首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用热处理温度为140、160、180℃,热处理时间为20、25、30 min的饱和蒸汽热对毛竹材进行高温改性处理,分析了不同热处理工艺对毛竹材化学成分、结晶度和力学性能的影响,对比了不同热处理工艺条件下毛竹材的防霉效果。结果表明:1)热处理温度在140℃时,竹材中化学成分变化不大。当热处理温度在160℃以上时,竹材中半纤维素和纤维素的含量随热处理时间增加而减少,木质素相对含量呈上升趋势;2)热处理温度和时间都对竹材样品的结晶度有积极的影响;3)热处理温度在140℃时,竹材的弹性模量和静曲强度均比未处理时增加。随着热处理温度的升高和时间的延长,竹材的弹性模量和静曲强度下降,力学性能呈下降趋势。在180℃处理30 min后,处理材的弹性模量和静曲强度较未处理材降低23.15%和19.00%;4)饱和蒸汽热处理竹材的防霉能力与未处理材相比均有提高;热处理温度对竹材的防霉性能的影响大于热处理时间;经180℃处理30 min的竹材其霉变速度最慢,防霉效果最好。  相似文献   

2.
人工林杉木木材力学性质对高温热处理条件变化的响应   总被引:6,自引:0,他引:6  
以人工林杉木为试材,分别用空气和菜子油为介质,在温度为180,200和220 ℃对其分别热处理1,3和5 h,研究试材的抗弯强度(MOR)、抗弯弹性模量(MOE)、顺纹抗压强度、表面硬度对高温热处理条件变化的响应,同时对处理材的主要化学成分进行分析,用扫描电镜对处理材横切面微观结构进行观察.结果表明:人工林杉木试材的4种主要力学性质对不同条件热处理的响应程度不同.无论是空气热处理还是油热处理,试材的MOR,MOE,顺纹抗压强度与对照比有不同程度的降低,且随处理温度升高、时间延长,下降幅度增大,相比于时间,温度的影响更显著;180 ℃热处理1,3和5 h时,试材的MOR,MOE与对照比未发生明显变化(降幅在3%以内),而顺纹抗压强度则明显低于对照,两介质中降低幅度分别在3.29%~9.58%和3.89%~7.18%;200 ℃以上处理时,不同时间处理的3种主要力学性质不仅显著或极显著低于对照,且各性质问的差异也达显著或极显著水平;对硬度的测试结果表明:180 ℃热处理时,试件的径面硬度和弦面硬度均随时间的延长而增大;200 ℃热处理3 h时,试件的硬度达最大,与对照差异达显著水平;随后热处理试件的硬度开始降低,220 ℃热处理5 h后试件的硬度又明显低于对照.在隔氧的油介质中进行热处理,4种主要力学性质的变化程度低于空气介质处理材,当温度高于200 ℃时,两介质处理间的差异达显著水平.而热处理过程中木材主要化学组成与横切面微观结构变化的差异,反映了4种主要力学性质对不同条件热处理时表现出的响应差异.  相似文献   

3.
以低龄桉树(Eucalyptus spp.)为试验材料,通过蒸汽热处理,研究热处理条件变化对木材密度的影响。结果表明,经高温热处理后,桉树木材全干密度、气干密度均有不同程度降低,基本密度有增大趋势。升温速度对处理材3种木材密度有显著或极显著影响,处理温度对气干密度、基本密度有显著影响,恒温时间对3种木材密度影响不显著。3种因素对木材密度影响程度为升温速度处理温度恒温时间。对低龄桉树木材进行热处理,要准确把握升温速度和处理温度,才能有效控制热处理材密度降低。  相似文献   

4.
基于FT-IR和XPS的热处理白蜡木材色变化机理   总被引:1,自引:0,他引:1  
以白蜡木(Fraxinus americana)为试材,在常压过热蒸汽条件下进行热处理,对热处理材和对照材的明度(L*)和色度(a*,b*)指标进行比较,借助傅里叶红外光谱仪(FT-IR)和X射线光电子能谱仪(XPS)对试材细胞壁化学组分的主要基团和元素变化进行分析,以探索热处理对木材材色的调节机理。结果表明:随着处理温度的增加,热处理材和对照材的总体色差不断增大,色差值与木材内部C和O元素的浓度比高度相关,表明热处理材的材色能较为准确地指示木材内部化学组分的变化。热处理材的明度指标随热处理温度的升高呈阶梯式下降,明度值的变化与木材中羧基的浓度线性相关,表明半纤维素是影响热处理材明度的主要因素。热处理材的色度指标变化规律没有明度指标显著,随着处理温度的升高,a*值先增加后降低,试材的b*值随着处理温度的升高总体上呈下降趋势。热处理使木素中的羰基等发色基团数量发生变化,是使热处理材的色度指标发生变化的一个主要原因。  相似文献   

5.
采用不同热处理温度和时间对新西兰辐射松蓝变材和未蓝变材进行高温热处理,分析热处理温度、时间对试材颜色的影响,结果表明:随着处理温度的升高和处理时间的增长,试材的明度(L~*)逐渐降低,红绿色品指数(a~*)逐渐增大,黄蓝色品指数(b~*)逐渐减小(蓝变材b~*逐渐增大),总体综合色差(△E)增大。蓝变材和未蓝变材的颜色差异逐渐变小,为使蓝变色斑达到肉眼不容易识别的程度,最低的热处理条件为190℃,3h。多元回归分析和方差分析表明,在α=0.05水平上,热处理温度(x_1)和时间(x_2)两因素及其共同作用对L~*、a~*、b~*、△E的变化影响极为显著,其中温度对各颜色指标的影响比时间的影响更显著一些。  相似文献   

6.
对进口辐射松木材分别以4个温度水平和3个时间水平进行热处理。结果显示:随着温度升高,试材抗弯弹性模量呈现波动式变化,200℃时出现最大值;抗弯强度逐渐减小;随时间延长,抗弯性能均缓慢下降。热处理可有效提高试材尺寸稳定性,试材平衡含水率、阻湿率和抗胀率主要受温度影响,受热处理时间的影响较小。  相似文献   

7.
对进口辐射松木材分别以4个温度水平和3个时间水平进行热处理。结果显示:随着温度升高,试材抗弯弹性模量呈现波动式变化,200 ℃时出现最大值;抗弯强度逐渐减小;随时间延长,抗弯性能均缓慢下降。热处理可有效提高试材尺寸稳定性,试材平衡含水率、阻湿率和抗胀率主要受温度影响,受热处理时间的影响较小。  相似文献   

8.
热处理对毛白杨木材物理力学性能的影响   总被引:2,自引:0,他引:2  
采用蒸汽介质,氧气含量控制在2%以下,在热处理箱内对毛白杨木材进行热处理,研究处理温度(170~230℃)和处理时间(时间1~5 h)对毛白杨木材物理力学性能的影响。结果表明,随着处理温度的提高和处理时间的延长,毛白杨木材的抗胀缩率显著提高,但抗弯强度显著降低;热处理后毛白杨木材的抗弯弹性模量提高。  相似文献   

9.
为了改进橡胶木热处理工艺,采用过热蒸汽作为传热介质,进行橡胶木热处理,检测处理过程中,橡胶木释放有机酸的量,并探讨有机酸对材性的影响.结果表明,提高热处理温度,延长高温阶段处理时间,试材释放有机酸量增加;随着有机酸释放量的上升,橡胶木的平衡含水率降低,质量损失率增加,颜色变深,抗弯强度下降,耐腐性改善.  相似文献   

10.
为了提高泡桐的密度、硬度和尺寸稳定性,将试材分成水分组、温度组、时间组、化学处理组,对水分组试材进行恒温恒湿处理,对化学处理组进行不同质量分数的酚醛树脂液浸泡处理,然后将各组试材进行不同温度、不同时间的热压试验.再将试材置于常温的水中浸泡,测定各处理试材的回弹率.分析试材含水率、热压温度、热压时间和酚醛树脂溶液质量分数对热压试材水浸泡回弹率的影响.结果表明;各试验因素对泡桐压密硬化效果有明显的影响,木材含水率为13.89%时.材面光滑,尺寸稳定性最好,热压前的喷湿处理可增强木材尺寸稳定性;用10%的酚醛树脂溶液处理试材可降低回弹率45.51%;最佳热压温度为190℃,最佳热压时间为8min.  相似文献   

11.
以落叶松、红橡和奥克榄为研究对象,采用不同的常压蒸汽热处理工艺条件,对照未处理材,研究热处理温度和时间对木材尺寸稳定性的影响。结果表明:热处理温度和时间对木材的尺寸稳定性有显著影响;木材吸湿性随温度提高逐渐降低,当热处理温度上升到一定程度时,尺寸稳定性改善趋缓;随着热处理时间延长,木材尺寸稳定性提高;木材高温热处理后吸湿性和吸水性的改善与木材的密度、结构等物理性能相关。  相似文献   

12.
热处理工艺对落叶松材色及力学性能的影响   总被引:1,自引:0,他引:1  
对落叶松木材进行热处理,探讨热处理温度和时间对试材颜色指数和力学性能的影响.结果表明:随着处理温度的升高和处理时间的延长,木材的颜色变深,密度和质量降低,各项力学性能亦有下降.  相似文献   

13.
人工林杨木由于密度低、易皱缩的缺陷限制了其进一步利用。利用不同温度的饱和蒸汽对皱缩杨木试样进行不同时间的皱缩恢复处理,同时测试皱缩试材的径弦向恢复指标。试验数据采用SAS软件进行分析。结果表明:在温度对恢复指标的影响中,试样在100℃处理温度下其弦径向达到最大恢复率,分别为1.650%和1.501%;在时间对恢复指标的影响中,6 h处理试样的弦径向尺寸恢复率达到1.670%和1.411%;根据交互影响得到杨树皱缩恢复最佳工艺条件为100℃,6 h较优;80℃,6 h次之。  相似文献   

14.
以樟子松为原料,采用正交试验法,研究了不同木材含水率(10%、20%、30%)、高温热处理温度(180、200、220℃)、处理时间(2、3、4 h)三个因素对樟子松处理前后弦向干缩性和湿胀性、吸水性、密度的影响,以及樟子松高温热处理时,被处理材含水率、处理温度与处理时间的优化组合。结果表明:较高初始含水率、较高热处理温度和较长高温处理时间可改善木材的干缩性和湿胀性,使木材尺寸稳定性更好;在较剧烈的热处理条件下,初始含水率的大小不会影响热处理材密度降低的趋势;热处理温度、时间和含水率对吸水性的影响不呈线性关系。  相似文献   

15.
目前竹材高温热处理技术的工业化生产大多采用常压高温热处理,与传统的常压热改性处理技术相比,饱和蒸汽热处理技术在处理效率、环保及能耗方面更具优势。在传统竹重组材制造工艺的基础上,提出了压力式饱和蒸汽热处理竹束技术。以竹材为原料,通过开片、碾压疏解等工序制得竹束,采用饱和蒸汽压力罐对竹束进行高温饱和蒸汽热改性处理,再经浸胶、干燥、养生、热压后,制得竹重组材及其系列产品,构建了一种新型高性能竹重组材制备工艺体系。这对于提升竹重组材制造技术,促进竹资源的高效综合利用具有重要现实意义。  相似文献   

16.
对6年生新鲜毛竹筒在饱和蒸汽介质下进行热处理,研究处理温度(140(0.4 MPa)~180℃(1.0 MPa))和处理时间(10~30 min)对竹壁收缩率、力学性能和竹材颜色的影响。结果表明:新鲜毛竹筒经140,160和180℃饱和蒸汽处理后,竹壁含水率在纤维饱和点之上会产生收缩,最大收缩率分别为7.7%,10.1%和14.3%;处理温度对竹材静曲强度和弹性模量均有显著影响,处理时间对静曲强度有显著影响,但对弹性模量没有显著影响。在处理温度140℃条件下,竹材的绝干密度、静曲强度和弹性模量与处理时间呈线性正相关,绝干密度最大值为0.878 g/cm3,静曲强度最大值为196.6 MPa,弹性模量最大值为14 143 MPa;而在温度160和180℃条件下,其变化趋势与140℃时相反。处理温度和处理时间对竹材颜色的L*和b*均有显著影响,处理时间对颜色的a*没有显著影响;竹材经180℃处理后,竹材颜色明度最大降幅为41.4%。  相似文献   

17.
蒸汽热处理马尾松木材工艺初探   总被引:1,自引:0,他引:1  
以浙江本地的马尾松为试材,采用自制的小型热处理木材实验装置进行高温热处理木材工艺实验.通过对热处理前后马尾松木材力学性能和尺寸稳定性的比较,探讨了热处理温度、热处理时间以及升温速度对其性能的影响.研究结果表明:热处理温度对热处理马尾松木材的抗弯强度有显著影响,经热处理后的马尾松木材与未处理材相比,其顺纹抗压强度下降了1.823%~11.084%,抗弯强度下降了0.259%~34.451%,体积干缩湿胀率也有所降低.经综合分析并考虑到热源损耗及尺寸稳定性,得出马尾松木材的热处理最佳工艺为:热处理温度190℃,热处理时间2h,升温速度15℃/h  相似文献   

18.
杉木间伐材高温热处理后化学成分的变化   总被引:2,自引:1,他引:1  
以空气和菜子油为介质,分别用180,200和220℃处理杉木间伐材2和4 h,测定处理样综纤维素、纤维素、Klason木质素和苯醇抽出物相对含量的变化,并用傅里叶变换红外光谱分析高温热处理过程中木材内综纤维素的变化规律.结果表明:热处理后试材综纤维素含量均有不同程度的降低、纤维素总体降低较少,相应的苯醇抽出物含量、Klason木质素含量增加;温度升高、处理时间延长,木材主要化学组成的变化程度增大;在隔氧的油介质中进行热处理,试件的化学成分变化程度低于空气介质中热处理材;方差分析表明不同温度、时间、介质对主要化学组成产生极显著的影响;FTIR分析表明,180℃热处理时开始发生半纤维素分解,到200℃时纤维素也开始分解;氧气氛围对糖残基的热分解具有促进作用.在3 412,1 050,898 cm~(-1)附近相关糖残基,1 736 cm~(-1)附近相关C=O以及2 907 cm~(-1)附近对应C-H的吸收强度的变化也表征出热处理过程中各化学成分的变化规律.  相似文献   

19.
饱和蒸汽诱发变色后的落叶松木材将更加美观,颜色变深并趋于珍贵木材的颜色.笔者实验采用高温饱和蒸汽对落叶松木材诱发变色处理,通过对落叶松处理前后的色度指数、含水率、红外光谱等的分析,研究结果表明:1)随着温度的升高和时间的增加,颜色总体趋势是明度值降低,颜色加深,趋于红色,且色差增大.其中140℃时诱发变色显著;2)木材含水率对变色有显著影响;3)热处理后木素大量聚合,C=C双键增加,醚键断裂,共轭体系延长,木材颜色加深.  相似文献   

20.
利用Pressman Lite仪器,在不同的热压温度(80、120℃)条件下,分别测定了不同厚度(30、80 mm)的樟子松(P.sylvestris)材在热压干燥过程中内部的温度、蒸汽压力的变化规律。分析了试材尺寸、板材纹理力方向(径向和弦向)、热压温度对樟子松材内部温度、水蒸气压力的影响。研究结果表明:1)随着热压时间的增加,热压温度的升高,板材内部温度和蒸汽压力快速升高,温度越高,温度和水蒸气压力上升速率越快。2)30 mm厚试件热压温度为120℃时,蒸汽压力较大,但对于80 mm厚试件,热压温度为120℃时,蒸汽压力却较小。3)热压温度为120℃时,板材内部温度和蒸汽压力达到平衡所用时间越短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号