首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo evaluate the cardiorespiratory effects and plasma concentrations of medetomidine-midazolam-ketamine (MMK) combinations administered by intramuscular (IM) or subcutaneous (SC) injection in sable ferrets (Mustela putorius furo).Study designProspective randomized experimental study.AnimalsEighteen adult ferrets: weight median 1.19 (range 0.81–1.60) kg.MethodsAnimals were allocated to one of three groups: group IM07 received 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 7 mg kg?1 ketamine IM; group IM10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine IM; and group SC10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine SC. Following instrumentation, cardiorespiratory parameters and plasma drug concentrations were measured every 5 minutes (T5–T30) for 30 minutes Ferrets were then euthanased. Data were analysed using anova for repeated measures. p < 0.05 was considered significant.ResultsResults are mean ± SD. Induction of anaesthesia (minutes) in IM07 and IM10 [2 (1)] was significantly faster than in SC10 [5 (2)]. All groups demonstrated the following: results given as groups IM07, IM10 and SC10 respectively. Mean arterial blood pressures (mmHg) were initially high [186 (13); 174 (33) and 174 (9) at T5] but decreased steadily. Pulse rates were initially 202 (20), 213 (17) and 207 (33) beats minute?1, decreasing with time. PaO2 (mmHg) was low [54.0 (8), 47.7 (10) and 38.5 (1)] at T5, although in groups IM07 and IM10 it increased over time. Plasma concentrations of all drugs were highest at T5 (36, 794 and 8264 nmol L?1 for medetomidine, midazolam and ketamine, respectively) and decreased thereafter: for both midazolam and ketamine, concentrations in IM07 and IM10 were higher than SC10.Conclusions and clinical relevanceMMK combinations containing either 7 or 10 mg kg?1 ketamine and given IM are suitable combinations for anaesthetising ferrets, although the observed degree of hypoxaemia indicates that oxygen administration is vital.  相似文献   

2.
The optimal dose of medetomidine-ketamine-buprenorphine was determined in 25 Cape ground squirrels (Xerus inauris) undergoing surgical implantation of a temperature logger into the abdominal cavity. At the end of anaesthesia, the squirrels were given atipamezole intramuscularly to reverse the effects of medetomidine. The mean dose of medetomidine was 67.6 +/- 9.2microg/kg, ketamine 13.6 +/- 1.9 mg/kg and buprenorphine 0.5 +/- 0.06 microg/kg. Induction time was 3.1 +/- 1.4 min. This produced surgical anaesthesia for 21 +/- 4.2 min. Atipamezole 232 +/- 92 microg/kg produced a rapid recovery. Squirrels were sternally recumbent in 3.5 +/- 2.2 min.  相似文献   

3.
4.
A low dose of midazolam-medetomidine-ketamine (MMK) combination was evaluated in three increasing dosages. Each of the 18 cats was randomly allocated for several times to one of four groups. Five minutes after premedication with intramuscular (IM) 0.04 mg/kg atropine, group A (n = 43), B (n = 40) and C (n = 28) all were anaesthetized with 0.5 mg/kg midazolam, combined with 10, 20 or 30 microg/kg medetomidine, and 1.0, 2.0 or 3.0 mg/kg ketamine, respectively, IM in one syringe. Group D (n = 11) received the established combination of 50 microg/kg medetomidine and 10.0 mg/kg ketamine for comparison. Because this study was in cooperation with a project on dental prophylaxis, cats had to be immobilized for approximately 1 h. Therefore, anaesthesia was prolonged with propofol to effect, if necessary. Duration of MMK anaesthesia was between 30 +/- 15, 45 +/- 19 and 68 +/- 28 min in groups A, B and C respectively. A significant decrease of respiratory rate was observed with increasing dosage, but venous carbon dioxide (pCO(2)) and pH values in combination with arterial oxygen saturation (SpO(2)) values were not alarming. The diastolic blood pressure particularly showed an increase. MMK combination A showed the best cardiovascular results, but it cannot be recommended due to disadvantages like a long induction time sometimes accompanied by excitations and the short duration of surgical immobilization. Dosage C in contrast had fewer side effects but less favourable cardiovascular results and a longer recovery period. However, either dosage B or C was suitable as a repeatable IM immobilization method for non-invasive procedures in healthy cats.  相似文献   

5.
A dose range was determined for anaesthesia of 20 recently boma-captured roan antelope (Hippotragus equinus) with the synthetic opiate A3080 combined with medetomidine and ketamine. A dose of 10-30 micro/kg A3080 (x = 20+/-8 microg/kg) combined with 5-21 microg/kg medetomidine (x = 13+/-7 microg/kg) plus 0.29-1.11 mg/kg ketamine (x = 0.71+/-0.24 mg/kg) was found to be safe and effective for the field conditions in this study. The anaesthesia produced by this drug combination was predictable and characterised by a short induction time, good muscle relaxation, and acceptable physiological parameters for anaesthesia periods ranging from 49-103 min (x = 64+/-19 min). The wide range (3-4-fold) of doses with acceptable results is also an indication that this drug combination has a wide margin of safety in roan antelope, making it desirable for field use. When 2 dose levels (2-3-fold dif ference) were retrospectively evaluated, no statistical difference was found in induction times, and no observable clinical differences in the anaesthetic episodes were seen. Based on this study, the recommended dose range in roan antelope for this combination is 10-13 microg/kg A3080, 5-6 microg/kg medetomidine and 0.3-0.6 mg/kg ketamine. The anaesthesia produced by this combination was rapidly and completely reversed by i.m. or i.v. injections of naltrexone at 30 times the A3080 dose (x = 0.60+/-0.25 mg/kg) and atipamezole at 3 times the medetomidine dose (x = 38+/-20 microg/kg). No residual effects from ketamine were noted following reversal of A3080 and medetomidine. No mortality was associated with this protocol.  相似文献   

6.
We studied four different drug regimes for anaesthetic management in chinchillas and evaluated and compared their cardiovascular and respiratory effects. In this randomized, cross-over experimental study, seven adult chinchillas, five females, two males [515 +/- 70 (SD) g] were randomly assigned to one of the following groups: group 1 [midazolam, medetomidine and fentanyl (MMF), flumazenil, atipamezole and naloxone (FAN); MMF-FAN] received 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m., and for reversal 0.1 mg/kg flumazenil, 0.5 mg/kg atipamezole and 0.05 mg/kg naloxone s.c. after 45 min; group 2 (MMF) 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m.; group 3 [xylazine/ketamine (X/K)] 2.0 mg/kg xylazine and 40.0 mg/kg ketamine i.m.; and group 4 [medetomidine/ketamine (M/K)] 0.06 mg/kg medetomidine and 5.0 mg/kg ketamine i.m. Reflexes were judged to determine anaesthetic stages and planes. Anaesthesia with X/K and M/K was associated with a prolonged surgical tolerance and recovery period. By reversing MMF, recovery period was significantly shortened (5 +/- 1.3 min versus 40 +/- 10.3 min in MMF without FAN, 73 +/- 15.0 min in X/K, and 31 +/- 8.5 min in M/K). Without reversal, MMF produced anaesthesia lasting 109 +/- 16.3 min. All combinations decreased respiratory and heart rate but compared with X/K and M/K, respiratory and cardiovascular complications were less in the MMF groups. Focussing on the clinical relevance of the tested combinations, completely reversible anaesthesia showed two major advantages: anaesthesia can be antagonized in case of emergency and routinely shortens recovery. In small animals particularly these advantages lead to less complications and discomfort and thus often can be lifesaving. As all analgesic components (medetomidine and fentanyl) are reversed, postoperative analgesia should be provided before reversal of anaesthesia.  相似文献   

7.
To develop an alternative anaesthetic regimen for cats with cardiomyopathy, the cardiopulmonary effects of three different premedication-induction protocols, followed by one hour maintenance with isoflurane in oxygen: air were evaluated in six cats. Group I: acepromazine (10 microg/kg) + buprenorphine (10 microg/kg) IM, etomidate (1-2 mg/kg) IV induction. Group II: midazolam (1 mg/kg) + ketamine (10 mg/kg) IM induction. Group III: medetomidine (1.5 mg/m2 body surface) IM, propofol (1-2 mg/kg) IV induction. Heart rate, arterial blood pressure, arterial blood gases, respiration rate, and temperature were recorded for the duration of the experiment. In group I the sedative effect after premedication was limited. In the other groups the level of sedation was sufficient. In all groups premedication resulted in a reduced blood pressure which decreased further immediately following induction. The reduction in mean arterial pressure (MAP) reached statistical significance in group I (142+/-22 to 81+/-14 mmHg) and group II (153+/-28 to 98+/-20 mmHg) but not in group III (165+/-24 to 134+/-29 mmHg). Despite the decrease in blood pressure, MAP was judged to have remained within an acceptable range in all groups. During maintenance of anaesthesia, heart rate decreased significantly in group III (from 165+/-24 to 125+/-10 b.p.m. at t=80 min). During anaesthesia the PCO2 and PO2 values increased significantly in all groups. On the basis of the results, the combination acepromazine-buprenorphine is preferred because heart rate, MAP, and respiration are acceptable, it has a limited sedative effect but recovery is smooth.  相似文献   

8.
OBJECTIVE: To study the effects of ketamine and two doses of medetomidine administered by two routes of injection in a genetically diverse population of rabbits. STUDY DESIGN: Prospective, randomized, clinical trial. ANIMALS: One hundred and five domestic rabbits of mixed breed, sex and age. MATERIALS AND METHODS: Rabbits undergoing orchiectomy or ovariohysterectomy received ketamine (15 mg kg(-1)) combined with medetomidine at 0.25 or 0.5 mg kg(-1), by subcutaneous (SC) or intramuscular (IM) injection. Anaesthesia was supplemented with 1.5-2% isoflurane when signs of regular jaw movements and/or slight limb twitching indicated inadequate anaesthesia. Heart and respiratory rate, blood oxygen saturation, end-tidal carbon dioxide concentration and rectal temperature were monitored at several time points. Duration of surgical anaesthesia and anaesthesia time were measured. At completion of surgery, atipamezole (1.0 or 0.5 mg kg(-1), IM or SC) was administered. STATISTICAL ANALYSES: MANOVA was used to compare variables over time between males and females, anaesthetic doses and routes of drug administration. RESULTS: All reflexes were lost significantly more rapidly after IM drug administration (p < 0.05). The times (in minutes) from drug injection to loss of reflexes for the respective groups were: righting reflex: 6.3 (15.0 + 0.25, SC), 5.5 (15.0 + 0.5, SC), 2.9 (15.0 + 0.25, IM) and 2.3 (15.0 + 0.5, IM); ear pinch: 9.2, 8.5, 4.8, 3.6; pedal withdrawal: 12.8, 10.4, 6.6, 5.2. Heart and respiratory rates during surgery did not differ between groups, however the highest end-tidal CO(2) concentration during surgery was significantly affected by dose, with the highest concentration occurring in group 15.0 + 0.5 IM. The number of animals requiring isoflurane tended to decrease with increasing dose of anaesthetic and significantly more females required supplementation than males (p < 0.05). Recovery from anaesthesia (return of righting reflex) was not significantly different between dose groups (p > 0.1) but was more rapid in animals given IM atipamezole (13.6 +/- 13 versus 21 +/- 17, p = 0.037). No anaesthetic-related mortality occurred and all but three animals recovered uneventfully. Five animals were killed whilst under anaesthesia because of unrelated disease. CONCLUSION AND CLINICAL RELEVANCE: Ketamine-medetomidine combinations reliably produced surgical anaesthesia in domestic rabbits that could easily be deepened for brief periods with low concentrations of isoflurane. Subcutaneous administration was better tolerated, but the speed of induction was slower compared with IM injection. Atipamezole was an effective antagonist and produced most rapid effects when administered IM.  相似文献   

9.
An effective anaesthesia protocol was developed for adult free-ranging gemsbok (Oryx gazella) using a combination of A3080, medetomidine and ketamine. A short induction time; good muscle relaxation, adequate oxygenation and stable heart rate and respiration rate characterised this anaesthetic regime. Equal doses of A3080 and medetomidine (22-45 microg/kg) plus 200 mg of ketamine were administered to each animal. The anaesthesia was rapidly and completely reversed by intramuscular naltrexone at a dose of X = 0.9 +/- 0.2 mg/kg and atipamezole at a dose X +/- 90 +/- 20 microg/kg. No mortality or morbidity occurred with this protocol.  相似文献   

10.
A combination of medetomidine hydrochloride (medetomidine) and ketamine hydrochloride (ketamine) was evaluated in 16 boma-confined and 19 free-ranging impalas (Aepyceros melampus) to develop a non-opiate immobilisation protocol. In free-ranging impala a dose of 220 +/- 34 microg/kg medetomidine and 4.4 +/- 0.7 mg/kg ketamine combined with 7500 IU of hyaluronidase induced recumbency within 4.5 +/- 1.5 min, with good muscle relaxation, a stable heart rate and blood pH. PaCO2 was maintained within acceptable ranges. The animals were hypoxic with reduced oxygen saturation and low PaO2 in the presence of an elevated respiration rate, therefore methods for respiratory support are indicated. The depth of sedation was adequate for minor manipulations but additional anaesthesia is indicated for painful manipulations. Immobilisation was reversed by 467 +/- 108 microg/kg atipamezole hydrochloride (atipamezole) intramuscularly, but re-sedation was observed several hours later, possibly due to a low atipamezole:medetomidine ratio of 2:1. Therefore, this immobilisation and reversal protocol would subject impalas to possible predation or conspecific aggression following reversal if they were released into the wild. If the protocol is used on free-ranging impala, an atipamezole:medetomidine ratio of 5:1 should probably be used to prevent re-sedation.  相似文献   

11.
The quality and duration of anaesthesia, cardiorespiratory effects and recovery characteristics of a morphine, medetomidine, ketamine (MMK) drug combination were determined in cats. Six healthy, adult female cats were administered 0.2 mg/kg morphine sulphate, 60 microg/kg medetomidine hydrochloride, and 5 mg/kg ketamine hydrochloride intramuscularly. Atipamezole was administered intramuscularly at 120 min after MMK administration. Time to lateral recumbency, intubation, extubation and sternal recumbency were recorded. Cardiorespiratory variables and response to a noxious stimulus were recorded before and at 3 min and 10 min increments after drug administration until sternal recumbency. The time to lateral recumbency and intubation were 1.9+/-1.2 and 4.3+/-1.2 min, respectively. Body temperature and haemoglobin saturation with oxygen remained unchanged compared to baseline values throughout anaesthesia. Respiratory rate, tidal volume, minute volume, heart rate, and blood pressure were significantly decreased during anaesthesia compared to baseline values. One cat met criteria for hypotension (systolic blood pressure <90 mmHg). End tidal carbon dioxide increased during anaesthesia compared to baseline values. All but one cat remained non-responsive to noxious stimuli from 3 to 120 min. Time to extubation and sternal recumbency following atipamezole were 2.9+/-1.1 and 4.7+/-1.0 min, respectively. MMK drug combination produced excellent short-term anaesthesia and analgesia with minimal cardiopulmonary depression. Anaesthesia lasted for at least 120 min in all but one cat and was effectively reversed by atipamezole.  相似文献   

12.
A controlled trial was conducted to assess suitability of combinations of medetomidine and ketamine for the ovariectomy of cats, to investigate the possible side effects, and to compare medetomidine/ketamine with a combination of xylazine and ketamine. Three hundred and thirty-seven cats were submitted to surgery; 100 were anaesthetised with 80 micrograms/kg medetomidine and 5 mg/kg ketamine, 137 with 80 micrograms/kg medetomidine and 7.5 mg/kg ketamine, and 100 were anaesthetised with 1 mg/kg xylazine and 10 mg/kg ketamine. The combinations were injected intramuscularly in the same syringe. The anaesthesia provided by the medetomidine/ketamine combinations was characterised by good muscle relaxation, good analgesia and minimal side effects. The only difference between the two doses of ketamine was the length of the period of anaesthesia. The advantages of the medetomidine/ketamine combination in comparison with xylazine/ketamine were the need for a lower dose of ketamine, a longer duration of action and better analgesia. Similar side effects were observed with both medetomidine/ketamine and xylazine/ketamine combinations.  相似文献   

13.
OBJECTIVE: To compare the quality of surgical anaesthesia and cardiorespiratory effects of three intramuscular (IM) anaesthetic combinations in rabbits. STUDY DESIGN: Prospective randomized cross-over experimental study. ANIMALS: Nineteen adult female chinchilla mixed-bred rabbits weighing 3.9 +/- 0.8 kg. METHODS: Rabbits were given one of three IM anaesthetic combinations: 0.25 mg kg(-1) medetomidine and 35.0 mg kg(-1) ketamine (M-K), 0.20 mg kg(-1) medetomidine and 0.02 mg kg(-1) fentanyl and 1.0 mg kg(-1) midazolam (M-F-Mz) and 4.0 mg kg(-1) xylazine and 50 mg kg(-1) ketamine (X-K). The effects of anaesthesia on nociceptive reflexes, circulatory and respiratory function were recorded. Statistical analyses involved repeated measures anova with paired Student's t-test applied post hoc. P-values <0.05 were considered as significant. RESULTS: Reflex loss was most rapid and complete in M-K recipients, whereas animals receiving M-F-Mz showed the longest tolerance of endotracheal intubation (78.1 +/- 36.5 minutes). Loss of righting reflex was significantly most rapid (p < 0.05) in the X-K group (114.7 +/- 24.0 minutes). Surgical anaesthesia was achieved in 16 of 19 animals receiving M-K, in 14 animals receiving M-F-Mz, and in seven animals with X-K, but only for a short period (7.1 +/- 11.6 minutes). This was significantly (p < 0.001) shorter than with M-K (38.7 +/- 30.0 minutes) and M-F-Mz (31.6 +/- 26.6 minutes). Heart rates were greatest in X-K recipients; lowest HR were seen in animals receiving M-F-Mz. Mean arterial blood pressure was significantly higher (about 88 mmHg) during the first hour in the M-K group. During recovery, the greatest hypotension was encountered in the X-K group; minimum values were 53 +/- 12 mmHg. Six of 19 animals in the M-F-Mz group showed a short period of apnoea (30 seconds) immediately after endotracheal intubation. Respiratory frequency was significantly lower in this group (p < 0.001). Highest values for arterial carbon dioxide partial pressures (PaCO(2)) (6.90 +/- 0.87 kPa; 52.5 +/- 6.5 mmHg) occurred after induction of anaesthesia in group M-F-Mz animals. There was a marked decrease in PaO(2) in all three groups (the minimum value 5.28 +/- 0.65 kPa [39.7 +/- 4.9 mmHg] was observed with M-K immediately after injection). Arterial PO(2) was between 26.0 and 43.0 kPa (196 and 324 mmHg) in all groups during O(2) delivery and decreased - but not <7.98 kPa - on its withdrawal. Immediately after drug injection, pH(a) values fell in all groups, with lowest values after 30 minutes (7.23 +/- 0.03 with M-K, 7.28 +/- 0.05 with M-F-Mz, and 7.36 +/- 0.04 with X-K). The X-K animals showed significantly (p < 0.001) higher pH values than medetomidine recipients. During 1 hour of anaesthesia pH values in the medetomidine groups remained below those of the X-K group. CONCLUSIONS: Surgical anaesthesia was induced in most animals receiving medetomidine-based combinations. Arterial blood pressure was maintained at baseline values for about 1 hour after M-K. Transient apnoea occurred with M-F-Mz and mandates respiratory function monitoring. Oxygen enrichment of inspired gases is necessary with all three combinations. Endotracheal intubation is essential in rabbits receiving M-F-Mz. CLINICAL RELEVANCE: The quality of surgical anaesthesia was greatest with M-K. All combinations allowed recoveries of similar duration. It is theoretically possible to antagonize each component of the M-F-Mz combination.  相似文献   

14.
A combination of thiafentanil (A3080), medetomidine hydrochloride (MED) and ketamine hydrochloride (KET) was evaluated in 19 boma-habituated (12 female and 7 males) and 9 free-ranging nyala (7 male and 2 females) (Tragelaphus angasi) to develop a safe and reliable anaesthesia protocol. Wide dosages were used safely during this study with ranges for A3080 of 45 +/- 8 microg/kg with MED of 69 +/- 19 microg/kg and KET of 3.7 +/- 1.0 mg/kg (200 mg/ animal). The dosages developed on boma-habituated nyala proved to be equally effective in 9 adult free-ranging nyala (7 males and 2 females). The optimum dosage for nyala was a combination of A3080 (40-50 microg/kg), MED (60-80 microg/kg) plus 200 mg of KET/animal. The anaesthesia was characterised by a short induction, good muscle relaxation and mild hypoxaemia during monitoring the anaesthesia was rapidly and completely reversed by naltrexone hydrochloride (30 mg/mg of A3080) and atipamezole hydrochloride (5 mg/mg of MED) given intramuscularly. There was no mortality or morbidity associated with this protocol.  相似文献   

15.
Two different methods, administered both subcutaneously and intravenously, to reverse intramuscular midazolam-medetomidine-ketamine, are evaluated. Eighteen cats were anaesthetized twice each 5 min after premedication with atropine 0.04 mg/kg using midazolam 0.5 mg/kg, medetomidine 0.02 mg/kg and ketamine 2.0 mg/kg intramuscularly in one syringe. Because this study was conducted in co-operation with a dental prophylaxis project, cats had to be immobilized for approximately 1 h. Therefore, anaesthesia was prolonged with propofol to effect, if necessary. After 68+/-11 min on average, immobilization was partially reversed by either atipamezole 0.05 mg/kg subcutaneously (group A/SC, n=7) or intravenously (group A/IV, n=10), or by atipamezole 0.05 mg/kg and flumazenil 0.05 mg/kg subcutaneously (group AF/SC, n=10) or intravenously (group AF/IV, n=9), respectively. These four groups were additionally compared with a non-reversed group. Recovery time and total time of immobilization (until cats regained a standing position) were not significantly shortened using the antagonists. However, unconsciousness and sedation (expressed through parameters like the time taken to head lifting, crawling, sitting and the return of righting reflex) were significantly shortened by the antagonists, especially if administered intravenously. Abnormal behaviour, such as vocalization, licking, hyperaesthesia, restlessness or salivation, was observed in all groups. However, excitation and hyperaesthesia were not observed in group AF/IV, whereas in this group only intensified salivation occurred. The addition of flumazenil showed no significant difference to atipamezole alone, but subcutaneous administration of atipamezole alone was not sufficient in the dosage used to show an advantage compared to non-reversed cats.  相似文献   

16.
A dose of supplementary ketamine was used to evaluate the anaesthetic sparing effect of adding local anaesthesia to general anaesthesia in cats undergoing ovariectomy. Fifty-six healthy cats were randomly assigned to receive lidocaine 2% (group L) as skin infiltration (1 mg kg(-1)), topical application (splash block) on both the ovaries (2 mg kg(-1), each) and on abdominal muscular layers (1 mg kg(-1)), or an equal volume of NaCl 0.9% at the same sites (group S). Anaesthesia was induced with a mixture of 20 microg kg(-1) medetomidine and 5 mg kg(-1) ketamine administered intramuscularly. Rectal temperature, ECG, heart rate and respiratory rate were measured continuously. Ketamine supplemental boli (1 mg kg(-1), intravenously) were administered in response to movements during surgery. Local lidocaine significantly reduced the need for supplementary ketamine. All animals were returned to their owners without complications. With this protocol, local anaesthetics reduced the need for injectable anaesthetic during feline ovariectomy.  相似文献   

17.
Ten nesting leatherback sea turtles on Trinidad were anaesthetised for electroretinogram (ERG) measurements, using ketamine and medetomidine, reversed with atipamezole. They weighed 242 to 324 kg and were given initial doses of 3 to 8 mg/kg ketamine and 30 to 80 microg/kg medetomidine administered into an external jugular vein; six of the turtles received supplementary doses of 2.6 to 3.9 mg/kg ketamine combined with 0 to 39 microg/kg medetomidine. The lower doses were used initially to ensure against overdosage and reduce the chances of residual effects after the turtles returned to the water, but successful ergs called for step-wise dose increases to the required level of anaesthesia. Respiratory rate, heart rate, electrocardiogram, cloacal temperature, and venous blood gases were monitored, and blood was collected for plasma biochemistry. At the end of the erg procedure, atipamezole was administered at 150 to 420 microg/kg (five times the dose of medetomidine), half intramuscularly and half intravascularly. The turtles were monitored and prevented from re-entering the water until their behaviour was normal. No apparent mortalities or serious anaesthetic complications occurred. The observed within-season return nesting rate of the anaesthetised turtles was comparable with that of unanaesthetised turtles.  相似文献   

18.
The efficacies and ease of administration of four oral preanesthetic sedation protocols were compared in 18 adult, male rhesus macaques (Macaca mulatta) to achieve heavy sedation and alleviate anxiety, agitation, and potential trauma associated with remote anesthesia induction. The macaques, with average age and weight of 10 yr and 12.5 kg, respectively, were randomly assigned to one of four groups. Group 1 was given 10 mg/kg tiletaminezolazepam and 0.05 mg/kg medetomidine p.o., group 2 was given 1 mg/kg midazolam and 20 mg/kg ketamine p.o., group 3 was given 20 mg/kg ketamine and 0.05 mg/kg medetomidine p.o., and group 4 was given 3 mg/kg midazolam p.o. All protocols produced effects ranging from mild sedation to no response to noxious stimuli, depending on the success of administration. The mean interval to peak effect was 27-43 min in all groups. Ketamine and medetomidine provided significantly better sedation than midazolam alone; there were no other statistically significant differences among the four protocols. Oral tiletamine-zolazepam and medetomidine provided smooth, mild to moderate sedation with few side effects. The midazolam and ketamine combination resulted in severe ataxia. Orally administered ketamine and medetomidine provided smooth, easily reversible, heavy sedation leading to no response to noxious stimuli. Midazolam alone provided only mild sedation. No statistically significant differences in palatability of the four protocols were identified. Orally administered ketamine and medetomidine (group 3) provided the most consistently heavy sedation. A compounding pharmacy may be able to increase the palatability and level of acceptance of these combinations. Alternatively, oral midazolam syrup is well accepted by some animals and provides a mild sedative and calming effect, which may decrease stress associated with the induction of anesthesia via darting, pole syringes, etc.  相似文献   

19.
The objective of this paper was to evaluate the effect of constant rate infusion of medetomidine on the anaesthetic requirements of desflurane in dogs. For this, six healthy dogs were studied. Measurements for baseline were taken in the awake, unsedated dogs, then each dog received intravenously (i.v.) three anaesthetic protocols: M (no medetomidine infusion), M0.5 (infusion of medetomidine at 0.5 microg/kg/h, i.v.) or M1 (infusion of medetomidine at 1 microg/kg/h, i.v.). All dogs were sedated with medetomidine (2 microg/kg, i.v.) and measurements repeated in 10 min. Induction of anaesthesia was delivered with propofol (3 mg/kg, i.v.) and maintained with desflurane for 90 min to achieve a defined surgical plane of anaesthesia in all cases. After tracheal intubation infusion of medetomidine was initiated and maintained until the end of anaesthesia. Cardiovascular, respiratory, arterial pH (pHa) and arterial blood gas tensions (PaO(2), PaCO(2)) variables were measured during the procedure. End tidal desflurane concentration (EtDES) was recorded throughout anaesthesia. Time to extubation, time to sternal recumbency and time to standing were also noted. Heart rate and respiratory rate were significantly decreased during sedation in all protocols compared to baseline values. Mean heart rate, mean arterial pressure, systolic arterial pressure, diastolic arterial pressure, respiratory rate, tidal volume, arterial oxygen saturation, end-tidal CO(2), pHa, PaO(2), and PaCO(2) during anaesthesia were similar for all protocols. EtDES for M (8.6 +/- 0.8%) was statistically higher than for M0.5 (7.6 +/- 0.5%) and M1 (7.3 +/- 0.7%) protocols. Infusion of medetomidine reduces desflurane concentration required to maintain anaesthesia in dogs.  相似文献   

20.
Objective To compare the characteristics of anaesthesia induced with ketamine/medetomidine administered by the subcutaneous and intramuscular routes and to assess the effects of the addition of butorphanol to this combination. Study design Prospective randomised study. Animals Six female New Zealand White rabbits. Methods Rabbits were given one of four combinations of ketamine and medetomidine (K/M) either subcutaneously (SC) or intramuscularly (IM) on four successive occasions with a 7‐day interval between treatments. The dose combinations were; 15/0.25 mg kg?1 SC; 15/0.25 mg kg?1 IM; 15/0.5 mg kg?1 SC, and 15/0.25 mg kg?1 together with 0.4 mg kg?1 butorphanol (K/M/B) SC. The effects of anaesthesia on arterial blood gas values and cardiovascular variables were recorded at predetermined time points. Toe and ear pinch reflexes were judged to determine the duration of surgical anaesthesia. Loss of the righting reflex was used to measure the duration of sleep time. Analyses used repeated measures analysis of variance. Results All groups lost the righting reflex and ear pinch response. Three animals in the groups that received K/M alone lost their toe pinch reflex, whereas four lost this reflex when given K/M/B. Time of onset of loss of the righting, toe and ear pinch reflexes did not differ significantly among the groups. The higher dose combination of medetomidine with ketamine and the combination of K/M/B produced a greater duration of loss of the ear pinch response than the lower dose of K/M administered by either route. No significant differences were found among the groups in the duration of loss of the toe pinch reflex. All animals developed a moderate bradycardia (mean heart rate <166 beats minute?1) and moderate hypoxaemia (mean PaO2 < 6.0 kPa). Animals given butorphanol showed the greatest reduction in respiratory rate (31 ± 13 breaths minute?1, p < 0.05) but this was not reflected in any significant differences in arterial PCO2, PO2 or pH among the groups. Conclusions Administration of K/M by the SC route produced equivalent effects in comparison to intramuscular administration. The addition of butorphanol increased the duration of anaesthesia, but produced a slight increase in the degree of respiratory depression. All dose rates resulted in hypoxaemia so oxygen should be administered when these combinations are used in rabbits. Clinical relevance Subcutaneous administration is both technically simpler and may cause less discomfort to the animal than IM injection, and so is preferred. The combination of K/M with butorphanol has relatively minor effects on the depth and duration of anaesthesia, so offers little advantage to the use of K/M alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号