首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To explore the roles of heat shock protein 90 (HSP90) in the blockage of hydrogen sulfide (H2S) against chemical hypoxia-mimetic agent (cobalt chloride, CoCl2)-induced oxidative stress injuries in H9c2 cardiac cell. METHODS: H9c2 cells were treated with CoCl2 to set up the chemical hypoxia-induced the model of cardiomyocyte injury. Sodium hydrosulfide (NaHS, a H2S donor) was added into medium for 30 min before CoCl2 treatment. ATP content was detected by high performance liquid chromatogram (HPLC). Mitochondrial membrane potential (MMP) was measured by rhodamine123 (Rh123) staining and photofluorography. The activity of superoxide dismutase (SOD) was observed using a SOD kit. The expression of heme oxygenase-1 (HO-1) was evaluated by Western blotting. RESULTS: CoCl2 at concentration of 600 μmol/L significantly reduced SOD activity, ATP level and MMP, and enhanced the expression of HO-1 in H9c2 cells. Pretreatment with 400 μmol/L NaHS dramatically inhibited the cytotoxicity induced by CoCl2, increased SOD activity, ATP level and MMP, decreased HO-1 expression. 17-allylamino-17 demethoxygeldanamycine(17AAG), an inhibitor of HSP90, obviously blocked the inhibitory effect of H2S on the CoCl2-induced cytotoxicity, reduced the levels of ATP and MMP, increased HO-1 expression. However, no significantly influence on SOD activity was observed. CONCLUSION: HSP90 may mediate the cardioprotection of H2S via inhibiting the oxidative stress induced by chemical hypoxia.  相似文献   

2.
AIM:To investigate whether hydrogen sulfide (H2S) attenuates doxorubicin (DOX)-induced inflammation and cytotoxicity in rat cardiomyocytes (H9c2 cells) by modulating nuclear factor κB (NF-κB) pathway. METHODS:The expression of NF-κB p65 was measured by western blotting. The secretion levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor α (TNF-α) were tested by enzyme-linked immunosorbent assay (ELISA). Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay. Hoechst 33258 nuclear staining was used to detect the morphological changes and number of apoptotic cells. RESULTS:Treatment of H9c2 cells with 5 μmol/L DOX significantly up-regulated the expression level of phosphorylated NF-κB p65 (p-p65), and induced inflammation and cytotoxicity, as evidenced by increases in secretion levels of IL-1β, IL-6 and TNF-α and number of apoptotic cells as well as a decrease in cell viability. Pretreatment of H9c2 cells with 400 μmol/L NaHS (a donor of H2S) for 30 min markedly depressed the up-regulation of p-p65 expression induced by DOX. In addition, NaHS pretreatment also reduced DOX-induced inflammatory response and injury, leading to decreases in IL-1β, IL-6 and TNF-α secretion and number of apoptotic cells as well as an increase in cell viability. Similar to the effect of NaHS, pretreatment with 100 μmol/L pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, also blocked DOX-induced cardiac inflammation and cytotoxicity. Co-administration of IL-1 receptor antagonist (IL-1Ra) and DOX reduced DOX-induced activation of NF-κB and cytotoxicity in H9c2 cells. CONCLUSION:During the DOX-induced cardiomyocyte inflammation, there is positive interaction between NF-κB pathway and IL-1β. H2S may protect cardiomyocytes against DOX-induced inflammatory response and cytotoxicity by inhibiting NF-κB pathway.  相似文献   

3.
AIM:To investigate the volume-activated chloride currents and regulatory volume decrease(RVD) induced by hypotonic challenges in rat embryonic myocardial cell line H9c2. METHODS:The technique of whole-cell patch-clamp was used to record the chloride currents induced by hypotonic challenges and to clarify the properties of the currents in H9c2 cells. The changes of cell volume were observed by the technique of real-time living cell imaging, and the roles of chloride channels in RVD were analyzed. RESULTS:A weak background current was recorded in H9c2 cells under isotonic condition. Extracellular application of 47% hypotonic solution rapidly activated an outward rectified current, which did not exhibit time-and voltage-dependent inactivation with the current density of(47.77±3.80) pA/pF at +80 mV and(-33.36±2.80) pA/pF at-80 mV. The reversal potential was(-9.02±0.61) mV, closed to the calculated equilibrium potential for Cl-(-0.9 mV). The current was volume-sensitive and was completely suppressed by 47% hypertonic solution. In addition, chloride channel blockers tamoxifen(20 μmol/L), 5-nitro-2-(3-phenylpropylamino) benzoic acid(NPPB,100 μmol/L) and ATP(10 mmol/L) significantly inhibited the current with different inhibitory ratios. The phenomenon of RVD was also observed in H9c2 cells under the condition of perfusion with 47% hypotonic solution. The chloride channel blocker NPPB at concentration of 100 μmol/L completely inhibited the RVD process. CONCLUSION:The volume-activated chloride channels, which are activated by extracellular hypotonic challenges, play an important role in the process of regulatory volume decrease in H9c2 cells.  相似文献   

4.
AIM: To investigate the role of ATP-sensitive potassium (KATP) channels in the inhibitory effect of hydrogen sulfide (H2S) on high glucose(HG)-induced inflammation mediated by necroptosis in H9c2 cardiac cells.METHODS: The expression levels of receptor-interacting protein 3 (RIP3; an indicator of necroptosis) and cyclooxyge-nase-2 (COX-2) were determined by Western blot. The levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by ELISA.RESULTS: After H9c2 cardiac cells were treated with 35 mmol/L glucose (HG) for 24 h, the expression of RIP3 was significantly increased. Pre-treatment of the cells with 100 μmol/L diazoxide (DZ; a KATP channel opener) or 400 μmol/L NaHS (a donor of H2S) for 30 min considerably blocked the up-regulation of RIP3 induced by HG. Moreover, pre-treatment of the cells with 100 μmol/L 5-hydroxydecanoic acid (5-HD; a KATP channel blocker) attenuated the inhibitory effect of NaHS on HG-induced up-regulation of RIP3. On the other hand, co-treatment of the cells with 100 μmol/L necrostatin-1 (a specific inhibitor of necroptosis) or pre-treatment of the cells with 100 μmol/L DZ or 400 μmol/L NaHS attenuated HG-induced inflammatory responses, evidenced by decreases in the expression of COX-2 and secretion levels of IL-1β and TNF-α. However, pre-treatment of the cells with 100 μmol/L 5-HD significantly attenuated the above anti-inflammatory effects of NaHS.CONCLUSION: KATP channels play an important role in the inhibitory effect of H2S on HG-induced inflammation mediated by necroptosis in H9c2 cardiac cells.  相似文献   

5.
AIM: To investigate the roles of ATP-sensitive potassium (KATP) channels in high glucose-induced cardiac injury and the inhibitory effect of hydrogen sulfide (H2S) on the cardiomyocyte injury. METHODS: The expression level of KATP channel protein was tested by Western blot. The cell viability was measured by CCK-8 assay. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining. Mitochondrial membrane potential (MMP) was examined by JC-1 staining. RESULTS: After the H9c2 cells were treated with 35 mmol/L glucose (high glucose, HG) for 1~24 h, the protein level of KATP channel was significantly reduced at 6 h, 9 h, 12 h and 24 h, reaching the minimum level at 12 h and 24 h. Pretreatment of the cells with 400 μmol/L NaHS (a donor of H2S) prior to exposure to HG for 12 h considerably blocked the down-regulation of KATP channels induced by HG. Pretreatment of the cells with 100 μmol/L mitochondrial KATP channel opener diazoxide, 50 μmol/L non-selective KATP channel opener pinacidil or NaHS obviously inhibited HG-induced injuries, leading to an increase in the cell viability, and decreases in the number of apoptotic cells and the MMP loss. Pretreatment with 100 μmol/L mitochondrial KATP channel antagonist 5-hydroxydecanoic acid or 1 mmol/L non-selective KATP channel antagonist glibenclamide attenuated the above cardioprotective effects of NaHS. CONCLUSION: KATP channels mediate the inhibitory effect of H2S on HG-induced cardiac injury.  相似文献   

6.
AIM: To study whether hydrogen sulfide(H2S) protects H9c2 cardiomyocytes against high glucose(HG)-induced injury by inhibiting necroptosis. METHODS: The protein levels of RIP3(an indicator of necroptosis) and cleaved caspase-3 were determined by Western blot. The cell viability was measured by CCK-8 assay. The intracellular le-vels of reactive oxygen species(ROS) were detected by 2', 7'-dichlorfluorescein diacetate staining followed by photofluorography. Mitochondrial membrane potential(MMP) was examined by rhodamine 123 staining followed by photofluorography. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining followed by photofluorography. RESULTS: After the H9c2 cells were treated with HG(35 mmol/L glucose) for 0~24 h, the protein expression of RIP3 in the H9c2 cells was significantly increased at 3 h, 6 h, 9 h, 12 h and 24 h, reaching the maximum level at 24 h. Pretreatment of the cells with 400μmol/L NaHS(a donor of H2S) or co-treatment of the cells with necrostatin-1(Nec-1; a speci-fic inhibitor of necroptosis) considerably blocked the up-regulation of RIP3 protein induced by HG. Moreover, pretreatment with NaHS or co-treatment with Nec-1 obviously inhibited HG-induced injuries, leading to an increase in the cell viability, and decreases in the generation of ROS and MMP loss. On the other hand, pretreatment with NaHS also reduced the number of apoptotic cells and the protein level of cleaved caspase-3 in the HG-treated H9c2 cardiomyocytes. CONCLUSION: H2S protects H9c2 cardiomyocytes against HG-induced injury by inhibiting necroptosis.  相似文献   

7.
AIM: To investigate whether the opening of ATP-sensitive K+(KATP) channels protects H9c2 cardiac cells against high glucose(HG)-induced injury and inflammation by inhibiting the Toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) pathway. METHODS: The protein levels of TLR4 and NF-κB p65 were determined by Western blot. The levels of interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The cell viability was measured by CCK-8 assay. Mitochondrial membrane potential(MMP) was examined by rhodamine 123(Rh 123) staining followed by photofluorography. The intracellular levels of reactive oxygen species(ROS) were detected by 2', 7'-dichlorfluorescein- diacetate(DCFH-DA) staining followed by photofluorography. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining followed by photofluorography. RESULTS: After the H9c2 cardiac cells were treated with HG(35 mmol/L glucose) for 24 h, the protein levels of TLR4 and phosphorylated NF-κB p65(p-NF-κB p65) were significantly increased. Pretreatment of the cells with 100 μmol/L diazoxide(DZ, a KATP channel opener) for 30 min before exposure to HG considerably blocked the up-regulation of the TLR4 and p-NF-κB protein levels induced by HG. Moreover, co-treatment of the cells with 30 μmol/L TAK-242(an inhibitor of TLR4) obviously inhibited the HG-induced up-regulation of the p-NF-κB p65 protein level. On the other hand, pretreatment of the cells with 100 μmol/L DZ had a clear myocardial protection effect, which attenuated the HG-induced cytotoxicity, inflammatory response, mitochondrial damage, oxidative stress and apoptosis, evidenced by an increase in the cell viability, and decreases in the levels of IL-1β and TNF-α, MMP loss, ROS generation and the number of apoptotic cells. Similarly, co-treatment of H9c2 cardiac cells with 30 μmol/L TAK-242 or 100 μmol/L PDTC(an inhibitor of NF-κB) and HG for 24 h also obviously reduced the above injuries and inflammation induced by HG.CONCLUSION: The opening of KATP channels protects H9c2 cardiac cells against HG-induced injury and inflammation by inhibiting the TLR4/NF-κB pathway.  相似文献   

8.
AIM: The roles of Cl-channels in regulatory volume decrease (RVD), cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells (CNE-2Z) were investigated. METHODS: Image analysis of living cells was used to detect the volume changes following exposure to hypotonic solutions. Cell viability was determined by the trypan blue assay. MTT method was applied to detected cell proliferation. The effect of the blocker on the cell cycle distribution was monitored by the flow cytometry. RESULTS: 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) inhibited RVD and cell proliferation in a dose-dependent manner. NPPB at the concentration of 100 μmol/L arrested cells in G1 phase (G1 population increased from 54% to 71% at 48 h after treatments), but did not significantly alter cell viability. CONCLUSION: Block of chloride channels suppressed cell proliferation by arresting cells in G1 phase. The results suggest that activation of Cl-channels and RVD is necessary for facilitating cells to proceed to the S phase from G1 phase and maintaining cell proliferation.  相似文献   

9.
AIM: To investigate the effect of hydrogen sulfide on neuron apoptosis through PI3-K/Akt/P70S6K cell-survival signal transduction pathways after neuron anoxia-reoxygenation.METHODS: Newborn (24-48 h) Wistar rats were decapitated.The hippocampus tissue was dissected and cells were suspended.Cells were plated at 1.0×108 cells/L on poly-dlysine-treated 96-well (100 μL/well) plates and 6-well (2 mL/well) plates.Cells were used after 7 days.For anoxia-reoxygenation (oxygen glucose deprivation,OGD) experiments,cells were washed three times in a glucose-free balanced salt solution (BSS).They were then placed in deoxygenated glucose-free medium and cultured under 95% N2,5% CO2 in an anaerobic chamber equilibrated to 37 ℃ and 100% humidity for 45 min.OGD was terminated by replacement of stored medium and by returning the cultures to a standard incubator maintained at 37 ℃ in 95% air,5% CO2.In experimental group,cells were respectively carried out OGD,OGD+150 μmol/L NaHS,OGD+150 μmol/L NaHS+10 μmol/L triciribin,OGD+150 μmol/L NaHS+10 nmol/L rapamycin and OGD+150 μmol/L NaHS+10 μmol/L triciribin+10 nmol/L rapamycin.Control cells were cultured normally.24 h later,neuron viability and apoptosis were measured.The level of cAMP and protein expression of PI3-K,Akt and P70S6K were detected.RESULTS: NaHS enhanced concentration of cAMP and expression of PI3-K,Akt and P70S6K.Meanwhile,increased neuron viability and decreased neuron apoptosis (P<0.01 vs group C or group I/R) were observed.Triciribin inhibited Akt and P70S6K,as well as increased neuron apoptosis and decreased neuron viability (P<0.05,P<0.01 vs group NaHS).Rapamycin inhibited P70S6K,as well as increased neuron apoptosis and decreased neuron viability (P<0.05,P<0.01 vs group NaHS).CONCLUSION: H2S inhibits hippocampus neuron apoptosis and protects neuron from anoxia-reoxygenation injury through cAMP-mediated PI3-K/Akt/P70S6K kinase cell-survival signaling pathways.  相似文献   

10.
AIM To investigate the effects of histone demethylase inhibitor IOX1 (5-carboxy-8-hydroxyquinoline) on the proliferation, apoptosis and extracellular matrix (ECM)-related protein expression in transforming growth factor-β (TGF-β)-induced human hepatic stellate LX2 cells. METHODS The proliferation and apoptosis of the LX2 cells were determined by real-time cell analysis and flow cytometry, respectively. The level of histone H3 lysine 9 dimethylation (H3K9me2) and the protein expression of ECM-related molecules [α-smooth muscle actin (α-SMA), collagen type I (Col I), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1)] in the LX2 cells were detected by Western blot. RESULTS Treatment with IOX1 at 50~300 μmol/L significantly inhibited LX2 cell proliferation, and 300 μmol/L IOX1 significantly promoted the apoptosis of the LX2 cells. In addition, different concentrations of IOX1 increased the levels of H3K9me2 and MMP-1, and down-regulated the expression of α-SMA, Col I and TIMP-1 in TGF-β-induced LX2 cells (P<0.05). CONCLUSION Treatment with IOX1 inhibits the proliferation of LX2 cells induced by TGF-β, promotes the cell apoptosis, and regulates the synthesis and metabolism of ECM by elevating H3K9me2 level, thus attenuating hepatic fibrosis.  相似文献   

11.
AIM:To explore the roles of cystic fibrosis transmembrane conductance regulator (CFTR) in hypoxia-induced apoptosis of H9c2 cardiomyocytes and the underlying mechanisms. METHODS:The rat H9c2 cardiomyocytes were exposed to a 1% hypoxic environment in a hypoxic chamber. After CFTR overexpression, H9c2 cardiomyocytes were cultured in a hypoxic environment. The mRNA and protein levels of CFTR were examined by RT-qPCR and Western blot, respectively. The cell viability was measured by MTT assay. The apoptotic rate was determined by Hoechst 33342 and Annexin V-FITC/PI staining, and the production of reactive oxygen species (ROS) was examined by dichloro-dihydro-fluorescein diacetate (DCF-DA) staining. RESULTS:Hypoxic exposure caused the apoptosis of H9c2 cardiomyocytes, which was accompanied by the down-regulation of CFTR at mRNA and protein levels and over-production of ROS (P<0.05). After CFTR overexpression, the apoptotic rate of the H9c2 cardiomyocytes induced by hypoxia was significantly reduced, with a prominent inhibition of ROS production (P<0.05). However, pretreatment with CFTRinh-172, a specific inhibitor of CFTR, reversed the protective effect of CFTR overexpression in H9c2 cardiomyocytes. CONCLUSION:CFTR has a critical role in protecting against hypoxia-induced apoptosis of H9c2 cells, which may be through inhibiting the generation of ROS.  相似文献   

12.
LIU Fang  LIU Ji  ZHANG Ying 《园艺学报》2018,34(8):1376-1382
AIM: This study aims to explore the effect of abietic acid (AA) on advanced glycosylation end products (AGEs)-induced apoptosis and endoplasmic reticulum stress in H9c2 cardiomyocytes. METHODS: H9c2 cells were divided into 5 groups. The cells in control group were treated with saline for 24 h. The cells in AGEs treatment group were treated with AGEs (100 mg/L) for 24 h. The cells in AGEs+AA (10, 25 and 50 μmol/L) groups were simulta-neously treated with AGEs (100 mg/L) and AA (10, 25 and 50 μmol/L) for 24 h. The cell viability was measured by MTT assay. The protein levels of myoglobin (Mb), creatine kinase MB isoenzyme (CK-MB), cardiac troponin I (cTnI), C/EBP homologous protein (CHOP), cleaved caspase-12, GADD34, BiP, LC3, P62 and beclin 1 were determined by Western blot. The levels of lactate dehydrogenase (LDH) were measured by ELASA. The apoptosis was analyzed by flow cytometry. RESULTS: The low concentration (<50 μmol/L) of abietic acid had no obvious effect on the viability of H9c2 cells. The high concentration (>50 μmol/L) of abietic acid decreased the viability of H9c2 cells. The levels of Mb, CK-MB, cTnI and LDH in AGEs group were higher than those in control group (P<0.05). Compared with AGEs group, the levels of Mb, CK-MB, cTnI and LDH in AGEs+AA (10, 25 and 50 μmol/L) groups were obviously reduced (P<0.05). Abietic acid at concentrations of 10, 25 and 50 μmol/L inhibited AGEs-induced apoptosis, elevated the protein levels of CHOP and cleaved caspase-12, and attenuated expression of GADD34 and BiP (P<0.05). Moreover, abietic acid at concentrations of 10, 25 and 50 μmol/L suppressed AGEs-induced decreased ratio of LC3-Ⅱ/LC3-Ⅰ and expression of beclin 1, and enhanced the expression of P62 (P<0.05). 3-Methyladenine, an inhibitor of autophagy, reversed the effect of abietic acid on the protein levels of LC3, Mb, cleaved caspase-12 and BiP (P<0.05). CONCLUSION: Abietic acid alleviates AGEs-induced apoptosis and endoplasmic reticulum stress in H9c2 cardiomyocytes via inducing autophagy.  相似文献   

13.
AIM: To investigate the effect of Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) on hypoxia/reoxygenation (H/R) injury in H9c2 cells. METHODS: H9c2 cells were randomized into 4 groups:control group, KN-93 (an inhibitor of CaMKⅡ; 1 μmol/L) treatment group, H/R group and H/R+KN-93 (1 μmol/L) treatment group. The cells in KN-93 group and KN-93+H/R group were pretreated with KN-93 for 2 h before the other treatment was performed. The viability of H9c2 cells in each group was measured by CCK-8 assay. Lactate dehydrogenase (LDH) activity in the culture medium was detected. The protein levels of phosphorylated CaMKⅡ (p-CaMKⅡ), phosphorylated phospholamban (p-PLN) and cleaved caspase-3 were determined by Western blot. The apoptosis was analyzed by TUNEL staining and the flow cytometry. RESULTS: No significant difference of all indexes tested between control group and KN-93 group was observed. H/R treatment significantly reduced the cell viability, and increased the activity of LDH (P<0.01), the protein levels of p-CaMKⅡ, p-PLN and cleaved caspase-3 (P<0.05), and the apoptotic rate (P<0.01). KN-93 (1 μmol/L) significantly increased the cell viability, and decreased the activity of LDH (P<0.01), the protein levels of p-CaMKⅡ, p-PLN and cleaved caspase-3 (P<0.05), and the apoptotic rate (P<0.01). CONCLUSION: CaMKⅡ aggravates hypoxia/reoxygenation injury in the H9c2 cells by activating apoptosis.  相似文献   

14.
AIM: To study whether the angiotensin-(1-7)[Ang-(1-7)]/Mas receptor axis protects cardiomyocytes against high glucose(HG)-induced injury by inhibiting nuclear factor-κB(NF-κB) pathway. METHODS: The cell viability was measured by CCK-8 assay. The intracellular levels of reactive oxygen species(ROS) were detected by DCFH-DA staining. The number of apoptotic cells was tested by Hoechst 33258 nuclear staining. Mitochondrial membrane potential(MMP) was examined by JC-1 staining. The levels of NF-κB p65 subunit and cleaved caspase-3 protein were determined by Western blotting. RESULTS: Treatment of H9c2 cardiac cells with 35 mmol/L glucose(HG) for 30, 60, 90, 120 and 150 min significantly enhanced the levels of phosphorated(p) NF-κB p65, peaking at 60 min. Co-treatment of the cells with 1 μmol/L Ang-(1-7) and HG for 60 min attenuated the up-regulation of p-NF-κB p65 induced by HG. Co-treatment of the cells with Ang-(1-7) at concentrations of 0.1~30 μmol/L and HG for 24 h inhibited HG-induced cytotoxicity, evidenced by an increase in cell viability. On the other hand, 1 μmol/L Ang-(1-7) ameliorated HG-induced apoptosis, oxidative stress and mitochondrial damage, indicated by decreases in the number of apoptotic cells, cleaved caspase-3 level, ROS generation and MMP loss. However, the above cardioprotective effects of Ang-(1-7) were markedly blocked by A-779, an antagonist of Ang-(1-7) receptor(Mas receptor). Similarly, co-treatment of H9c2 cardiac cells with 100 μmol/L PDTC(an inhibitor of NF-κB) and HG for 24 h also obviously reduced the above injuries induced by HG. CONCLUSION: Ang-(1-7)/Mas receptor axis prevents the cardiomyocytes from the HG-induced injury by inhibiting NF-κB pathway.  相似文献   

15.
16.
AIM: To prove the purinergic signaling mechanism of the neuroprotective action of hydrogen sulfide by observing the effects of sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, on the cell viability, intracellular Ca2+ concentration ([Ca2+]i) and the change of membrane permeability in the PC12 cells injured by adenosine triphosphate (ATP). METHODS: PC12 cells in logarithmic growth phase were randomly divided into 4 groups. In control group, the cells were cultured without ATP treatment. In ATP group, the cells were treated with ATP after cultured for 24 h. In NaHS+ATP group, the cells were incubated with NaHS for 30 min before treated with ATP, and NaHS always existed in the reaction system. In KN-62+ATP group, the cells were pretreated with KN-62 for 30 min, and the other treatments were as the same as those in NaHS+ATP group. The cell viability was assessed by MTT assay. The [Ca2+]i was detected by Fura-2/AM staining. The membrane permeability was observed by staining with fluorescent dye YO-PRO-1.RESULTS: ATP at concentration of 0.3 mmol/L showed no injury effect on the cells. However, the cell viability was dropped gradually in a dose-dependent manner as the ATP at doses of 1, 3, 5 and 10 mmol/L. The decline of cell viability by ATP was obviously reversed by 200 μmol/L of NaHS in the PC12 cells (P<0.05), but exasperated by 800 μmol/L of NaHS (P<0.05). At the same time, ATP evoked the increase in [Ca2+]i in a dose-dependent manner, which was inhibited by NaHS (P<0.05). Furthermore, the YO-PRO-1 uptake induced by ATP in a dose-dependent and time-dependent manner was also reduced by NaHS (P<0.05). CONCLUSION: Hydrogen sulfide has protective effect on the PC12 cells injured by ATP. The mechanism may be related to the reverse of the increased [Ca2+]i and YO-PRO-1 uptake.  相似文献   

17.
AIM: To investigate the protective effect of N-acetylcysteine(NAC) on H9c2 cells from injuries induced by methylglyoxal(MG) and the potential mechanism. METHODS: H9c2 cells were divided into control group, MG treatment group, NAC + MG treatment group, SP600125 pretreatment + MG group, NAC group and SP600125 group. The viability of the H9c2 cells was measured by CCK-8 assay. The protein levels of p-JNK and t-JNK were tested by Western blot. The changes of intracellular reactive oxygen species(ROS) were evaluated by 2', 7'-dichlorofluorescein diacetate(DCFH-DA) staining. Mitochondrial membrane potential(MMP) was measured by rhodamine 123(Rh123) staining. The morphological changes in apoptotic cardiomyocytes were detected by Hoechst 33258 staining. RESULTS: Du-ring 100~800μmol/L concentration range, MG caused significantly reduced viability of the H9c2 cells in a dose-dependent manner. NAC had a protective effect on H9c2 cells against the injuries induced by MG during 500~1500μmol/L concentration range through raising cell viability, inhibiting cellular oxidative stress and improving MMP(P<0.01). SP600125, an inhibitor of JNK, showed the protective effect similar to NAC on H9c2 cells against MG-induced injuries, including attenuating oxidative stress, improving MMP and suppressing apoptosis.CONCLUSION: N-acetylcysteine offers obvious protective effect on H9c2 cells against the injuries induced by methylglyoxal. The underlying mechanisms may be associated with decreasing the production of ROS, ameliorating MMP, inhibiting the activation of JNK and suppressing apoptosis.  相似文献   

18.
AIM:To evaluate the effect of inhibiting ubiquitin-specific protease 14(USPl4) activity on oxidative stress induced by H2O2 of H9c2 cells.METHODS:The H9c2 cells were incubated with H2O2 at 25 μmol/L for 2 h to establish the oxidative stress injury model.The cells were divided into control group,H2O2 group,IU1 group (25 μmol/L or 50 μmol/L) and IU1+H2O2 group.The H9c2 cells activity was measured by MTS assay.The level of intracellular reactive oxygen species (ROS) and cell survival rate were analyzed by flow cytometry assay.The changes of the mitogen-activated protein kinase (MAPK) family related proteins were detected by Western blot.RESULTS:Compared with control group,the cell activity and the viability rate in H2O2 group were decreased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were increased (P<0.05).Compared with H2O2 group,the cell activity and the viability rate of the H9c2 cells in IU1+H2O2 group were increased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were decreased (P<0.05).CONCLUSION:Inhibition of USPl4 activity reduces the oxidative stress injury of the H9c2 cells.The mechanism may be related to inhibition of the MAPK signaling and down-regulation of apoptosis related proteins.  相似文献   

19.
AIM:To study whether naringin protects H9c2 cardiac cells against high glucose (HG)-induced injury by inhibiting the leptin pathway. METHODS:The expression levels of leptin and leptin receptor (LEPR) were detected by Western blotting. The cell viability was analyzed by CCK-8 assay. The changes of the morphology and the number of apoptotic cells were tested by Hoechst 33258 nuclear staining. The intracellular levels of reactive oxygen species (ROS) were measured by DCFH-DA staining. Mitochondrial membrane potential (MMP) was determined by rhodamine 123 staining. RESULTS:Treatment of the cells with 35 mmol/L glucose (HG) for 6~24 h up-regulated the expression of leptin in H9c2 cardiac cells with the peak value at 9 h. Treatment of the cells with HG for 1~24 h also enhanced the expression of LEPR, peaking at 12 h. Pretreatment with 80 μmol/L naringin for 2 h before exposure of the H9c2 cardiac cells to HG significantly inhibited the up-regulation of both leptin and LEPR induced by HG. Pretreatment of the cells with naringin for 2 h, leptin antagonist for 24 h, or leptin receptor antagonist for 2 h attenuated HG-induced injury in the cardiomyocytes, evidenced by an increase in cell viability, decreases in the number of apoptotic cells and intracellular ROS production as well as a recovery of MMP. CONCLUSION:Naringin may protect the cardiomyocytes against the HG-induced injury by inhibition of the leptin pathway.  相似文献   

20.
AIM: To study the effect of p65 gene silencing by adeno-associated virus type 9 (AAV9)-mediated RNA interference on angiotensin Ⅱ (Ang Ⅱ; 10-6 mol/L for 24 h)-induced apoptosis of rat ventricular H9c2 myocytes, and to elucidate the possible mechanism. METHODS: The H9c2 cells were transfected with rAAV9-eGFP and rAAV9-eGFP-NF-κB p65-siRNA at multiplicity of infection (MOI)=4×106 vg/cell. eGFP expression in the cells was observed under an inverted fluorescence microscope, and the percentage of eGFP positive cells was determined by flow cytometry. The expression of p65 was determined by Western blot. CCK-8 assay was used to measured the viability of transfected H9c2 cells. The apoptosis of the cells transfected with the virus and with Ang Ⅱ stimulation was analyzed by flow cytometry. RESULTS: The cells began to exhibit eGFP expression on the 2nd day after transfection. The fluorescence intensity was increased over the time of transfection. eGFP expression reached the maximum on the 5th day, and the transfection efficiency was (52.7±1.9)% at this time point. Compared with blank control group, no significant effect of AAV9 on the viability of H9c2 cells was observed. In resting state, p65 in the H9c2 cells had a certain activity. After Ang Ⅱ stimulation, the activity of p65 was obviously increased, while transfection of rAAV9-eGFP-NF-κB p65-siRNA effectively inhibited the expression of p65. The apoptosis of H9c2 cells in Ang Ⅱ stimulation group was significantly higher than that in blank control group, while transfection of rAAV9-eGFP-NF-κB p65-siRNA effectively inhibited apoptosis of H9c2 cells. CONCLUSION: Transfection of rAAV9-eGFP-NF-κB p65-siRNA effectively inhibits the expression of p65 gene of NF-κB pathway in the H9c2 cells without causing cell growth inhibition, and reduces the apoptosis induced by Ang Ⅱ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号