首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light, scanning electron and fluorescent microscopy were used to observe the infection process of Botrytis elliptica on leaves of oriental lily (cv. Star Gazer). At 20 °C and 100% relative humidity, conidia germinated on both adaxial and abaxial foliar surfaces, but germ tubes failed to invade epidermal cells on the adaxial surface. On abaxial surfaces, short (< 20 m) swollen germ tube appressoria penetrated through stomatal openings (19%), through the epidermis near guard cells (52%), or directly through epidermal cells (29%). Esterase activity was detected on germ tubes and conidia after 6 h of incubation, and deformation of the cuticle on abaxial surfaces of lily was observed surrounding infection sites. By 3 h after inoculation, almost 70% of the conidia had germinated, but no penetration was observed. At 6 h after inoculation, almost one-third of germinated conidia had penetrated epidermal cells, and water-soaked lesions were associated with 20% of the penetrations. By 9 h after inoculation, approximately 60% of the germinated conidia had penetrated plant tissues, and water-soaked lesions were associated with 60% of the infections. Fluorescent microscopy with a specific fungal stain allowed assessment of successful infection and visualization of sub-epidermal hyphae. We conclude that penetration of abaxial foliar surfaces of oriental lilies by B. elliptica occurs via short swollen germ tube appressoria mostly near stomata.  相似文献   

2.
In recent years, spotting of ray florets of gerbera flowers has become an important problem. This type of small necrotic lesions may occur before, but especially shortly after harvesting the flowers.Botrytis cinerea was easily isolated from such lesions. Inoculation withB. cinerea only gave typical necrotic lesions, when dry conidia were dusted on the flowers with a short period of high rh after inoculation. At 18–25 °C a high rh for at least 5 hours was necessary. Rotting of ray florets and receptacles byB. cinerea occurred when inoculated flowers were kept wet for a few days. Spots consist of one to several necrotic, usually epidermal cells. A single conidium could give rise to a necrotic lesion after germination. Germination of conidia and lesion formation occurred between 4 and 25 °C; at 30 °C, germination and lesion formation did not occur. Between 18 and 25 °C, many lesions became visible within 1 day after inoculation; at 4 °C it took 2 to 3 days before lesions could be seen. If kept dry, conidia ofB. cinerea remained ungerminated on ray florets of gerbera flowers and could be removed from the ray florets. Within 1 day at high rh, germination occurred and lesions were produced. Conidia ofB. cinerea, stored dry, were able to survive much longer than the lifetime of a gerbera flower. Even after storage at room temperature for up to 14 months, some conidia were able to germinate in vitro and on ray florets and induce the formation of lesions. Addition of gerbera pollen diffusate stimulated germination and lesion formation.  相似文献   

3.
The early stages of the interaction between flowers of the cut rose cv. Sonia andBotrytis cinerea was investigated by scanning electron microscopy and light microscopy. Infection of petals by conidial germ tubes evoked a susceptible reaction. In contrast to general findings nutrient addition to the inoculum was not a prerequisite for this phenomenon. At the lower side of germ tube tips the cuticle was penetrated by infection pegs. Already at this early stage of the infection process, the infection sites were macroscopically visible as scattered white spots. After penetration, pegs enlarged to form infection hyphae, which invaded the periclinal wall of outer epidermal cells. At those sites, the petals formed outgrowths of variable appearance at their abaxial side. Thee outgrowths consisted of remanants of collapsed epidermal cells and of infection hyphae. Subsequent intra- and intercellular growth of hyphae led to a collapse of epidermal and mesophyll cells. The symptoms described generally developed within 24 h. After subsequent incubation the lesions became necrotic. Eventually, the necrosis would spread leading to the death of whole petals.  相似文献   

4.
为明确苹果炭疽叶枯病病原菌围小丛壳Glomerella cingulata的侵染致病特征,在分离获得该病原菌的基础上,采用形态学观察、ITS序列分析和致病性测定对其进行了鉴定,并利用光学和扫描电子显微镜对病原菌在嘎啦苹果叶片上的侵染过程进行了研究.结果表明,在陕西咸阳地区分离获得的9株病原菌均为围小丛壳G.cingulata.25 ℃下接种9 h后,分生孢子中间产生隔膜,双胞化,并萌发产生芽管和附着胞;24 h后分生孢子的2个细胞均可萌发并形成芽管及附着胞,部分芽管顶端可产生次级分生孢子;48 h后次级分生孢子萌发形成附着胞;72 h后,附着胞下形成的侵染钉可直接入侵寄主,在表皮细胞内形成初生菌丝和次生菌丝,此时叶片表面已出现褐色斑点.接种7 d后叶片病斑处出现分生孢子盘和子囊壳.表明陕西省近年出现的苹果炭疽叶枯病病原菌为围小丛壳G.cingulata,该病菌在嘎啦叶片上的一些特殊侵染行为可能是导致该病害易在短时间内暴发的重要原因.  相似文献   

5.
Curry KJ  Abril M  Avant JB  Smith BJ 《Phytopathology》2002,92(10):1055-1063
ABSTRACT Ontogeny of the invasion process by Colletotrichum acutatum and C. fragariae was studied on petioles and stolons of the strawberry cultivar Chandler using light and electron microscopy. The invasion of host tissue by each fungal species was similar; however, each invasion event occurred more rapidly with C. fragariae than with C. acutatum. Following cuticular penetration via an appressorium, subsequent steps of invasion involved hyphal growth within the cuticle and within the cell walls of epidermal, subepidermal, and subtending cells. Both species of fungi began invasion with a brief biotrophic phase before entering an extended necrotrophic phase. Acervuli formed once the cortical tissue had been moderately disrupted and began with the development of a stroma just beneath the outer periclinal epidermal walls. Acervuli erupted through the cuticle and released conidia. Invasion of the vascular tissue typically occurred after acervulus maturation and remained minimal. Chitin distribution in walls of C. fragariae was visualized with gold-labeled wheat germ agglutinin. The outer layer of bilayered walls of conidia, germ tubes, and appressoria contained less chitin than unilayered hyphae in planta.  相似文献   

6.
ABSTRACT An ultrastructural investigation of the artificial inoculation of sunflower with Phoma macdonaldii conidia was undertaken using light, scanning, and transmission electron microscopy to elucidate the host-parasite relationship. The behavior of the conidia deposited on the cotyledon petiole was investigated at various time intervals after inoculation. Conidia adhesion and germination were observed first. The cotyledon petiole was invaded by the fungus directly through the cuticle and via stomata. Externally, the spore and germ tube were covered with a mucilaginous polysaccharide sheath of a cotton-like appearance and of variable thickness. At the time of penetration, the host cuticle was perforated mechanically. The cuticle was slightly depressed and no enzymatic alteration could be observed. The fungus did not form appressoria on the surface of the host tissues but developed an infection peg. As soon as the cuticle barrier was crossed, the fungus rapidly colonized the host parietal layer. In a first step, the plasmalemma of the host cell appeared to be stuck against the cell wall. As soon as the fungus passed through the epidermal cell wall to reach the host cytoplasm, the plasmalemma was disrupted, and the subsequent rapid breakdown of cell integrity favored the colonization of the tissues by the pathogen.  相似文献   

7.
ABSTRACT The early infection and colonization processes of Colletotrichum acutatum on leaves and petals of two almond cultivars with different susceptibility to anthracnose (i.e., cvs. Carmel and Nonpareil) were examined using digital image analysis of light micrographs and histological techniques. Inoculated tissue surfaces were evaluated at selected times after inoculation and incubation at 20 degrees C. Depth maps and line profiles of the digital image analysis allowed rapid depth quantification of fungal colonization in numerous tissue samples. The results showed that the early development of C. acutatum on petals was different from that on leaf tissue. On petals, conidia germinated more rapidly, germ tubes were longer, and fewer appressoria developed than on leaves. On both tissues, penetration by the pathogen occurred from appressoria and host colonization was first subcuticular and then intracellular. On petals, colonizing hyphae were first observed 24 h after inoculation and incubation at 20 degrees C, whereas on leaves they were seen 48 to 72 h after inoculation. Intercellular hyphae were formed before host cells became necrotic and macroscopic lesions developed on petals >/=48 h and on leaves >/=96 h after inoculation. Histological studies complemented data obtained by digital image analysis and showed that the fungus produced infection vesicles and broad hyphae below the cuticle and in epidermal cells. In both tissues, during the first 24 to 48 h after penetration fungal colonization was biotrophic based on the presence of healthy host cells adjacent to fungal hyphae. Later, during intercellular growth, the host-pathogen interaction became necrotrophic with collapsed host cells. Quantitative differences in appressorium formation and host colonization were found between the two almond cultivars studied. Thus, on the less susceptible cv. Nonpareil fewer appressoria developed and host colonization was reduced compared with that on cv. Carmel.  相似文献   

8.
Controlled environment studies with Phaeoisariopsis personata , the causal agent of late leaf spot disease of groundnut ( Arachis hypogaea ), have shown that infection is enhanced if leaves are exposed to alternate wet and dry periods (intermittent wetness) compared with continuous wetness. Detailed investigations to elucidate this phenomenon revealed more germ tubes per conidium and more branching of germ tubes with intermittent wetness than with continuous wetness. With intermittent wetness there was clear evidence of tropic growth of germ tubes and branches towards stomata and subsequent penetration. With continuous wetness, germ tube growth did not appear to be directional and germ tubes commonly passed over the stomatal guard cells, therefore leading to relatively few stomatal penetrations. For both wetness regimes, stomatal penetrations continued to increase with increased leaf wetness for at least 6 days after inoculation and there was a linear relationship between the number of stomatal penetrations and the number of resultant lesions. Infection efficiency was markedly increased when the spore load was reduced to 0.1 conidia per cm2 (about one spore per leaflet).  相似文献   

9.
荸荠茎点霉秆枯病菌侵染过程的超微观察   总被引:1,自引:0,他引:1  
<正>荸荠(Eleocharis dulcis),又称马蹄,为莎草科多年生草本植物,是一种具有食用和药用价值的水生蔬菜。近年来,随着荸荠在我国种植面积的不断扩大,病害发生也呈逐年上升趋势。荸荠茎点霉秆枯病是2009年在湖北省荸荠产区发现的一种新病害,由Phoma bellidis侵染引起,该病在湖北省团风地区发生尤为严重,对荸荠的产量和品质造成严重影响;病害一般在8~12月发生,发病初期在荸荠茎秆上产生圆形或梭形红褐色小斑,随后病斑沿茎  相似文献   

10.
The effect of vapour pressure deficit, temperature and radiation on the postharvest susceptibility of gerbera flowers toB. cinerea, on the water relations of gerbera flowers and on the lesion formation after conidial infection ofB. cinerea was studied. The temperature range in whichB. cinerea could germinate and growin vitro is 5–30 °C. In climate chamber experiments flowers had more lesions ofB. cinerea at temperatures of 20 and 25 °C than at 10 and 15°C. At 15, 20 and 25°C the infectivity ofB. cinerea conidia was negatively affected during a storage-period of 7 days. At a vapour pressure deficit (VPD) of 200 Pa significantly more conidia ofB. cinerea were infective than at 800 Pa. At a VPD of 800 Pa the susceptibility of gerbera flowers forB. cinerea was not significantly different than at 200 Pa. High radiation levels in glasshouses in spring and summer negatively influenced the infectivity of conidia ofB. cinerea on the flower surface, but did not affect the susceptibility of gerbera flowers forB. cinerea. In spring and early summer conidia lost their infectivity at high radiation levels, high temperatures and high levels of VPD. In summer gerbera flowers could be more susceptible toB. cinerea because of high temperatures in glasshouses, but the negative effect of radiation on the conidia ofB. cinerea seemed to overrule the temperature effect. Thus, the numbers of lesions in spring and summer can be low compared with the numbers in other seasons, although the numbers ofB. cinerea colonies on spore traps can be high. The effect of temperature on the susceptibility of gerbera flowers can probably be explained by changes of water status in the petals. At higher temperatures the number of lesions and the turgor (=water potential—osmotic potential) in the petals increased. Temperatures <10°C during lesion formation (RH>95% and VPD<50 Pa) had a temporary negative effect on the number of lesions. After 3 days of incubation the numbers of lesions were about equal (30 lesions/cm2) from 5 to 20°C. At 30°C no lesion formation was observed even after 3 days.  相似文献   

11.
Steiner U  Oerke EC 《Phytopathology》2007,97(10):1222-1230
ABSTRACT During formation of appressoria produced from conidia and ascospores of Venturia inaequalis, a dark brown ring structure was detected at the base of appressoria. This melanized appressorial ring structure (MARS) was attached to the leaf surface like a sealing ring and formed the fungus-plant interface; it is believed to be required for pathogen penetration of the cuticle. Neither germ tubes nor infection structures beneath the cuticle were found to be visibly melanized. MARS were formed not only on apple leaves but also on leaves of nonhost plants and artificial surfaces differing in hydrophobicity; the formation of appressoria and MARS was confined to hard surfaces. The melanin nature of the ring was confirmed by using melanin biosynthesis inhibitors. Applications prior to inoculation largely inhibited the melanization and reduced infection rate by 45 to 80%; curative applications were not effective. Transmission electron microscopy verified a localized melanization of the cell wall around the penetration pore, and melanin was incorporated into all layers of the fungal cell wall. Appressoria without MARS were not able to infect the plant, suggesting that this structure can be considered to be a pathogenicity factor in V. inaequalis.  相似文献   

12.
Infection of tomato plants byCladosporium fulvum Cooke was studied using light and scanning-electron microscopy. Races 1.2.3 and 4 ofCladosporium fulvum were used, whereas tomato cultivars, carrying the Cf2 gene (susceptible to race 1.2.3 and immune to race 4) and the Cf4 gene (immune to race 1.2.3 and susceptible to race 4) served as differentials. No differences were observed in growth between compatible and incompatible combinations during germination, subsequent formation of runner hyphae and stomatal penetration. Runner hyphae did not show directional growth towards stomata. Penetration usually occurred on the third or fourth day after inoculation. In compatible combinations the fungus grew intercellularly, often in close contact with spongy mesophyll cells. Under optimal conditions it did not cause visible damage to plant cells during early stages of infection. Under suboptimal conditions in winter, the host cells often reacted with callose deposition, but growth of the fungus did not appear to be inhibited. Ten to twelve days after inoculation conidiophores emerged through the stomata and produced conidia. In incompatible combinations fungal growth was arrested one to two days after penetration and confined to stomata and surrounding cells. Very soon the host cells, in contact with the fungus, deposited extensive amounts of callose. Later these cells turned brown and collapsed. At the surface of the host cells, contacted by fungal hyphae, abundant extracellular material could be observed by scanning-electron microscopy. Removing the epidermis of leaves before inoculation delayed the resistant response. On stripped leaves the rate of fungal growth was equal for both interactions up to ten days after inoculation, but the incompatible combination lacked sporulation.  相似文献   

13.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

14.
In darkness, most Erysiphe pisi conidia responded rapidly to contact with a hydrophobic artificial substratum and released extracellular material (ECM) in the same way as on pea cuticle. On this substratum and barley leaf epidermis, conidia then produced a germ tube that emerged close to the substratum, contacted it, and differentiated an appressorium. By contrast, on a hydrophilic substratum, ECM release and germination were delayed and infrequent, and germ tubes often emerged and faced away from the substratum toward vertical light, thereby failing to make contact and form appressoria. This finding supported the hypothesis that ECM release is involved in both triggering germination and sensing substratum contact. Exposure to white light dramatically affected the germ tube emergence site so most emerged from a site in the conidial wall facing the light. Lateral light did not affect the frequency of germ tubes making substratum contact; but when lit from above, most germ tubes emerged up, facing away from the substratum. The germ tubes formed in light were longer than those formed in darkness, but no phototropism was found for the elongating tubes. Examination of Blumeria graminis indicated that its conidia and germ tubes are insensitive to white light.  相似文献   

15.
Erysiphe pisi , the powdery mildew pathogen of Pisum sativum , followed a developmental sequence that allowed the identification of 10 distinct growth stages (GS) over 30 h following inoculation. The growth stages were ungerminated conidia (GS1), germinated conidia, having produced a germ tube (GS2), germlings where the germ tube had forked (GS3), germlings with a multi-lobed germ tube (GS4), germlings with a single hypha (GS5), germlings with two (GS6 and 7) or three (GS8 and 9) hyphae, one of which may have formed from the appressorium (GS7 and 9), and germlings with abnormally long germ tubes (GS10), which did not develop hyphae. Conidia germinated rapidly, with a quarter of conidia producing germ tubes by 2 h after inoculation (hai). Most germlings produced multi-lobed appressoria, which showed considerable variation in structure. Haustoria, although often difficult to visualize, were first seen 4 hai, and the first hyphae 14 hai, growing from the body of the conidium. Subsequent hyphae developed from both the body of the conidium and from the appressorium.  相似文献   

16.
ABSTRACT Ultrastructural studies of the infection of susceptible and resistant cultivars of Sorghum bicolor by Colletotrichum sublineolum were conducted. Initial penetration events were the same on both susceptible and resistant cultivars. Germ tubes originating from germinated conidia formed globose, melanized appressoria, that penetrated host epidermal cells directly. Appressoria did not produce appressorial cones, but each penetration pore was surrounded by an annular wall thickening. Inward deformation of the cuticle and localized changes in staining properties of the host cell wall around the infection peg suggests that penetration involves both mechanical force and enzymic dissolution. In compatible interactions, penetration was followed by formation of biotrophic globular infection vesicles in epidermal cells. Filamentous primary hyphae developed from the vesicles and went on to colonize many other host cells as an intracellular mycelium. Host cells initially survived penetration. The host plasma membrane invaginated around infection vesicles and primary hyphae and was appressed tightly to the fungal cell wall, with no detectable matrix layer at the interface. Necrotrophic secondary hyphae appeared after 66 h and ramified through host tissue both intercellularly and intracellularly, forming hypostromatic acervuli by 114 h. Production of secondary hyphae was accompanied by the appearance of electron-opaque material within infected cells. This was thought to represent the host phytoalexin response. In incompatible interactions, infection vesicles and primary hyphae were formed in epidermal cells by 42 h. However, they were encrusted with electron-opaque material and appeared dead. These observations are discussed in relation to the infection processes of other Colletotrichum spp. and the host phytoalexin response.  相似文献   

17.
ABSTRACT External surfaces of barley florets have thick-walled epidermal cells resistant to direct penetration by the head blight pathogen, Fusarium graminearum. Surfaces within the floral cavity have thin-walled, susceptible cells. How the fungus gains access to the floral cavity, causing head blight, has not been determined. To investigate pathways of entry, field-grown plants were sprayed with macroconidial inoculum after heads emerged from the flag leaf sheath and then were mist irrigated daily in the morning and evening. On selected days, 1 to 8 days after inoculation (DAI), 80 to 190 florets per day were harvested, dissected, and examined for presence and location of mycelial colonies. At 1 to 12 DAI, 57 to 100 florets likewise were examined for lesions. Patterns of colonization indicated that the fungus entered florets principally through crevices between the overlapping lemma and palea or through the apical floret mouth. The crevices were open for entry until approximately 8 days after heads emerged. Most florets had mycelial colonies on the external surface in a sheltered pocket near the base of the ventral furrow of the palea. Mycelia spread laterally from the furrow to the crevice between lemma and palea. Anther colonization had only a minor role in invasion of florets. Hyphal penetration of stomates was not seen. Lesions usually developed first within 3 mm of the floret apex or 3 mm of the floret base. Within florets, lesions often were contiguous between lemma and palea, palea and caryopsis, or in all three floret parts. However, lesions in the caryopsis developed later and were fewer in number than in the lemma and palea and always were associated with lesions in the palea. The results show the importance of initial mycelial colonization of floret outer surfaces, pathways of entry via lemma or palea crevices or floret mouth, and spread of lesions within the floret at interfaces between lemma, palea, and caryopsis.  相似文献   

18.
Studies were conducted on the effects of seasonal levels of relative humidity, temperature, and total radiation, on dry weight of petals, on fresh weight of epicuticular wax and of cuticle of petals, on numbers ofBotrytis cinerea lesions in petals, and on preharvest flowering periods in gerbera and rose. No temporal relationships or significant correlations were found among dry weight of petals, weight of wax and cuticle of petals, and numbers of lesions on the petals. Temperature, relative humidity and total radiation did not correlate significantly with dry weight of petals, or with fresh weights of wax and cuticle of petals, except for a positive correlation between relative humidity and cuticle weight in the gerbera cultivar Delphi. No relation was found between weight of epicuticular wax and cuticle of petals and susceptibility of gerbera and rose petals toB. cinerea. The thickness of wax and cuticle on flowers did not seem to be an important factor influencing the susceptibility of flowers toB. cinerea. The seasonal pattern in number of lesions produced on the flowers byB. cinerea was related to the effects of relative humidity and radiation on infectivity of conidia of the pathogen on the flower surface but not to the effects on the susceptibility of flowers.  相似文献   

19.
McManus PS  Best VM  Voland RP 《Phytopathology》1999,89(12):1127-1130
ABSTRACT Infection of cranberry flowers by conidia of Monilinia oxycocci, the cottonball pathogen, was investigated using a squash-mount histological method. Conidia germinated on anthers, nectaries, petals, and stigmata, but not styles. The stigma was the only flower part penetrated by the fungus, but no specialized infection structures were noted. Both fungal and pollen germ tubes grew through the stylar canal and made contact with ovules and nucellar tissue by 72 h after inoculation and pollination. Cottonball incidence was greatest when stigmata were inoculated; the low level of cottonball that resulted from inoculation of other flower parts and in noninoculated flowers was attributed to contamination of stigmata. In greenhouse tests, cottonball incidence was 25, 28, 31, and 38% for cvs. Searles, Pilgrim, Ben Lear, and Stevens, respectively, and was greater for M. oxycocci isolate 593 than isolate 591. We conclude that the stigma is the sole floral infection court for conidia of M. oxycocci and that the most popular cranberry cultivars in Wisconsin do not differ in inherent resistance to cottonball. The relevance of these findings to the long-term management of cottonball is discussed.  相似文献   

20.
Germling development by Erysiphe graminis f. sp. hordei was compared between conidia held in a simulated air-borne state on microthreads constructed from safety-line threads produced by orb--weaving spiders (Araneus diadematus), and conidia inoculated onto glass, agar, or living or dead barley coleoptile epidermes. Suspended conidia germinated but generally produced only multiple short germ tubes. Conidia on living or dead coleoptiles, bathed from beneath with 0.01 Ca(NO3)2 solution, generally produced one short germ tube and a second germ tube which elongated and formed a normal appressorium. On glass and agar, multiple short germ tubes were sometimes formed but long germ tubes were formed less frequently than on host epidermis. When conidia with short germ tubes were transferred from microthreads to coleoptiles, they produced a long germ tube which differentiated an appressorium. Conidia with a single short germ tube were also transferred from microthreads so that only the tip of the short germ tube was in contact with a leaf epidermal strip layed on agar, whilst the conidium rested on the agar. Long germ tubes were formed more frequently by such conidia than by controls which had no contact with the leaf epidermis. This suggested that a stimulus causing elongation of the second tube was perceived through the short germ tube in contact with the epidermal strip. Where long germ tubes made contact with the epidermal strip, normal appressoria were formed more frequently than where the long tube made contact with the agar surface alone. The results indicate that germlings develop through distinct stages in response to particular stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号