首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A liquid chromatographic method using on-line sample cleanup, reverse flow analytical column loading, gradient elution, and postcolumn derivatization with iodine permits direct, rapid determination of aflatoxins B1, B2, G1, and G2, as well as ochratoxin A and zearalenone. Limits of quantitation are 5 ppb for the aflatoxins and ochratoxin A and 30 ppb for zearalenone. This procedure performs well as a multimycotoxin screen for cereal grains and oilseeds, with more limited success in complete animal feeds.  相似文献   

2.
A general method is described for determining 16 mycotoxins in mixed feeds and other food products used in the manufacture of these feedstuffs. The mycotoxins are extracted and cleaned up by extracting with solvents of different pH. Thin layer chromatography is used to separate the toxins; toxins are then quantitated by the limit detection method. The minimum detectable concentration of mycotoxins in various products is: aflatoxin B1 or G1, 4--5 micrograms/kg; ochratoxin A or ethyl ester A 140--145 micrograms/kg; citrinin 600--750 micrograms/kg; zearalenone, 410--500 micrograms/kg; sterigmatocystin, 140--145 micrograms/kg; diacetoxyscirpenol, 2400--2600 micrograms/kg; T-2 toxin, 800--950 micrograms/kg; patulin, 750--800 micrograms/kg; penitrem A 14,000--14,500 micrograms/kg; penicillic acid 3400--3650 micrograms/kg.  相似文献   

3.
Improvements have been made to a previously described multi-mycotoxin method that involved a membrane cleanup step. Using 2-dimensional thin layer chromatography and appropriate solvent systems, aflatoxin B1 can be detected in mixed feedstuffs and various ingredients at levels ranging from 0.1 to 0.3 microgram/kg. Corresponding detection limits for ochratoxin A and sterigmatocystin are 5 to 20 microgram/kg and for T-2 toxin and zearalenone 20 to 200 microgram/kg.  相似文献   

4.
A previously published method for ochratoxin A was evaluated and proved appropriate for simultaneous determination of aflatoxins, ochratoxin A, sterigmatocystin, and zearalenone, with considerable savings in time and reagent costs. The detection limits were 2, 5, 15, and 55 micrograms/kg, respectively. The recoveries and coefficients of variation obtained with artificially contaminated samples were 91-101% and 0-16% for aflatoxin B1, 98-117% and 0-17% for sterigmatocystin, and 96-107% and 0-17% for zearalenone, respectively. The coefficients of variation for naturally contaminated samples (aflatoxins in rice and ochratoxin A in beans) ranged from 0 to 8%. The method was used to survey 296 samples that included 10 cultivars of dried beans, 8 types of corn products, 3 types of cassava flour, and both polished and parboiled rice between May 1985 and June 1986 in Campinas, Brazil. Only aflatoxin B1 (9 samples, 20-52 micrograms/kg), aflatoxin G1 (4 samples, 18-31 micrograms/kg), and ochratoxin A (5 samples, 32-160 micrograms/kg) were found. The average contamination percentage was 4.7%; beans showed the highest (6.6%) and rice showed the lowest (3.3%) incidence rates. Zearalenone and sterigmatocystin were not detected. Positive samples were confirmed by chemical derivatization, corroborated by development in 3 solvent systems.  相似文献   

5.
A multimycotoxin thin layer chromatographic method is described for the analysis of corn. Aflatoxins are extracted from the samples with acetonitrile-water, and sodium bicarbonate is added to separate the acidic ochratoxin from zearalenone and aflatoxin B1. After chloroform extraction, 1N NaOH is added to separate zearalenone and aflatoxin B1. The separated mycotoxins are spotted on TLC plates, which are then examined under ultraviolet light. The following recoveries (%) were obtained for corn samples: aflatoxin B1 71, ochratoxin A 87, and zearalenone 85. The limits of detection for the respective mycotoxins were 2, 40, and 200 ppb.  相似文献   

6.
A thin layer chromatographic cleanup development with benzene-hexane (3+1) effectively removed lipids and some contaminants from mixtures of mycotoxins in corn oil, olive oil, peanut oil, soybean oil, and seed extracts. A second development in the same direction as the first, using toluene-ethyl acetate-formic acid (6+3+1) or benzene-acetic acid (9+1), separated the mycotoxins. Satisfactory separation was achieved for commercial oils spiked with sterigmatocystin, zearalenone, ochratoxins A, B, and C, and aflatoxins B1, B2, G1, and G2. This technique permits detection of 5 ppb aflatoxin B1 in corn.  相似文献   

7.
A method for the accurate one-dimensional thin layer chromatographic (TLC) determination of aflatoxins B1, B2, G1, and G2 in mixed feeds is presented. The aflatoxins are extracted from the sample with chloroform and purified by solvent partitioning. Each aflatoxin is separated from pulp interference by thin layer chromatography on aluminum-backed silica plates. The separated aflatoxins are detected by fluorescence densitometry. Average recoveries for samples spiked from 10 to 100 ppb B1 and G1 and from 3 to 30 ppb B2 and G2 are 82, 84, 95, and 94% for B1, B2, G1, and G2, respectively. The above recovery data, when analyzed for overall method repeatability, produced relative standard deviations of 6.8, 4.3, 6.9, and 7.6% for B1, B2, G1, and G2, respectively. Minimum detection level is less than 1 ppb for each aflatoxin. B1 is confirmed by trifluoroacetic acid derivative formation on a silica TLC plate.  相似文献   

8.
A simple, systematic analytical method for multiple mycotoxins was developed for detecting 14 mycotoxins; aflatoxins B1, B2, G1, and G2, sterigmatocystin, T-2 toxin, diacetoxyscirpenol, neosolaniol, fusarenon X, zearalenone, ochratoxin A, citrinin, luteoskyrin, and rugulosin. These mycotoxins were extracted with 20% H2SO4-4% KCl-acetonitrile (2 + 20 + 178), defatted with isooctane, and transferred to chloroform. The chloroform extract was cleaned up by silica gel column chromatography; the first 10 toxins were eluted with chloroform-methanol (97 + 3) and the remaining 4 toxins with benzene-acetone-acetic acid (75 + 20 + 5). Each fraction was analyzed by thin layer chromatography for the final determination. The method has been applied to polished rice, rough rice, corn, wheat, and peanuts as an analytical screening procedure. The detection limits in these commodities ranged from 10.00 to 800.0 microgram/kg, depending on the mycotoxin, but all limits were superior to those obtained for the individual mycotoxins by using other methods.  相似文献   

9.
Worldwide occurrence of mycotoxins in foods and feeds--an update   总被引:24,自引:0,他引:24  
In a review presented at the first FAO/WHO/UNEP Conference on Mycotoxins in 1977, the occurrence of aflatoxins, zearalenone, ochratoxin A, citrinin, trichothecenes, patulin, penicillic acid, and the ergot alkaloids was indicated to be significant in naturally contaminated foods and feeds. The information presented on aflatoxin contamination greatly exceeded that for all other mycotoxins combined. This study reviews the worldwide levels and occurrence of mycotoxins in various commodities since 1976. Comparatively few countries have lowered the acceptable levels for aflatoxins in susceptible commodities. However, intensified efforts are needed to establish control of aflatoxin levels in the global food supply, particularly in peanuts, tree nuts, corn, and animal feeds. Extensive deoxynivalenol (DON) contamination of grains, especially wheat, was demonstrated. Co-contamination of grains by Fusarium toxins, especially DON and nivalenol, with zearalenone to a lesser extent, was reported. However, more information on co-occurrence of Fusarium toxins in cereals should be developed. When contamination of feeds by ochratoxin A was significant, this toxin occurred in swine kidney and smoked meats in high levels. On the basis of occurrence and/or toxicity, patulin and penicillic acid contamination of foods does not appear to be of real concern. More recent developments suggest, however, that expanded monitoring studies of Alternaria toxins, moniliformin, citrinin, cyclopiazonic acid, penitrem A, and ergot alkaloids are indicated.  相似文献   

10.
A quantitative procedure widely used in European Economic Community (EEC) countries has been successfully scaled down to produce a rapid method for determination of aflatoxin B1 (and other aflatoxins) in animal feeds. Without modification, the method may be used for simultaneous ochratoxin A determination in simple feeds, but a slightly different extraction procedure is required for compound feeds. Validity of the method has been demonstrated by comparison with the full EEC procedure for aflatoxin B1 and the Nesheim method for ochratoxin A. Analyses may be completed within 2 h and there is a considerable savings in materials over the 2 reference methods. The procedure is also less hazardous because volumes of toxic extract are small, and the operator is exposed to minimum solvent vapor.  相似文献   

11.
Agricultural activities involve the use of crop preservation such as "trench-type" silo, which can sometimes be contaminated by fungi. To investigate the exposure of livestock and farm workers to fungal spores and mycotoxins, a multimycotoxin analysis method has been developed. Six mycotoxins (aflatoxin B1, citrinin, deoxynivalenol, gliotoxin, ochratoxin A, and zearalenone) were quantified by high-performance liquid chromatography coupled to mass spectrometry after solid-phase extraction. An experimental study of fungal species and mycotoxins was conducted in corn silage (Normandy, France) during 9 months of monitoring. The results indicated the recurrence of around 20 different species, with some of them being potentially toxigenic fungi such as Aspergillus fumigatus, Aspergillus parasiticus, Fusarium verticillioides, and Monascus ruber, and the detection of aflatoxin B1 (4-34 ppb), citrinin (4-25 ppb), zearalenone (23-41 ppb), and deoxynivalenol (100-213 ppb). This suggested a possible chronic exposure to low levels of mycotoxins.  相似文献   

12.
Penicillium expansum is known for its destructive rot and patulin production in apple juice. According to the literature, P. expansum can, among other compounds, produce citrinin, ochratoxin A, patulin, penitrem A, and rubratoxin B. In this study the qualitative production of metabolites was examined using TLC (260 isolates), HPLC (85 isolates), and MS (22 isolates). The results showed that none of the 260 isolates produced ochratoxin A, penitrem A, or rubratoxin B. However, chaetoglobosin A and communesin B were produced consistently by all 260 isolates. Patulin and roquefortine C were produced by 98% of the isolates. Expansolides A/B and citrinin were detected in 91 and 85% of the isolates, respectively. Chaetoglobosins and communesins were detected in naturally infected juices and potato pulp, whereas neither patulin nor citrinin was found. Because most P. expansum isolates produce patulin, citrinin, chaetoglobosins, communesins, roquefortine C, and expansolides A and B, foods contaminated with this fungus should ideally be examined for chaetoglobosin A as well as patulin.  相似文献   

13.
In this study an LC-MS/MS multitoxin method covering a total of 247 fungal and bacterial metabolites was applied to the analysis of different foods and feedstuffs from Burkina Faso and Mozambique. Overall, 63 metabolites were determined in 122 samples of mainly maize and groundnuts and a few samples of sorghum, millet, rice, wheat, soy, dried fruits, other processed foods and animal feeds. Aflatoxin B(1) was observed more frequently in maize (Burkina Faso, 50% incidence, median = 23.6 μg/kg; Mozambique, 46% incidence, median = 69.9 μg/kg) than in groundnuts (Burkina Faso, 22% incidence, median = 10.5 μg/kg; Mozambique, 14% incidence, median = 3.4 μg/kg). Fumonisin B(1) concentrations in maize were higher in Mozambique (92% incidence, median = 869 μg/kg) than in Burkina Faso (81% incidence, median = 269 μg/kg). In addition, ochratoxin A, zearalenone, deoxynivalenol, nivalenol, and other less reported mycotoxins such as citrinin, alternariol, cyclopiazonic acid, sterigmatocystin, moniliformin, beauvericin, and enniatins were detected. Up to 28 toxic fungal metabolites were quantitated in a single sample, emphasizing the great variety of mycotoxin coexposure. Most mycotoxins have not been reported before in either country.  相似文献   

14.
A high pressure liquid chromatographic (HPLC) method has been developed for determining ochratoxin A and zearalenone in cereals. The sample is extracted with phosphoric acid and chloroform. The extract is cleaned by washing on a silica gel column with cyclohexane-ethylene dichloride-ethyl ether. After eluting zearalenone with chloroform, ochratoxin A is eluted with chloroform-formic acid. Zearalenone is extracted into alkaline solution, washed with chloroform, the pH is adjusted, and the zearalenone is extracted back into chloroform. Ochratoxin A is purified by chromatography on aqueous sodium biarbonate-Celite. The mycotoxins are determined by using a liquid chromatograph with 2 columns in series packed with Spherisorb ODS 10 micrometer and 5 micrometers, respectively. Ochratoxin A is detected with a speftrophotofluorometer, coupled in series with an ultra-violet detector for estimation of zearalenone. Detection limits are 1-5 micrograms/kg for ochratoxin A and 2 micrograms/kg for zearalenone.  相似文献   

15.
Published tests have been improved and a new procedure is described for chemical confirmation of mycotoxins directly on thin layer plates. After extraction and preliminary cleanup chromatography with n-hexane or chloroform, the mycotoxins ochratoxin A, citrinin, penicillic acid, sterigmatocystin, and zearalenone were easily separated by thin layer chromatography (TLC) using toluene-ethyl acetate-90% formic acid (6 + 3 + 1) developing solvent. In chemical confirmatory methods, the developed chromatogram was exposed to vapors of pyridine, acetic anhydride, or a mixture, or the mycotoxins were over-spotted. With this treatment, ochratoxin A, citrinin, penicillic acid, and zearalenone were converted to new fluorescent compounds, and observed under 365 nm light after re-chromatography with the same developing solvent. Sterigmatocystin was confirmed chemically using TLC plates impregnated with 0.6N H2SO4 or 10% oxalic acid in methanol. The described procedures are satisfactory for confirming mycotoxins present in standards, artificially contaminated grain samples (barley, corn, oat, rye, and wheat), and extracts from both fungal cultures and naturally contaminated grain samples.  相似文献   

16.
A total of 291 hard red winter wheat samples, 286 hard red spring wheat samples, and 271 soft red winter wheat samples were analyzed for the presecne of ochratoxin and aflatoxin. Samples in all grades came from those collected during crop years 1970-1973 for grade determinations by the Agricultural Marketing Service, U.S. Department of Agriculture. Sensitivity limits of the analytical method as carried out were 1-3 ppb aflatoxin B1 and 15-30 ppb ochratoxin A. No aflatoxin was detected in any sample. Three samples of hard red winter wheat (Grades U.S. No. 4 and 5 and Sample Grade) contained ochratoxin A (trace, 35, and 25 ppb, respectively). Eight of the hard red spring wheats contained ochratoxin A (15-115 PPB); these were in Grades U.S. No. 4 and 5 and Sample Grade.  相似文献   

17.
Wheat samples (102 lots) were collected from Virginia, North Carolina, southeastern Missouri, southern Illinois, and Kentucky. Soybean samples (180 lots) were collected from Virginia, Illinois, Iowa, Minnesota, Nebraska, Alabama, Arkansas, and Texas. Samples of both commodities were analyzed for zearalenone, aflatoxin, and ochratoxin by the Eppley method. None of the 3 mycotoxins was detected in soybeans. Aflatoxins and ochratoxin A were not detected in wheat, but zearalenone was detected in 19 of 42 samples collected in Virginia. Half of the Virginia samples were collected because they were mold-damaged. Zearalenone levels ranged from 0.36 to 11.05 ppm; the identity of the zearalenone was confirmed by gas-liquid chromatography and mass spectroscopy. Gibberella zea infection (6-60%) was detected in all of the zearalenone-positive samples; 6-60% of the kernels in the samples tested contained G. zea.  相似文献   

18.
A modification of the official method for ochratoxins and a screening method for zearalenone, aflatoxin, and ochratoxin is described and expanded to include citrinin and penicillic acid. The method uses 0.5N phosphoric acidchloroform (1+10) in the initial extraction; the extract is divided and eluted from 2 columns to provide a quantitative thin layer chromatographic (TLC) method for aflatoxin and ochratoxin in corn and dried beans. Aflatoxin and zearalenone are eluted from one column and ochratoxin, penicillic acid, and citrinin from the other. Ochratoxin A recoveries are low (50%) in peanuts. Zearalenone, penicillic acid, and citrinin were qualitatively recovered from corn and beans; zearalenone and penicillic acid were recovered from peanuts but citrinin was not. Several TLC solvents were used to separate interferences.  相似文献   

19.
Patulin is a mycotoxin produced by mainly Penicillium species, for example, P. expansum, and Aspergillus species. There are several reports of patulin contamination in apple juice. Last year, the Ministry of Health, Labour and Welfare of Japan set the maximum allowable level of patulin in apple juice at 50 ppb and decided that the measurement of patulin levels in apple juice products should be conducted. To this end, a simple, accurate, and selective analytical method for the detection of patulin at levels lower than 5 ppb, the detection limit, is desired. This paper reports the development of an analytical method that employs solid-phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS). When MS measurements were conducted with the selected ion monitoring (SIM) mode, the pseudomolecular ions at m/z 153 and 156 were used to monitor patulin and (13)C(3)-labeled patulin, respectively. The detection limit (S/N = 3) and the quantification limit (S/N = 10) of patulin at injection levels into LC-MS were 12.5 and 25 pg, respectively. However, when the actual sample was applied for the analysis based on the developed method including the sample preparation, the detection limit (S/N = 3) and quantification limit (S/N = 10) were 2.5 and 5 pg in sample, respectively. The calibration curve obtained for concentrations ranging from 5 to 500 ppb showed good linearity with a coefficient of determination (r (2)) of 0.999. In addition, the recovery was >95% when an internal standard was used. The method was applied to the analysis of 76 apple juice samples from Japan, and as a result, patulin levels ranging from <1.0 to 45 ppb (detection frequency = 15/76) were detected. In this study, it was found that patulin was a greater contaminant in concentration/reduction than in "not from concentrate" apple juice.  相似文献   

20.
A laboratory model, set to simulate the in vivo conditions of the porcine gastrointestinal tract, was used to study the small intestinal absorption of several mycotoxins and the effectiveness of Standard Q/FIS (a carbon/aluminosilicate-based product) in reducing mycotoxin absorption when added to multitoxin-contaminated diets. Mycotoxins were quickly absorbed in the proximal part of the small intestine at levels of 105 and 89% for fumonisins B1 and B2, respectively, 87% for ochratoxin A, 74% for deoxynivalenol, 44% for aflatoxin B1, and 25% for zearalenone. Addition of Standard Q/FIS to the diet (up to 2%, w/w) significantly reduced mycotoxin absorption, in a dose-dependent manner, up to 88% for aflatoxin B1, 44% for zearalenone, and 29% for the fumonisins and ochratoxin. Standard Q/FIS was ineffective in reducing deoxynivalenol uptake. These findings suggest that Standard Q/FIS can be used as a multitoxin adsorbent material to prevent the individual and combined adverse effects of mycotoxins in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号