首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 5 herds in which bovine virus diarrhoea virus (BVDV) had been isolated, all animals were bled for virological and serological examination. After the herd blood test, follow up blood tests were made on calves born up to 6 months later in 1 herd, 9 months later in 1 herd and up to 12 months later in 3 herds. Persistently infected animals (PI animals) were removed and after a time period a small herd sample of 10 animals that were born after removal of the PI animals were examined for BVDV antibodies.At the herd blood test a total of 21 PI animals were detected. During the follow up period another 25 PI animals were born.Among animals in the small herd samples collected after removal of the PI animals, antibody positive animals were found in the 2 herds with the shortest follow up period. In the 3 herds with a 1 year follow up period there were no antibody carriers in the herd sample.It seems possible to prevent further spread of infection with BVDV if all animals in the herds as well as animals born during the following year are examined and PI animals removed.  相似文献   

2.
Knowing how bovine viral diarrhoea virus (BVDV) infection spreads via indirect contacts is required in order to plan large-scale eradication schemes against BVDV. In this study, susceptible calves were exposed to BVDV by an unhygienic vaccination procedure, by ambient air and from contaminated pens. Primary BVDV infection was observed in two calves vaccinated with a vaccine against Trichophyton spp that had been contaminated by smearing nasal secretion from a persistently infected (PI) calf on the rubber membrane and penetrating it twice with a hypodermic needle. Four other calves, housed in pairs in two separate housing units near a PI calf for one week--at distances of 1.5 and 10 m, respectively--became infected without having direct contact with the PI calf. Furthermore, two of the three calves housed in a pen directly after removal of a PI calf, but without the pen being cleaned and disinfected, also contracted primary BVDV infection, whereas two calves that entered such a pen four days after removal of another PI calf, did not. In herds where most animals are seronegative to BVDV, indirect airborne transmission of BVDV or contact with a contaminated housing interior may be an important factor in spreading of the virus, once a PI animal is present. However, the spreading of BVDV within herds can be stopped by identifying and removing PI animals and also by ensuring that susceptible breeding animals do not become infected during this procedure. In contrast, injectables contaminated with BVDV may prove to be a significant vector for spreading the infection, not only within an infected herd but, most importantly, also between herds. In our opinion, it is questionable whether medicine bottles, once opened and used within an infected herd, should be used in other herds. In any case, prior knowledge of a herd's BVDV status will help practising veterinarians and technicians to undertake appropriate hygienic measures.  相似文献   

3.
To control the spread of bovine viral-diarrhoea virus (BVDV), test-and-cull schemes have been used in Scandinavian countries, with success, when combined with strict control of new animal introductions into herds. In situations where BVDV reintroduction is likely to occur, it is necessary to assess precisely the expected efficiency of test-and-cull schemes. The objective of this study was to compare, by simulation, the persistence and consequences of BVDV infection in a fully susceptible dairy herd with either a test-and-cull scheme or no control action. We used a stochastic individual-based model representing the herd structure as groups of animals, herd dynamics, the contact structure within the herd and virus transmission. After an initial introduction of the virus into a fully susceptible herd, the frequency of purchases of animals that introduced the virus was simulated as high, intermediate or null. Virus persistence and epidemic size (total number of animals infected) were simulated over 10 years. The test-and-cull reduced the epidemic size and the number of days the virus was present except in herds with complete prevention of contact between groups of animals. Where no virus was reintroduced, virus persistence did not exceed 6 years with a test-and-cull scheme, whereas the virus was still present 10 years after the virus introduction in some replications with no control action (<2%). Where frequent purchases were made that led to virus introduction (6 within 10 years), with an intermediate virus transmission between groups, the probability of virus persistence 10 years after the first virus introduction fell from 31% to 8% with the test-and-cull scheme (compared to the do-nothing strategy). Within the newly infected herd, the test-and-cull scheme had no effect, on inspection, on the number of PI births, embryonic deaths or abortions over 10 years. Given this, the economic efficiency of the test-and-cull scheme should be further investigated.  相似文献   

4.
Several European countries have initiated national and regional control-and-eradication campaigns for bovine viral diarrhea virus (BVDV). Most of these campaigns do not involve the use of vaccines; in Germany, vaccination is used only in states in which it is considered necessary because of high BVDV prevalence. In European countries without organized BVDV control programs, vaccination is commonly used to control BVDV. Diagnostic test strategies are fundamental to all control-and-eradication campaigns; therefore, the purpose of this review is to describe how the available diagnostic tests are combined into test strategies in the various phases of control-and-eradication campaigns in Europe. Laboratory techniques are available for BVDV diagnosis at the individual animal level and at the herd level. These are strategically used to achieve 3 main objectives: 1) initial tests to classify herd status, 2) follow-up tests to identify individual BVDV-infected animals in infected herds, and 3) continued monitoring to confirm BVDV-free status. For each objective or phase, the validity of the diagnostic tests depends on the mode of BVDV introduction and duration of infection in test-positive herds, and on how long noninfected herds have been clear of BVDV. Therefore, the various herd-level diagnostic tools--such as antibody detection in bulk milk or in blood samples from young stock animals, or BVDV detection in bulk milk--need to be combined appropriately to obtain effective strategies at low cost. If the individual diagnostic tests are used with due consideration of the objectives of a specific phase of a BVDV control program, they are effective tools for controlling and eradicating BVDV in regions not using vaccination and where vaccination is a part of the control or eradication program.  相似文献   

5.
Wet BVDSim (a stochastic simulation model) was developed to study the dynamics of the spread of the bovine viral-diarrhoea virus (BVDV) within a dairy herd. This model took into account herd-management factors (common in several countries), which influence BVDV spread. BVDSim was designed as a discrete-entity and discrete-event simulation model. It relied on two processes defined at the individual-animal level, with interactions. The first process was a semi-Markov process and modelled the herd structure and dynamics (demography, herd management). The second process was a Markov process and modelled horizontal and vertical virus transmission. Because the horizontal transmission occurs by contacts (nose-to-nose) and indirectly, transmission varied with the separation of animals into subgroups. Vertical transmission resulted in birth of persistently infected (PI) calves. Other possible consequences of a BVDV infection during the pregnancy period were considered (pregnancy loss, immunity of calves). The outcomes of infection were modelled according to the stage of pregnancy at time of infection. BVDV pregnancy loss was followed either by culling or by a new artificial insemination depending on the modelled farmer’s decision. Consistency of the herd dynamics in the absence of any BVDV infection was verified. To explore the model behaviour, the virus spread was simulated over 10 years after the introduction of a near-calving PI heifer into a susceptible 38 cow herd. Different dynamics of the virus spread were simulated, from early clearance to persistence of the virus 10 years after its introduction. Sensitivity of the model to the uncertainty on transmission coefficient was analysed. Qualitative validation consisted in comparing the bulk-milk ELISA results over time in a sample of herds detected with a new infection with the ones derived from simulations.  相似文献   

6.
A spreadsheet model using Monte Carlo simulation was designed to evaluate the introduction of bovine viral diarrhea virus (BVDV) to cow-calf farms and the effect of different testing strategies. Risks were modeled to include imports to the cow-calf herd and stocker calves imported to adjacent pastures. The number of persistently infected (PI) animals imported and the probability of BVDV introduction were monitored for three herd sizes, four import profiles, and six testing strategies. Importing stockers and importing pregnant heifers were the biggest risks for introduction of BVDV. Testing for PI animals in stockers decreased the risk they posed, but testing pregnant heifers was not sufficient to decrease risk unless their calves were also tested. Test sensitivity was more influential than PI prevalence on the likelihood of BVDV introduction, when all imports were tested. This model predicts the risk of BVDV introduction for individual herds based on management decisions, and should prove to be a useful tool to help cow-calf producers in controlling the risk of importing BVDV to a na?ve herd.  相似文献   

7.
Rikula U  Nuotio L  Aaltonen T  Ruoho O 《Preventive veterinary medicine》2005,72(1-2):139-42; discussion 215-9
The bovine viral diarrhoea virus (BVDV) situation among dairy herds and suckler-cow herds was monitored annually from 1998 to 2004. Bulk-tank milk (BTM) samples from all dairy herds and serum samples from beef animals at slaughter were examined for BVDV antibodies using a commercial indirect ELISA test. New BTM antibody-positive herds and herds with a history of BTM antibodies, but previously untested were sampled individually and tested for evidence of BVDV. The reason for the antibody-positivity or the source of infection was investigated. The percentage of BTM antibody-positive herds ranged from 0.45% in 2000 to 0.15% in 2003. The number of herds with persistently infected (PI) animals ranged from 10 in 2001 to 0 in 2003. The most common cause for a herd to become BTM antibody-positive was the purchase of a seropositive animal or a PI animal or a dam carrying a PI fetus. The new BVD decree of 2004 will be described in brief.  相似文献   

8.
In this cross-sectional study, a stratified two-stage random sampling procedure was employed to select 221 dairy herds for bulk tank milk (BTM) sampling, and a subset of 55 dairy herds for individual blood sampling of a number of young animals (spot test), to predict presence or absence of current BVDV infection, and for data collection. The prediction was based on the high probability of seropositivity in groups of animals where PI animals are present because of the efficient spread of virus from PI animals to the surrounding group. BTM samples were collected in August 2003 (n = 192) and February 2004 (n = 195), and the 55 herds selected for spot testing and data collection were visited in December 2003. All samples were tested for presence of BVDV specific antibodies using a commercial indirect ELISA (SVANOVA Biotech AB, Uppsala, Sweden). The results demonstrated a very high level of exposure to BVDV in the region, and the proportion of herds with high antibody levels in the BTM was above 95% on both occasions. Despite this, almost two thirds of the herds had spot test results indicating absence of current infection, suggesting a high probability of self-clearance. A logistic regression model with the results from the spot tests as dependent variable was used to investigate possible herd and management factors associated with self-clearance, and suggested that this may occur regardless of herd size. Even though it is well established that the process of identification and elimination of PI animals is required within a systematic BVDV eradication programme, the present study strongly suggests that many herds may be cleared without intervention even in regions with high cattle density and high BVDV prevalence. Consequently, in any BVDV infected population (regardless of the herd-level BVDV seroprevalence), and at any given point of time, a large proportion of the herds will be free from infection due to self-clearance. Self-clearance is therefore a process that works in favour of any effort to control BVDV, which should be taken into account when planning and assessing the cost-effectiveness of a systematic control programme.  相似文献   

9.
10.
There are no pathognomonic clinical signs of infection with bovine viral diarrhoea virus (BVDV) in cattle. Diagnostic investigations therefore rely on laboratory-based detection of the virus, or of virus-induced antigens or antibodies in submitted samples. In unvaccinated dairy herds, serological testing of bulk milk is a convenient method for BVDV prevalence screening. Alternatively, serological testing of young stock may indicate if BVDV is present in a herd. In BVDV positive herds, animals persistently infected (PI) with BVDV can be identified by combined use of serological and virological tests for examination of blood samples. ELISAs have been used for rapid detection of both BVDV antibodies and antigens in blood, but should preferably be backed up by other methods such as virus neutralization, virus isolation in cell cultures or amplification of viral nucleic acid. Detailed knowledge of the performance of the diagnostic tests in use, as well as of the epidemiology of bovine virus diarrhoea is essential for identification of viremic animals in affected herds.  相似文献   

11.
Bovine viral diarrhoea virus (BVDV) and infectious bovine rhinotracheitis virus (IBRV) are important viral diseases around the world. The objective of this study was to estimate the incidence of seroconversion to BVDV and IBRV and to identify associated risk factors in dairy herds of Michoacan, Mexico. The longitudinal study included 62 herds and ran from December 2001 to November 2002. The total number of animals enrolled and completing the study were 392 and 342 animals for BVDV and 925 and 899 animals for IBRV. Animals were tested monthly for 12 months, for the presence of antibodies. Risk factors were: herd size (2–9, 10–25 and 26–55 animals), herd serostatus (seropositive or seronegative, only for IBRV), age group of the animal (6 to 12, 13 to 24, 25 to 48 and > 48 months) and animal origin (born in farm, purchased). The cumulative incidences for BVDV and IBRV were 16.4% and 3.4%, respectively; whereas, the incidence density rates for BVDV and IBRV were 15.9 and 2.9 per 1000 animal-months at risk, respectively. Seroconversion curves were statistically different for age group for BVDV and IBRV and for herd status for IBR. The relatively high incidence of seroconversion for BVDV suggests that a successful control programme should be oriented towards the identification and elimination of the PI animals and towards avoiding the introduction of PI cattle to the farm. The scenario of IBRV is favourable to implement a programme directed to reduce the number of new seropositive herds.  相似文献   

12.
OBJECTIVE: To determine whether serologic evaluation of 5 unvaccinated 6- to 12-month-old heifers is a valid method for identifying herds that contain cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV). ANIMALS: 14 dairy herds with a history of BVDV infection, with health problems consistent with BVDV infection, or at risk for contracting BVDV infection. PROCEDURE: 5 unvaccinated 6- to 12-month-old heifers were randomly selected from each herd. Neutralizing antibody titers for type-I and -II BVDV were determined. A herd was classified as likely to contain PI cattle when at least 3/5 heifers had antibody titers > or = 128. Virus isolation was performed on all cattle to identify PI cattle. Genotype of isolated viruses was determined by nested multiplex polymerase chain reaction. RESULTS: 6 of 14 herds contained PI cattle. Sensitivity and specificity of serologic evaluation of 5 heifers for identifying these herds were 66 and 100%, respectively. In herds that contained PI cattle, the predominant BVDV titer in the tested heifers corresponded to the genotype of the isolated virus. CONCLUSIONS AND CLINICAL RELEVANCE: Serologic evaluation of unvaccinated 6- to 12- month-old heifers is an accurate method for identifying herds containing PI cattle. Both type-I and -II BVDV antibody titers should be determined to prevent herd misclassification. The genotype of BVDV found in PI cattle can be predicted by the predominant neutralizing antibody titers found in tested heifers. Serologic evaluation of 5 unvaccinated heifers can be used to determine whether a herd is likely to contain PI cattle.  相似文献   

13.
The results of a survey conducted during 1993-2000 to study the spread of bovine viral diarrhoeal virus (BVDV) among Estonian cattle are presented. The BVDV infection status of a representative random sample of cattle herds housing 20 or more dairy cows was established to estimate the prevalence of herds with active BVDV infection [potentially having persistently infected (PI) cattle--suspect PI herds]. The herds investigated comprised approximately 70% of all Estonian dairy cows. The BVDV infection status was established in 315-350 herds (making the sampling fraction about 20%) during three sampling periods: 1993-95, 1997-98, 1999-2000. BVDV antibodies were detected in herd bulk milk samples and/or sera from young stock by a liquid-phase-blocking enzyme-linked immunosorbent assay developed in the Danish Veterinary Institute for Virus Research. The results of the survey demonstrate the reduction in the prevalence of herds with active BVDV infection in the studied fraction of the Estonian cattle population. During the first sampling period (1993-95) a prevalence of 46% (+/- 5%) for suspect PI herds was observed, during the second sampling period this prevalence was 16% (+/- 3%) and in the third period it was 18% (+/- 3%). As there is no control programme for BVDV in Estonia, the observed changes reflect the natural course of the infection in the study population. A possible cause for these changes is the decreased trade in breeding animals as a result of the economic difficulties present in cattle farming during the study period. The farming practices (most large herds are managed as closed herds) and the low density of cattle farms have obviously facilitated the self-clearance of herds from the BVDV infection, diminishing the new introduction of infection into the herds.  相似文献   

14.
A mathematical model for infection with bovine viral diarrhea virus (BVDV) was created comprising a series of coupled differential equations. The model architecture is a development of the traditional model framework using susceptible, infectious and removed animals (the SIR model). The model predicts 1.2% persistent infection (within the range of field estimates) and is fairly insensitive to alterations of structure or parameter values. This model allows us to draw important conclusions regarding the control of BVD, particularly with respect to the importance of persistently infected (PI) animals in maintaining BVD as an endemic entity in the herd. Herds without PI animals are likely to experience episodic reproductive losses at intervals of two to three years, unlike herds with PI animals which will not see such marked episodic manifestations of infection. Instead, these herds will experience an initial peak of disease which will settle to low-level chronic reproductive losses. The model indicates that vaccine coverage for herd immunity (to avoid episodic manifestations of disease) need be only 57% without PI animals, although 97% coverage is required when PI animals are present. Analysis of model behavior suggests, a program of detection and removal of PI animals may enhance the effectiveness of a vaccine program provided these animals are in the herd for 10 days or less. The best results would be seen with PI animals in the herd for 5 or fewer days.  相似文献   

15.
A BVD control programme based on the identification and removal of persistently infected (PI) animals is being undertaken in an area in the Rome province, where BVD outbreaks had been previously detected. It involves 174 mainly dairy herds, from which blood samples of all bovines older than 1 year are obtained through the national brucellosis and leukosis eradication programme. Samples sufficient to detect the presence of seropositive animals at a prevalence of 5% or more are initially screened for antibodies against BVD virus (BVDV) using an immunoenzymatic assay. Upon identification of seroreagents additional blood samples are tested from the 6-12-month age category not included in the initial samples. Animals are considered immunotolerant if BVDV is demonstrated twice at a minimum 30-day interval. When no seropositive animals are detected during the first serological screening the herd is declared BVD-free if a second testing, preferably carried on the same animals previously tested, confirms the seronegative status of the herd. At present 147 farms have been tested, of which 63 (42.9%) are negative with respect to antibodies against BVDV. Of the 84 remaining herds in which one or more seropositives are detected, 13 are classified as recently infected. In eight of these recently infected herds, 22 PI animals have been identified.  相似文献   

16.
Based on 2 previous surveys on the occurrence of infection with bovine virus diarrhoea virus (BVDV) in Danish and Michigan dairy herds, the prevalence and incidence of the infection were compared. The presence of certain possible risk factors for the occurrence of infection in the 2 areas were summarized and it was investigated if any of these risk factors had significant effect on the presence of animals persistently infected (PI) with BVDV in the dairy herds. Information on the cattle population density in the 2 areas was obtained from statistical yearbooks. Further information for the individual farms on age distribution, housing of animals, herd size, pasturing and purchasing policy was gathered. The prevalence of PI animals was more than 10 times higher in Denmark as compared to Michigan. In herds without PI animals, the annual incidence of seroconversion as calculated from the age specific prevalence of antibody carriers varied in most age groups between 20–25% in Denmark and between 5–10% in Michigan. All investigated risk factors except for herd size were in favour of a lower prevalence of infection in Michigan. The use of having animals on pasture and at the same time having purchased more than 40 animals within recent 31/2–4 years were significantly associated with presence of PI animals in the dairy herds (p = 0.01) when tested by the Mantel-Haenszel χ2. Using mul-tivariable logistic regression, the occurrence of PI animals was found to be significantly related to the study area (Michigan and Denmark) as well as to herd size and purchase intensity.  相似文献   

17.
AIMS: To assess the sensitivity and specificity of a bulk tank milk (BTM) antibody enzyme-linked immunosorbent assay (ELISA) to detect likely infection of a dairy herd with bovine viral diarrhoea virus (BVDV). The ELISA was subsequently used to estimate the prevalence of likely infected herds in parts of the North Island of New Zealand. METHODS: BTM samples from 724 randomly selected dairy herds in the Waikato, Bay of Plenty and Northland regions of New Zealand were tested for BVDV antibodies. From this group, 20 herds were again randomly selected from each of the quartiles of the ELISA percentage inhibition (%INH) result. From each participant herd, serum from 15 randomly selected calves aged 6-18 months and 15 cows was collected and tested using an indirect blocking ELISA for BVDV antibodies. RESULTS: Among serum results from calves from 50 herds available for analysis, 34 (68%) herds were classified as likely non-infected (0-3 seropositive among 15 calves) and 16 (32%) as likely infected (5-15 seropositive among 15 calves). Receiver-operator characteristic (ROC) analysis identified an optimal cut-off for BTM of 80%INH associated with 81% sensitivity and 91% specificity for likely herd infection. The prevalence of BVDV antibodies in cows within herds and %INH for BVDV in bulk milk were positively correlated (p<0.01). The association between bulk milk %INH and the prevalence of BVDV antibodies in calves was stronger than the same association in cows. Based on the threshold of 80%INH, the 95% confidence interval (CI) for prevalence of likely infection in the 724 herds in the Waikato, Bay of Plenty and Northland regions of New Zealand was 12-17%. Vaccination against BVDV was not significantly associated with the likely infection status of the herd based on prevalence of BVDV antibodies among calves. CONCLUSION: An ELISA test result for BVDV antibodies in BTM >/=80%INH can be used as a threshold to indicate the presence of likely infection with BVDV in dairy herds in New Zealand, with 81% sensitivity and 91% specificity.  相似文献   

18.
Data from 42,224 cattle from 694 herds collected during the brucellosis eradication campaign were used to examine the effects of calfhood strain 19 vaccination. The prevalence of infection in vaccinated herds was 1.8% compared with 9.1% in non-vaccinated herds (p< 0.005). The mean titre in the former group was lower (p< 0.001). Vaccinated herds required 3.3 herd tests to achieve a provisionally free status compared with 4.8 in non-vaccinated herds (0.001 < p < 0.005). Vaccination did not significantly reduce the number of herd tests in herds with less than 100 breeding females. In tests after the initial herd test only 0.5% reactors were found in vaccinated herds compared with 6.9% in non-vaccinated herds (p< 0.005). There were 0.9% false positive to the Rose Bengal plate test in non-vaccinated and 2.1% in vaccinated animals (p< 0.005) in non-infected herds. In infected herds this percentage was 3.0% and 4.2% respectively by (p< 0.05). In the non-infected herds there were 0.04% false positives to the complement fixation test out of 10,506 non-vaccinated cattle tested and 0.2% out of 24,734 vaccinated cattle.  相似文献   

19.
In 10 herds containing animals persistently infected (PI) with bovine viral diarrhoea virus (BVDV) and nine herds without such animals the probabilities of obtaining at least two antibody-positive animals in a test sample of three or five animals selected among animals six to 18 months old were calculated. Among herds with PI animals these probabilities, with the exception of one herd, varied between 0.725 and 0.992 when samples of three animals were tested and between 0.977 and one when samples of five animals were tested. Among herds without PI animals the probabilities varied between 0 and 0.015 when samples of three animals were tested and between 0 and 0.048 when samples of five animals were tested. Thus, based upon a few blood samples, herds with PI animals and herds without PI animals could be distinguished with a high degree of accuracy.  相似文献   

20.
The prevalence of bovine viral diarrhea virus (BVDV) in persistently infected (PI) cattle in beef breeding herds was determined using 30 herds with 4530 calves. The samples were collected by ear notches and tested for BVDV antigens using immunohistochemistry (IHC) and antigen capture enzyme-linked immunosorbent assay (ACE). Animals with initial positives on both IHC and ACE were sampled again using both tests and serums were collected for viral propagation and sequencing of a viral genomic region, 5′-untranslated region (5′-UTR) for viral subtyping. Samples were also collected from the dams of PI calves. There were 25 PI calves from 4530 samples (0.55%) and these PI calves were from 5 of the 30 herds (16.7%). Two herds had multiple PI calves and 3 herds had only 1 PI calf. Only 1 of the 25 dams with a PI calf was also PI (4.0%). The subtype of all the PI isolates was BVDV1b. Histories of the ranches indicated 23 out of 30 had herd additions of untested breeding females. Twenty-four of the 30 herds had adult cowherd vaccinations against BVDV, primarily using killed BVDV vaccines at pregnancy examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号