首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We assessed whether forest restoration was successful in Expo ’70 Commemorative Park in Osaka Prefecture, Japan, which was planted in the 1970s with native late-successional tree species. Detailed survey and analysis of species composition, stand vertical stratification, and forest dynamics, including comparison with a reference, natural late-successional forest, were conducted. The restoration plots had grown to larger basal area compared with the reference plots, however, this was a consequence of very high densities of the overstory trees due to low self-thinning rate. Stand vertical structure of the restoration plots was biased toward overstory layers, causing high mortality of understory trees and shrubs. Because there are no mature forests near the restoration site that could act as a seed source, abundance and diversity of understory trees are likely to continue decreasing in the restoration plots, resulting in single-layered forest structure similar to those of monocultures and even-aged forests. Many seedlings of exotic species emerged in the restoration plots and this could lead to a plagiosere where exotic species dominate the vegetation inhibiting regeneration and growth of native species. Ordination analysis using different measures, basal area and abundance, showed apparently contradicting results, suggesting that multiple criteria are needed to evaluate forest restoration success. Our results indicate restoration of mature, late-successional forest cannot be achieved by simultaneous planting of native species. To sustain urban forests into the future, we must conduct long-term monitoring and management referencing natural forest structure and dynamics.  相似文献   

3.
Urban river restorations focus on restoring aquatic and riparian habitats, increasing flood protection, and enhancing recreational potential. The increased recreational value such newly created urban green spaces is a key benefit of these measures as urban riparian areas are highly valued for recreation. However, high recreational pressure may contribute to the loss of natural vegetation and of biodiversity in restored riparian sites. This study investigates the impact of different recreational intensities and use types on the vegetation structure and vegetation quality by documenting direct (foot-traffic, breaking of branches, stems and roots) and indirect damages (litter and excrements). The major results are fourfold. First, while the proportion of some vegetation types can be correlated to the recreational intensity, neither recreation intensity nor recreation types enhanced the colonization success of invasive species. However, monitoring data showed that human-induced disturbances such as hydro-morphological changes favor alien plant establishment. Second, the study suggests a tipping point for pioneer vegetation at around a density of one user per 10 m river stretch. Already at lower user densities, pressure from trampling can slow down vegetation development. Third, the results indicate that users prefer urban greening and gravel bar elements rather than natural vegetation. Finally, while intensity of direct damages on the vegetation are weakly correlated with the user density, indirect damages increase with the user density. This study concluded that the identification of user hotspots would be helpful in developing a resilient restoration design, which in addition to information about the sensitive vegetation types in relation to recreational users and nature friendly recreational behavior could decrease vegetation damages. In particular, younger recreational users should be targeted by environmental protection campaigns.  相似文献   

4.
The transformation of natural landscapes into impervious built-up surfaces through urbanization is known to significantly interfere with the ecological integrity of urban landscapes and accelerate climate change and associated impacts. Although urban reforestation is widely recognised as an ideal mitigation practice against these impacts, it often has to compete with other lucrative land uses within an urban area. The often limited urban space provided for reforestation therefore necessitates the optimization of the ecological benefits, which demands spatially explicit information. The recent proliferation of tree stands structural complexity (SSC) and topographic data offer great potential for determining the ecological performance of reforested areas across an urban landscape. This study explores the potential of using topographic datasets to predict SSC in a reforested urban landscape and ranks the value of these topographic variables in determining SSC. Tree structural data from a reforested urban area was collected and fed into a tree stand structural complexity index, which was used to indicate ecological performance. Topographic variables (Topographic Wetness Index, slope, Area Solar Radiation and elevation)- were derived from a Digital Elevation Model (DEM) and used to predict SSC using the Partial Least Squares (PLS) regression technique. Results show that SSC varied significantly between the topographic variables. Results also show that the topographic variables could be used to reliably predict SSC. As expected, the Topographic Wetness Index and slope were the most important topographic determinants of SSC while elevation was the least valuable. These results provide valuable spatially explicit information about the ecological performance of the reforested areas within an urban landscape. Specifically, the study demonstrates the value of topographic data as aids to urban reforestation planning.  相似文献   

5.
The near-to-nature urban forestry concept and practices are widely recognized for urban greening, urban ecosystem restoration, urban greenspace management for biodiversity conservation and ecosystem services provision. However, the regeneration and succession of urban vegetation are rarely studied due to the complex settings of the urban environment. To this end, we conducted a large-scale field investigation in the metropolitan area of Beijing, China to explore the spatial variations in plant species composition and diversity in soil seed banks, and their similarity to the aboveground vegetation to assess the potential of urban plant regeneration. Overall, 657 vegetation and soil sampling plots from 219 grids, measuring 2 km × 2 km each, were investigated within two perpendicular 10 km wide transects running across the urban center in north-south and east-west directions within the 6th Ring Road of the city. We recorded a total of 102 plant species in soil seed banks, including 13 tree species, 10 shrub species, and 79 herb species. We found that the soil seed bank species diversity and its similarity to that of the aboveground vegetation communities decreased significantly with the urbanization intensity. Higher urbanization intensity is typically associated with increased human management and a reduction in Greenspace Area (GSA). Soil seed bank species richness increased significantly when GSA exceeded 45 % and the similarity of species composition and diversity between soil seed banks and aboveground vegetation communities was the highest in forest parks. This suggests that habitats under forest park management are more conducive to plant regeneration. Soil seed bank species diversity first increased and then decreased significantly with increased distance to the city center, whereas the species similarity between the soil seed banks and the aboveground vegetation communities showed little change with the ring roads going out. The results of this study have important implications for further understanding the potential for urban vegetation regeneration and sustainability, which have significant implications for urban biodiversity conservation and restoration.  相似文献   

6.
The matrix is an important element of landscape mosaics that influences wildlife indirectly through its influence on habitat, and directly, if they live in or move through it. Therefore, to quantify and manage habitat quality for wildlife in modified landscapes, it is necessary to consider the characteristics of both patch and matrix elements of the whole landscape mosaic. To isolate matrix effects from the often simultaneous and confounding influence of patch and landscape characteristics, we identified nineteen 500 m radius landscapes in southeast Queensland, Australia with similar remnant forest patch attributes, habitat loss, and fragmentation, but exhibiting a marked gradient from rural through high-density suburban development of the matrix, quantified by a weighted road-length metric. We measured habitat disturbance, structure, and floristics in patch core, patch edge and matrix landscape elements to characterise how landscape habitat quality changes for small mammals. Correlation analyses identified that with increased matrix development intensity, human disturbance of core sites increased, predators and exotic plant species richness in matrix sites increased, and structural complexity (e.g. logs and stumps) in the matrix decreased. Ordination analyses showed landscape elements were most similar in habitat structure and floristics at low to moderate levels of matrix development, suggesting enhanced landscape habitat quality. Matrix development intensity was not, however, the greatest source of overall variation of habitat throughout landscapes. Many variables, such as landholder behaviour, complicate the relationship. For enhanced conservation outcomes the matrix needs to be managed to control disturbances and strategically plan for matrix habitat retention and restoration.  相似文献   

7.
Urban parks comprise diverse microhabitats, such as vegetation units of lawn and arbour forests, with differing biodiversity potentials. However, the influences of microhabitats on butterfly diversity and the mechanisms involved remain unclear. This study used butterfly survey data from 112 plots in 27 urban parks in the central metropolitan area of Beijing, China, from June to September 2020. Based on the growth form of larval host plants, recorded butterfly species were classified into three functional groups: woody plant-feeding taxa (WF), herb-feeding taxa (HF), and feeding on multiple plant growth forms taxa (MF). We analysed the effects of 11 variables among three facets, namely, vegetation composition, vegetation structure, and human activity, on the butterfly diversity (species richness and abundance) of the whole community, three functional groups using generalised linear mixed models. Twenty-five butterfly species observed mainly feed on herbs rather than on woody plants. Our results demonstrated that vegetation community characteristics explain up to 24% and 43% variation in butterfly species richness and abundance, respectively. Of this, vegetation structure facets crucially affected butterfly species richness, and vegetation composition facets had the most significant influence on the abundance of the whole butterfly community. However, the impact of human activity factors was minimal. Light availability and herb height belonging to vegetation structure factors and nectar plant species richness and nectar abundance which belonged to vegetation composition factors showed the most important and positive effects on butterfly diversity. The positive impact of the above significant factors was found especially on herb-feeding butterfly diversity. In contrast, the diversity of butterflies feeding on woody plants was most positively influenced by herb height. We thus suggest that it is necessary to guarantee the presence of a well-developed herb layer, which provides abundant nectar sources and maintain specific open spaces to ensure light availability. In conclusion, our findings imply that the critical role of the spatial structure of vegetation community is conspicuous in the formation of suitable microhabitats for butterflies, and managers could combine vegetation management practices with the needs of specific functional groups.  相似文献   

8.

Context

Many arboreal mammals in Neotropical forests are important seed dispersers that influence the spatial patterns of tree regeneration via their movement patterns, which in turn are determined by the canopy structure of the forest itself. However, the relationship between arboreal mammal movement and canopy structure is poorly understood, due in large part to the complexity of quantifying arboreal habitat structure.

Objectives

We relate detailed movement trajectories of three sympatric primate species to attributes of canopy structure derived from airborne light detection and ranging (LiDAR) in order to understand the role of structure in arboreal movement in the tropical moist forest of Barro Colorado Island, Panama.

Methods

We used high-resolution LiDAR to quantify three-dimensional attributes of the forest canopy of the entire island, high-resolution GPS tracking to map the movement patterns of the monkey species, and step selection functions to relate movement decisions to canopy attributes.

Results

We found that movement decisions were correlated with canopy height and distance to gaps, which indicate forest maturity and lateral connectivity, in all three species. In the two faster-moving species, step selection was also correlated with the thickness of the crown layer and the density of vegetation within the crown.

Conclusions

The correlations detected are fully in line with known differences in the locomotor adaptations and movement strategies of the study species, and directly reflect maximization of energetic efficiency and ability to escape from predators. Quantification of step selection in relation to structure thus provides insight into the ways in which arboreal animals use their environment.
  相似文献   

9.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

10.
Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.  相似文献   

11.
Understanding the spatio-temporal dynamics of ecological systems is fundamental to their successful management and conservation. Much research and debate has focused on identifying underlying drivers of vegetation change in savannas, yet few have considered the influence of spatial context and heterogeneity. Our goal was to develop deeper understanding of woody vegetation spatio-temporal dynamics through spatially explicit utilization of historical aerial photography and airborne LiDAR (light detection and ranging). We first assessed temporal change in woody vegetation cover through object-based image analysis of an aerial photography record that spanned 59 years from 1942 to 2001. Secondly, we tested the spatial relationships between environmental variables and patterns of woody structure and dynamics at broad (100 ha), medium (10 ha) and fine-scales (1 ha) through canonical correspondence analysis (CCA). Finally, we used LiDAR derived vegetation heights to explore current woody vegetation structure in the context of historical patterns of change. Total percentage woody cover was stable over time, but woody dynamics were highly variable at smaller scales and displayed distinct spatial trends across the landscape. Losses of woody cover on the diverse alluvial substrates were countered by increases of cover on the hillslopes. Analysis of current woody structure in the context of historical change revealed that the increases took place in the form of shrub encroachment and not the replacement of tall trees. We infer that mammalian herbivory contributed substantially to the losses on lowland alluvial soils, whilst shrub encroachment on the upland hillslopes likely stemmed from changes in fire regime and climate. Deeper reflection on spatial variability is needed in the debate around drivers of change in savanna systems, as spatial patterns of change revealed that different drivers underlie vegetation dynamics in different landscape contexts. Spatial heterogeneity needs explicit consideration in the exploration of pattern–process relationships in ecological systems.  相似文献   

12.
Cities around the world are investing in urban forest plantings as a form of green infrastructure. The aim is that these plantations will develop into naturally-regenerating native forest stands. However, woody plant recruitment is often cited as the most limiting factor to creating self-sustaining urban forests. As such, there is interest in site treatments that promote recruitment of native woody species and simultaneously suppress woody non-native recruitment. We tested how three, common site treatments—compost, nurse shrubs, and tree species composition (six-species vs. two-species)—affected woody plant recruitment in 54 experimental plots beneath a large-scale tree planting within a high-traffic urban park. We identified naturally regenerating seedling and sapling species and measured their abundance six-years after the site was planted. This enabled us to examine initial recruitment dynamics (i.e. seedlings) and gain a better understanding of seedling success as they transition to the midstory (i.e. saplings). Seedling and sapling recruitment (native and total) was greater in areas with higher canopy cover. The combination of the nurse shrub treatment with compost and species composition (six-species) treatments increased seedling recruitment by 47% and 156%, respectively; however, the nurse shrub treatment by itself decreased seedling recruitment by 5% and native seedling recruitment by 35%. The compost treatment alone had no effect on the total number of recruits but resulted in 76% more non-native seedlings. The sizes of these treatment effects were strongly dependent on whether the forest plantings were in open areas, versus areas with existing tree canopy, the latter condition facilitating recruitment. Our findings therefore suggest that combinations of site treatments, paired with broad canopy tree species, may be most effective for promoting regeneration of native species resulting in more self-sustaining urban forests.  相似文献   

13.
Bioretention systems have known benefits for managing urban stormwater, but there remain knowledge gaps about evapotranspiration (ET) and its role in these systems. This paper investigated how design parameters including growing media and vegetation, as well as climatic variables, can influence ET in bioretention systems. To this end, twenty-four bioretention mesocosms constructed using three media types (i.e., two sandy media types and clay loam mixed with wood chips) and planted with three vegetation types (i.e., herbaceous mixture, woody mixture, and turfgrass as control) in Okotoks, Alberta, Canada were monitored during the growing seasons (from May to October) between 2018 and 2020. The media moisture in the mesocosms was monitored at the depths of 20 and 40 cm to study how the design parameters and their interactions could influence ET. The results confirmed the roles of design and climatic variables on ET, while their effects were more prominent at the surface layer. The sandy media with the low organic matter (SD1) and the woody vegetation appeared to outperform the other media and vegetation types in promoting ET. The findings demonstrated the non-stationary nature of the ET function in the mesocosms. The effects of the design variables, in particular the vegetation, became more prominent over time. In addition, the impact of media-vegetation interactions on ET was identified. The results suggest the need for optimizing bioretention systems with consideration to the design variables, whose roles on ET are time- and depth-variant, to promote ET and, in turn, bioretention performance.  相似文献   

14.
Green roofs provide a number of valuable ecosystem services compared to conventional roofs, but may require yearly maintenance. Trees and other woody plants that persist on the roof may damage or overload shallow-substrate green roofs and their removal is a standard maintenance procedure. The germination potential of colonizing species may differ depending on the vegetation surrounding them. The aim of this study was to determine whether the germination of colonizing tree species (Picea glauca and Ulmus glabra) will vary depending on which plant species form the established vegetation seeds land in. To determine germination success, survival, and seed capture ability of the plant canopy, tree seeds were added either directly to the growing medium or atop the plant canopy, in replicated monocultures of 14 species native to Nova Scotia. When seeds were added directly to the soil, no significant difference was detected between the monocultures for germination success or survival for U. glabra or P. glauca. However, when the seeds were added atop the plant canopy, percent germination of U. glabra was significantly higher in Carex argyrantha green roof modules. Overall, sod forming graminoids showed higher germination of U. glabra. The number of seeds reaching the soil was typically lower in vegetation with a denser canopy. This study demonstrates that some vegetation repels colonizing tree species by reducing ground contact. Although these effects differed according to tree species, non-vegetated substrates enhanced seedling persistence. Additionally, the majority of tree seeds that germinated failed to survive a single growing-season on shallow-substrate green roofs.  相似文献   

15.
Cities contain a diverse range of habitats that support plant establishment and persistence. This study focuses on a particular vertical artificial habitat: masonry retaining walls in Hong Kong. We explored the diversity and co-existence of different plant growth forms, synoptic assessment of habitat conditions, and relationship between habitat factors and vegetation occurrence. Some 270 walls with notable plant colonization in old districts were studied. We surveyed intrinsic wall fabric, extrinsic site condition, tree species and abundance, and other types of plant cover. The data were evaluated with the help of principal component and multiple regression analyses. A wide assemblage of species and growth forms have established spontaneously on walls. The tree flora is dominated by Moraceae (Mulberry family) members, genus Ficus (figs or banyans), and particularly Ficus microcarpa. Trees with strangler characteristics pre-adapted to grow on the vertical habitat are strongly favoured, followed by ruderals and garden escapees. Natives outnumber exotics by a large margin. Multiple wall attributes could be condensed into four factors, classified as water-nutrient supply, habitat connectivity, structure-maintenance, and habitat size. The action of habitat factors on vegetation occurrence hinges on plant growth form and dimension. The occurrence of diminutive lichen-moss is related to the fundamental sustenance water-nutrient factor. The bigger mature trees are more dependent on the larger-scale habitat size factor. The medium-sized plants, including herbs, shrubs and tree seedlings, are contingent upon the dual influence of water-nutrient and habitat connectivity. Spatial contiguity with natural ecosystem can secure continual supplies of seeds, water, nutrient, genial microclimate, and clean air to foster wall vegetation growth. The conservation of walls and their companion flora could avoid degrading or reducing these critical enabling factors. The urban ecological heritage deserves to be protected from unnecessary, misinformed and harmful impacts.  相似文献   

16.
Changes in ecosystem structure caused by urbanization produce a reduction in photosynthetic productivity, which can lead to reductions in resource availability for birds. Here, we analyzed the relation between photosynthetic productivity and bird assemblages in a subtropical urban ecosystem, in North-Western Argentina. We used Generalized Linear Models to assess the responses of bird abundance, richness and diversity to photosynthetic productivity, vegetation cover and distance to main natural forest. We found higher bird richness and diversity with increasing photosynthetic productivity and vegetation cover, and with decreasing distance to forests; while total bird abundance was positively related to vegetation cover. When we classified bird species in different groups, based on their use of the environment, we found that species adapted to urban environments were more dependent on photosynthetic productivity, while species related to native forests were more dependent on the distance to source forests. Understanding the factors that affect bird assemblages in cities is important for the development of strategies for urban planning and conservation.  相似文献   

17.
Over that past decade, ecological restoration practices have expanded globally. However, the effectiveness of ecological restoration depends on the complex interactions of various natural and socioeconomic factors, about which there is limited scientific understanding and thus provides an important research frontier. This paper analyzed the relationship between regional scale vegetation restoration and the process of urbanization using the Loess Plateau of China as a case study. This region has experienced both rapid urbanization and a high number of vegetation restoration activities. Urbanization and vegetation restoration can be considered as extremes on the spectrum of environment preservation activities. Three separate spatial correlation analyses between urbanization and vegetation restoration were identified, resulting in: 1) insignificant correlations in saturated urban areas; 2) significant negative correlations in peri-urban areas; and 3) significant positive correlations in undeveloped areas. The relationship between urbanization and vegetation restoration is thus stage-dependent. Impacts of urbanization on vegetation degradation has improved but has not been fully addressed by large scale vegetation restoration. Regardless of whether the county or grid scale is used, peri-urbanization was found to be the critical factor affecting the effectiveness of vegetation restoration over both time and space. Therefore, peri-urbanized areas are viewed as priorities for improving the coupling of urban development and vegetation restoration.  相似文献   

18.

Context

Climate change alters the vegetation composition and functioning of ecosystems. Measuring the magnitude, direction, and rate of changes in vegetation composition induced by climate remains a serious and unmet challenge. Such information is required for a predictive capability of how individual ecosystem will respond to future climates.

Objectives

Our objectives were to identify the relationships between 20 climate variables and 39 ecosystems across the southwestern USA. We sought to understand the magnitude of relationships between variation in vegetation composition and bioclimatic variables as well as the amount of ecosystem area expected to be affected by future climate changes.

Methods

Bioclimatic variables best explaining the plant species composition of each ecosystem were identified. The strength of relationships between beta turnover and bioclimate gradients was calculated, the spatial concordance of ecosystem and bioclimate configurations was shown, and the area of suitable climate remaining within the boundaries of contemporary ecosystems under future climate projections was measured.

Results

Across the southwestern USA, four climate variables account for most of the climate related variation in vegetation composition. Twelve ecosystems are highly sensitive to climate change. By 2070, two ecosystems lose about 4000 (15 %) and 7000 (31 %) km2 of suitable climate area within their current boundaries (the Western Great Plains Sandhill Steppe and Sonora-Mojave Creosotebush-White Bursage Desert Scrub ecosystems, respectively). The climatic areas of riparian ecosystems are expected to be reduced by half.

Conclusions

Results provide specific climate and vegetation parameters for anticipating how, where and when ecosystem vegetation transforms with climate change. Projecting the loss of suitable climate for the vegetation composition of ecosystems is important for assessing ecosystem threats from climate change and for setting priorities for ecosystem conservation and restoration across the southwestern USA.
  相似文献   

19.
In densifying cities, small green spaces such as pocket parks are likely to become more important as settings for restoration. Well-designed small parks may serve restoration well, but earlier research on restorative environments does not provide detailed information about the specific components of the physical environment that support restoration. In this study we assessed the extent to which hardscape, grass, lower ground vegetation, flowering plants, bushes, trees, water, and size predicted the judged possibility for restoration in small urban green spaces. We took individual parks as the units of analysis. The parks were sampled from Scandinavian cities, and each park was represented by a single photo. Each photo was quantified in terms of the different objective park components and also rated on psychological variables related to restoration. The ratings on the psychological variables being away, fascination, likelihood of restoration, and preference were provided by groups of people familiar with such parks. The variables most predictive of the likelihood of restoration were the percentage of ground surface covered by grass, the amount of trees and bushes visible from the given viewing point, and apparent park size. Formal mediation analyses indicated distinctive patterns of full and partial mediation of the relations between environmental components and restoration likelihood by being away and fascination. Our results provide guidance for the design of small yet restorative urban parks.  相似文献   

20.
The rapid expansion of the world’s urban population is a major driver of contemporary landscape change and ecosystem modification. Urbanisation destroys, degrades and fragments native ecosystems, replacing them with a heterogeneous matrix of urban development, parks, roads, and isolated remnant fragments of varying size and quality. This presents a major challenge for biodiversity conservation within urban areas. To make spatially explicit decisions about urban biodiversity conservation actions, urban planners and managers need to be able to separate the relative influence of landscape composition and configuration from patch and local (site)-scale variables for a range of fauna species. We address this problem using a hierarchical landscape approach for native, terrestrial reptiles and small mammals living in a fragmented semi-urban landscape of Brisbane, Australia. Generalised linear modelling and hierarchical partitioning analysis were applied to quantify the relative influence of landscape composition and configuration, patch size and shape, and local habitat composition and structure on the species’ richness of mammal and reptile assemblages. Landscape structure (composition and configuration) and local-scale habitat structure variables were found to be most important for influencing reptile and mammal assemblages, although the relative importance of specific variables differed between reptile and mammal assemblages. These findings highlight the importance of considering landscape composition and configuration in addition to local habitat elements when planning and/or managing for the conservation of native, terrestrial fauna diversity in urban landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号