>叶,地上部分>地下部分.干热河谷印楝和大叶相思混交种植9a后,提高了印楝生物量,而大叶相思生物量有所下降,不同恢复模式下同一树种器官生物量分配大小也发生了变化.  相似文献   

10.
  目的  探究不同林分的生物量及林下植被多样性差异,为营建亚热带人工林筛选适生的珍贵乡土阔叶树种。  方法  以四川农业大学崇州基地同质园试验中大叶樟Cinnamomum platyphyllum、油樟C. longepaniculatum、天竺桂C. japonicum、樟树C. camphora、桤木Alnus cremastogyne、香椿Toona sinensis、红椿T. ciliata 等7个阔叶树种林分为研究对象,通过测定各树种平均树高、平均胸径、林下植被多样性等指标,量化树种对生物量及林下植被多样性的影响。  结果  不同树种全株生物量存在显著差异(P<0.05),大叶樟的生物量最高,其次是桤木和红椿,天竺桂最低。树种各器官生物量存在显著差异(P<0.05),整体表现为干>根、枝>叶,并且大叶樟各器官生物量均最高,天竺桂各器官生物量均最低。各器官生物量占全株生物量比例在树种间存在显著差异(P<0.05),但树种大小排序无一致性规律。不同功能群之间的全株、叶、枝及干生物量无显著差异,但常绿树种的根生物量、根生物量占比和根冠比显著高于落叶树种(P<0.05),枝和干生物量占比则相反。落叶树种林分林下草本多样性显著高于常绿树种林分(P<0.05),并且红椿、桤木和香椿林分林下草本的Simpson指数显著高于天竺桂、樟树、大叶樟和油樟林分,红椿林分的林下草本Shannon-Wiener指数显著高于其他6个林分(P<0.05)。  结论  研究区培育落叶树种有利于人工林的物质循环和生物多样性保育,并且相较于其他乡土树种,选择桤木和红椿作为培育树种更有利于亚热带人工林的可持续经营与管理。图6表2参37  相似文献   

11.
为了探究鸡爪槭(Acerpalmatum)的光适应生长策略,测定并分析了不同光照强度(CK、60%光照与40%光照)下鸡爪槭根、枝与叶中非结构性碳积累、分配及其C:N:P化学计量特征。结果表明:随着遮荫程度增加,根的非结构性碳水化合物含量(NSCs)及其组分增大,枝与叶的NSCs及其组分减小,叶N、P含量增大,C:N、C:P减少,枝N含量、N:P先减小再增大,P、C:N和C:P先增大再减小,根N、P含量先增大再减小,N:P、C:N和C:P先减小再增大。在全光照下,NSCs及其组分为叶>枝>根,N含量为叶>根>枝,N:P和C:N为根>叶>枝;60%的光照下,NSCs及其组分为叶>枝>根,N含量与N:P为叶>根>枝,C:N与C:P为枝>叶>根;40%光照下,NSCs及其组分根>叶>枝,N、P含量为叶>枝>根,C:N与C:P为根>枝>叶。相关性分析表明,叶可溶性糖、淀粉、NSCs含量与N、P含量呈显著负相关,与C:N和C:P呈显著正相关(P <0.01);枝NSCs含量与N和C:...  相似文献   

12.
以我国南亚热带格木(Erythrophleumfordii)、红椎(Castnopsis hystrix)和马尾松(Pinus massoniana)人工林为研究对象,对其碳氮储量及分配格局进行研究.结果表明,不同树种体内碳的分布与器官年龄的关系不明显,而氮的分布与年龄的关系则较为密切,表现为幼嫩器官中的氮含量大于老化器官,而老化器官的C/N比值大于幼嫩器官.格木人工林生态系统内各组分的氮含量均高于其他两种人工林生态系统,并且3种人工林生态系统碳氮在土壤表层具有明显的富集作用.格木、红椎和马尾松人工林碳储量分别为236.22、267.84、200.57 t/hm2,氮储量分别为17.91、12.38、10.59 t/hm2.乔木层碳储量分别占42.57%、36.31%和40.28%,0-100 cm土壤碳储量分别占55.77%、62.52%和57.83%;氮储量则是土壤占绝对优势,分别为92.00%、93.72%和95.53%.说明3种人工林生态系统碳氮储量主要分布在土壤中,且红椎人工林生态系统具有较高的固碳能力.  相似文献   

13.
长乐沿海山地不同坡位湿地松生物量分析   总被引:1,自引:1,他引:0  
对长乐沿海山地3年生湿地松人工林地上部分和地下部分生物量进行调查,结果表明:(1)下坡位湿地松林分平均树高、平均胸径和平均东西冠幅均高于上坡位,而平均南北冠幅则低于上坡位;(2)湿地松生物量、林下植被生物量及林分总生物量表现为下坡位高于上坡位,下坡位湿地松地上部分生物量、林下植被生物量及林分总生物量与上坡位相比均达到显著差异水平;(3)不同坡位湿地松地上部分各器官鲜生物量及干生物量大小均表现为:树干>树枝>树叶,湿地松地下部分不同径级根鲜、干生物量差异表现为:骨骼根>中根>大根>小根>细根。  相似文献   

14.
燕山山地华北落叶松人工林乔木生物量空间分布格局   总被引:1,自引:0,他引:1  
以燕山山地华北落叶松人工林为研究对象,应用典型样地调查法和相对生长法对乔木生物量展开研究,以揭示华北落叶松乔木层生物量分配格局。结果显示:各器官中生物量大小顺序为树干枝条根系叶片树皮,12年生和34年生树干生物量所占比例分别为35.16%~37.95%和51.12%~53.40%;立地条件越好,林龄越大,生物量越大,林分越稳定,变异系数较小;本研究还得出,树冠上部叶片生物量较小,但由于BNR较小,BNI和FC较大,与树冠下部相比其光合效率大大提高。  相似文献   

15.
Winter jujube orchard nitrogen (N) management aims at increasing N reserves to meet the tree's growth requirements. Fertilization strategies should maximize the efficiency of fertilizers, including the choice of the optimal timing of N supply. ^15N-urea was applied to winter jujubes on Jinsixiaozao jujubes rootstock to evaluate the effect of application timing on Nstorage and remobilization in mature trees in pot culture. The treatments consisted of ground application before budding (BB), during fruit core-hardening stage (FCH), and fruit rapid-swelling stage (FRS). Nitrogen-use efficiency of treatments were significantly different, which were 2.42% (BB), 9.77% (FCH), and 9.01% (FRS) in the dormant and 5.20% (BB), 16.16% (FCH), and 10.30% (FRS) in the following full-bloom. N supply in the pre-harvest helped to increase N-reserves of trees and then translocate to the new growth organs the following year. The largest amount of ^15N was detected in the roots and trunks. In all the treatments, the partition rates were highest in coarse roots, which were 30.43% (BB), 38.61% (FCH), and 40.62% (FRS), respectively. ^15N stored in roots and trunks was used by jujube trees to sustain new growth in the following full-bloom. ^15N applied before budding resulted in lower Ndff% in perennial organs (trunks and coarse roots) sampled in the following full-bloom, but fine roots had highest Ndff% (1.28%). Other organs recovered similar amount of Ndff%. In contrast, FCH and FRS treatments led to higher Ndff% (4.01-5.15%) in the new growth organs (new growth branches, deciduous spurs, leaves and flowers), but lower Ndff% in perennial branches (1.49-2.89%). With the delay of ^15N-urea application time, ^15N increased the partitioning to roots. FCH treatment increased N-storage in perennial organ during winter, which should be remobilized to sustain new growth the following spring.  相似文献   

16.
不同密度条件下樟树幼苗生长和幼苗重量分配格局   总被引:1,自引:0,他引:1  
以1年生樟树(Cinnamomum camphora)实生苗为试验材料,在美植袋中分别种植1、2、4和8株幼苗(密度I、II、III和IV),研究密度对幼苗的生长和生物量的影响。结果表明,樟树幼苗的地径随着密度增大而减小,苗高为密度IIIIVIII。樟树幼苗单株幼苗各器官干重和幼苗单株干重均随密度增加而减少,每盆幼苗的总生物量随密度增大而增加。樟树密度I的干重为根叶干枝,其余3个密度的干重为根干叶枝。各密度的根冠比大于1。  相似文献   

17.
用典型相关分析方法分析了不同林龄邓恩桉地上各主要器官的生物量和胸径树高(DBH)与不同土壤层根系生物量和根长的关系。结果表明,地上各指标与地下根系生物量和根长在土壤各层的分布相关。DBH、树干、树枝和树叶的生物量与根系生物量典型相关系数为4个,第4层根系生物量的权重最大,是整个根系生物量变化的主要因子。DBH、树干、树枝和树叶的生物量与根长的典型相关个数为3个,第3层根长是根系总长度变化的主要因子。  相似文献   

18.
为了解不同品种茶树对镉的响应差异,比较了9个当前主栽茶树品种对Cd吸收累积的差异特征。采用盆栽试验方法研究了不同品种茶树在对照、Cd处理(土壤Cd含量1 mg·kg-1)条件下,茶树地上部分干物质质量、Cd在茶树各部位的含量、富集转运系数以及茶树根部镉相关转运蛋白基因的表达。结果表明,Cd处理下不同茶树品种地上部分干物质质量出现不同程度增加。两种处理下,Cd在茶树中的分布趋势均表现为根 > 枝干 > 成熟叶 > 新梢,Cd处理下,这四个部位平均Cd含量分别为32.79、0.293、0.112、0.044 mg·kg-1。Cd处理下,土-根的富集系数和根-枝干、根-成熟叶、根-新梢的转移系数范围依次为7.17~30.12、0.017~0.078、0.002~0.007、0.000 3~0.006 1。CsZIP1、CsZIP2、CsHMA2、CsCAX2在紫鹃中表达量最高,CsHMA1在中茶108、乌牛早、紫鹃、浙农117表达差异不显著。综上,当茶园土壤0.3≤Cd≤1.5 mg·kg-1时,不同品种茶树的新梢Cd含量都远低于国家标准限值(Cd≤1 mg·kg-1),处于安全范围内。  相似文献   

19.
分析了不同结构落叶松Larix gmelinii天然中龄林的生物量和生产力特征,建立了单株总生物量和干、枝、叶生物量模型。结果表明:①草类+落叶松林和杜香Ledum palustre+落叶松林生产力、总生物量及其枝和叶生物量比例均为前者高。总生物量中树干生物量比例为后者高。密度为1 000~3 000株.hm-2,草类+落叶松林和杜香+落叶松林生物量及生产力最高分别达55.82 t.hm-2,0.99 t.hm-2.a-1和50.36 t.hm-2,0.83 t.hm-2.a-1。干、枝、叶生物量比例最低分别为79.6%,14.6%,4.8%和83.4%,8.8%,3.6%。②随密度增加,草类+落叶松林生产力、总生物量及其枝、叶生物量比例均增加,而干生物量比例减小。③随树种组成中落叶松成数的增加,林分生产力、总生物量及其干生物量比例呈增加趋势,而枝、叶生物量比例减小。表5参19  相似文献   

20.
麻栎(Quercus acutissima)短轮伐期炭用林培育模式导致大量土壤养分输出,合理施肥是改善土壤肥力,提高林分生产力的关键措施。以砍伐4轮后的3a生麻栎萌生林为研究对象,开展3种施肥类型(有机肥、复合肥和有机肥+复合肥)和2种施肥量试验,分析不同施肥处理对林木胸径、地上生物量影响以及土壤养分和叶片养分含量的变化。结果表明,不同施肥处理对林木胸径多样性没有显著影响,但增加了林木个体大小分化。不同施肥处理地上生物量定期生长量比未施肥处理增加了14.4%~39.5%,但相同施肥类型施肥量对地上生物量的影响相对较小。土壤磷有效性较低是制约林木生长的主要因素,施肥改善了土壤养分状况,尤其是显著提高了土壤磷钾有效性。施肥并没有显著改变麻栎叶片氮磷养分含量,但有利于改善林木自身营养状况。综合来看,试验区麻栎炭用林培育以有机(2 250kg·hm-2有机肥)+无机(500 kg·hm-2复合肥)肥料配施效果较好,这对麻栎炭用林高效经营提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号