首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood is an important component of forested stream ecosystems, and stream restoration efforts often incorporate large wood. In most cases, however, stream restoration projects are implemented without information regarding the amount of wood that historically occurred or the natural rates of wood recruitment. This study uses a space-for-time analysis to quantify large wood loading to 28 streams in the northeastern US with a range of in-stream and riparian forest characteristics. We document the current volume and frequency of occurrence of large wood in streams with riparian forests varying in their stage of stand development as well as stream size and gradient. Linear models relating stream wood characteristics to stream geomorphic and forest characteristics were compared using Akaike's Information Criterion (AIC) model selection. The AIC analysis indicated that the volume and frequency of large wood and wood accumulations (wood jams) in streams was most closely associated with the age of the dominant canopy trees in the riparian forest (best models: log10(large wood volume (m3 100 m−1)) = (0.0036 × stand age) − 0.2281, p < 0.001, r2 = 0.80; and large wood frequency (number per 100 m) = (0.1326 × stand age) + 7.3952, p < 001, r2 = 0.63). Bankfull width was an important factor accounting for wood volume per unit area (m3 ha−1) but not the volume of wood per length of stream (100 m−1). The empirical models developed in this study were unsuccessful in predicting wood loading in other regions, most likely due to difference in forest characteristics and the legacy of forest disturbance. However, these models may be applicable in other streams in the northeastern US or in streams with comparable riparian forests, underlying geology, and disturbance regimes—factors that could alter long-term wood loading dynamics. Our results highlight the importance of understanding region-specific processes when planning stream restoration and stream management projects.  相似文献   

2.
This study examined riparian forest and instream large wood characteristics in a 2.7 km reach of the West Branch of the Sheepscot River in Maine in order to increase our basic knowledge of these components in a system that is known to have undergone multiple land conversion. The West Branch is approximately 40 km long, drains a 132 km2 watershed and is vitally important to the remnant population of Atlantic salmon (Salmo salar) and other native species. The riparian forest is comprised of relatively small trees with a mean DBH of 21 cm (SD ± 10.92) with 56% of the trees having a DBH <20 cm. Balsam fir (Abies balsamea) and red maple (Acer rubrum) are the most common species (54%), and 75% of all trees are short-lived, small diameter species. These data suggest the riparian forest in the West Branch Sheepscot River is dominated by young forest stands, a legacy of land use. During a survey conducted in 2005, 210 pieces of large woody debris (LWD) were identified in the study reach; an average of 78 pieces km−1. The total volume of pieces was 8.5 m3 or 3.2 m3 km−1 (LWD in this study is defined as pieces ≥10 cm in diameter and >2 m in length). The mean diameter of LWD was 17 cm with 75% of all pieces having a diameter <20 cm. Most pieces were oriented parallel or nearly parallel to the channel and did not appear to influence channel morphology. In contrast, larger pieces were more often in perpendicular or nearly perpendicular orientations, and were more likely to have a pool-forming function. Overall, the reach has low levels of stable large wood, which do not have a major influence on stream habitats.  相似文献   

3.
Changes in above-ground biomass (AGB) of 17 1 ha logged plots of terra firme rain forest in the eastern Amazon (Brazil, Paragominas) were monitored for four years (2004–2008) after reduced-impact logging. Over the same time period, we also monitored two 0.5 ha plots in adjacent unlogged forest. While AGB in the control plots changed little over the observation period (increased on average 1.4 Mg ha−1), logging resulted in immediate reductions in ABG that averaged 94.5 Mg ha−1 (±42.0), which represented 23% of the 410 Mg ha−1 (±64.9) present just prior to harvesting. Felled trees (dbh > 55 cm) accounted for 73% (±15) of these immediate losses but only 18.9 Mg ha−1 (±8.1) of biomass was removed in the extracted logs. During the first year after logging, the annual AGB balance (annual AGB gain by recruitment and growth − annual AGB loss by mortality) remained negative (−31.1 Mg ha−1 year−1; ±16.7), mainly due to continued high mortality rates of damaged trees. During the following three years (2005–2008), average net AGB accumulation in the logged plots was 2.6 Mg ha−1 year−1 (±4.6). Post-logging biomass recovery was mostly through growth (4.3 ± 1.5 Mg ha−1 year1 for 2004–2005 and 6.8 ± 0.9 Mg ha−1 year1 for 2005–2008), particularly of large trees. In contrast, tree recruitment contributed little to the observed increases in AGB (1.1 ± 0.6 Mg ha−1 year−1 for 2004–2005 and 3.1 ± 1.3 Mg ha−1 year−1 for 2005–2008). Plots with the lowest residual basal area after logging generally continued to lose more large trees (dbh ≥70 cm), and consequently showed the greatest AGB losses and the slowest overall AGB gains. If 100% AGB recovery is desired and the 30-year minimum cutting cycle defined by Brazilian law is adhered to, current logging intensities (6 trees ha−1) need to be reduced by 40–50%. Such a reduction in logging intensity will reduce financial incomes to loggers, but might be compensated for by the payment of environmental services through the proposed REDD (reduced emissions from deforestation and forest degradation) mechanism of the United Nations Framework Convention on Climate Change.  相似文献   

4.
Currently, there is much debate about what strategy is most suitable for increasing old-growth attributes in forests that have been managed intensively for wood production in the past. Passive restoration, i.e. cessation of forestry interventions, should be considered when the old-growth attributes desired can be restored within a feasible period of time.Our study focuses on standing and lying coarse dead wood (≥20 cm diameter) in beech-dominated forests in northwestern Germany. We analyzed monitoring data of 545 sample plots (sized 500-1000 m2) from 12 strict forest reserves (SFRs). The SFRs had been without forestry intervention for up to 28 years.Both, number of dead objects and volume of dead wood (m3 ha−1) increased significantly with ongoing time since abandonment from forestry interventions. The mean amount doubled from 9 to 18 m3 ha−1 within 10 years. The proportion of standing dead wood was about 40% of the total dead wood pool ≥20 cm diameter.With mixed linear modeling we showed that dead wood increased by a mean net rate of about 1 m3 ha−1 a−1. Therefore, after three decades critical values for restoring the dead wood pool could be reached. We hypothesized that the rate of dead wood input is mainly determined by disturbance driven tree mortality such as oak decline, bark beetle infestations and storms.A comparison with primeval forests or reserves abandoned more than 100 years ago showed that the SFRs studied are at the beginning of a long process of dead wood accumulation.Based on our results, the abandonment of forest activities in harvestable pure and mixed beech stands is an effective strategy for restoring the dead wood pool.  相似文献   

5.
Fire in tropical montane cloud forests (TMCFs) is not as rare as once believed. Andean TMCFs sit immediately below highly flammable, high-altitude grasslands (Puna/Páramo) that suffer from recurrent anthropogenic fire. This treeline is a zone of climatic tension where substantial future warming is likely to force upward tree migrations, while increased fire presence and fire impacts are likely to force it downwards. TMCFs contain large carbon stocks in their peat soils and their loss through fire is a currently unaccounted for regional source of CO2. This study, conducted in the southern Peruvian Andes (>2800 m), documents differences in live tree biomass, fine root biomass, fallen and standing dead wood, and soil organic carbon in 4 paired-sample plots (burned versus control) following the severe ground fires that occurred during the 2005 Andean drought. Peat soils contributed the most to biomass burning emissions, with lower values corresponding to an 89% mean stock difference compared to the controls (mean ± SE) (54.1 ± 22.3 vs. 5.8 ± 5.3 MgC ha−1). Contrastingly, carbon stocks from live standing trees differed by a non-significant 37% lower value in the burned plots compared to the controls, largely compensated by vigorous resprouting (45.5 ± 17.4 vs. 69.2 ± 13.4 MgC ha−1). Both standing dead trees and fallen dead wood were significantly higher in the burned plots with a three-fold difference from the controls: dead Trees 45.2 ± 9.4 vs. 16.4 ± 4.4 MgC ha−1, and ca. a 2 fold difference for the fallen dead wood: 11.2 ± 5 vs. 6.7 ± 3.2 MgC ha−1 for the burned plots versus their controls. A preliminary estimate of the regional contribution of biomass burning emissions from Andean TMCFs for the period 2000-2008, resulted in mean carbon emission rates of 1.3 TgC yr−1 (max-min: 1.8-0.8 TgC yr−1). This value is in the same order of magnitude than South American annual fire emissions (300 TgC yr−1) suggesting the need for further research on Andean forest fires. On-going projects on the region are working on the promotion of landowner participation in TMCFs conservation through REDD+ mechanism. The heart of the proposed initiative is reforestation of degraded lands with green fire breaks enriched with economically valuable Andean plant species. The cultivation of these species may contribute to reduce deforestation pressure on the Amazonian cloud forest by providing an alternative income to local communities, at the same time that they prevent the spread of fire into Manu National Park and adjacent community-held forests, protecting forest and reducing CO2 emissions.  相似文献   

6.
Large wood (LW) abundance, longitudinal distribution and mobilization were studied in the Vuelta de la Zorra channel draining a third order catchment located in the Coastal mountain range of southern Chile. Seventy-five percent of the 586.8 ha study catchment area is covered by evergreen native rainforests, 24% by Eucalyptus nitens plantations and the remaining 1% are different sites were native tree and shrub species are regenerating in areas that were prepared for forest replacement in the late 1980s but finally left unplanted. In a segment, 1557 m in length, surveyed between November 2008 and February 2009, a total of 484 pieces representing 181 m3 of LW were measured. Using bankfull width and length this volume corresponds to 109 m3 ha−1 or 11.6 m3 100 m−1. LW was distributed along the channel in correlation with bankfull width. The channel segment was re-surveyed in December 2009 and we found that after one winter season 12% of the LW were transported downstream the river channel and 9 new wood elements were recruited. The LW traveled distance and traveled distance/piece diameter ratio decreased with increasing piece length/mean bankfull ratio. These results contribute to understand the complexity of LW abundance, mobilization and recruitment processes, and their effects on channel morphology, sediment routing and ecology in Chilean catchments.  相似文献   

7.
Coarse woody debris (CWD) has become recognised as an important component of the carbon (C) pool in forest ecosystems. In Ireland, managed Sitka spruce (Picea sitchensis (Bong) Carr.) forests account for 52.3% of the total forest estate. To determine the stock and decay dynamics of above and belowground CWD, field surveys using fixed area sample plots, were conducted in six even-aged Sitka spruce stands, representing the young, intermediate and mature stages of a typical commercial rotation. The volume, mass, density loss and C:N ratio of all CWD types (logs, stumps, and coarse roots) were determined using a five-decay class (DC) system. The decay rates and half life of CWD was also determined. To estimate CWD coarse root mass; roots associated with stumps classified in different decay classes were excavated. The coarse roots were categorised into small (2-10 mm), medium (10-50 mm) and large (>50 mm) diameter classes.CWD C-mass ranged from 6.98 to 18.62 Mg ha−1 and was highest in an intermediate forest (D35), while the aboveground volume varied from 6.31 to 42.27 m3 ha−1. Coarse roots accounted for 21% to 85% of the total CWD C-pool in the surveyed stands. The total CWD C-mass was poorly correlated with the number of thinning events (R2 = 0.29), when data from D35 was excluded. The density loss was significant in logs (45%), stumps (58%), and small- (38%), medium- (50%) and large roots (38%) as decay progress from DC 0 to 4. There was a 46%, 41%, 51%, 72% and 57% decline in C:N ratio of logs, stumps, small-, medium- and large roots, respectively, as decay progressed from DC 0 to 4. The density decay rates were 0.059, 0.048 and 0.036 kg m−3 year−1 for logs, stumps and coarse roots, respectively. The size classification of roots did not significantly affect their decay rate. The half life (50% decomposition) of CWD was estimated has 12-, 14- and 19 years for logs, stumps and roots of Sitka spruce. Regression curves showed a strong correlation between the density and C:N ratio (R2 = 0.69, 0.74 and 0.93 for logs, stumps and coarse roots, respectively). The long term storage of C and its slow rate of decomposition make CWD a vital structural and functional component of the CWD C-pool and a major controller of forest ecosystem C-retention.  相似文献   

8.
Relatively few evaluations of aquatic macroinvertebrate and fish communities have been published in peer-reviewed literature detailing the effect of varying residual basal area (RBA) after timber harvesting in riparian buffers. Our analysis investigated the effects of partial harvesting within riparian buffers on aquatic macroinvertebrate and fish communities in small streams from two experiments in northern Minnesota northern hardwood-aspen forests. Each experiment evaluated partial harvesting within riparian buffers. In both experiments, benthic macroinvertebrates and fish were collected 1 year prior to harvest and in each of 3 years after harvest. We observed interannual variation for the macroinvertebrate abundance, diversity and taxon richness in the single-basin study and abundance and diversity in the multiple-basin study, but few effects related to harvest treatments in either study. However, interannual variation was not evident in the fish communities and we detected no significant changes in the stream fish communities associated with partially harvested riparian buffers in either study. This would suggest that timber harvesting in riparian management zones along reaches ≤200 m in length on both sides of the stream that retains RBA ≥ 12.4 ± 1.3 m2 ha−1 or on a single side of the stream that retains RBA ≥ 8.7 ± 1.6 m2 ha−1 may be adequate to protect macroinvertebrate and fish communities in our Minnesota study systems given these specific timber harvesting techniques.  相似文献   

9.
Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental Forest (MEF), in northern Minnesota, USA, using a network of plots that were evenly spaced across a heterogeneous 1-km2 mosaic composed of a mix of upland forests and peatlands. Using a nested plot design, we estimated the standing C stock of vegetation, coarse detrital wood and soil pools. We also estimated aboveground net primary production (ANPP) as well as coarse root production. Additionally we evaluated how vegetation cover types within the study area differed in C storage. The total ecosystem C pool did not vary significantly among upland areas dominated by aspen (160 ± 13 Mg C ha−1), mixed hardwoods (153 ± 19 Mg C ha−1), and conifers (197 ± 23 Mg C ha−1). Live vegetation accounted for approximately 50% of the total ecosystem C pool in these upland areas, and soil (including forest floor) accounted for another 35–40%, with remaining C stored as detrital wood. Compared to upland areas, total C stored in peatlands was much greater, 1286 ± 125 Mg C ha−1, with 90–99% of that C found in peat soils that ranged from 1 to 5 m in depth. Forested areas ranged from 2.6 to 2.9 Mg C ha−1 in ANPP, which was highest in conifer-dominated upland areas. In alder-dominated and black spruce-dominated peatland areas, ANPP averaged 2.8 Mg C ha−1, and in open peatlands, ANPP averaged 1.5 Mg C ha−1. In treed areas of forest and peatlands, our estimates of coarse root production ranged from 0.1 to 0.2 Mg C ha−1. Despite the lower production in open peatlands, all peatlands have acted as long-term C sinks over hundreds to thousands of years and store significantly more C per unit area than is stored in uplands. Despite occupying only 13% of our study area, peatlands store almost 50% of the C contained within it. Because C storage in peatlands depends largely on climatic drivers, the impact of climate changes on peatlands may have important ramifications for C budgets of the western Great Lakes region.  相似文献   

10.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

11.
We tested the hypothesis that overstorey of eucalypt forest dominated by tall, large diameter trees uses less water than regrowth stands in the high rainfall zone (>1100 mm year−1) of the northern jarrah (Eucalyptus marginata) forest in southwestern Australia. We measured leaf area, cover, sapwood area and sapwood density at three paired old and regrowth stands. We also measured sapflow velocity at one paired stand (Dwellingup) from June 2007 to October 2008. Old stands had more basal area but less foliage cover, less leaf area and slightly thinner sapwood. The ratio of sapwood area to basal area decreased markedly as tree size increased. Sapwood area of the regrowth forest stands (6.6 ± 0.30 m2 ha−1) was nearly double that of the old stands (3.4 ± 0.17 m2 ha−1), despite larger basal area at the old stands. Leaf area index of the regrowth stands (2.1 ± 0.26) was only one-third larger than that at the old stands (1.5 ± 0.15); hence, the ratio of leaf area to sapwood area was larger in old stands than in regrowth stands (0.45 ± 0.022 m2 cm−2 versus 0.32 ± 0.045 m2 cm−2). Our results are consistent with theories that trees have evolved to optimize carbon gain rather than maintain stomatal conductance. Neither sapwood density (540–650 kg m−3) nor sap velocity differed greatly between regrowth and old stands. At the old forest site, daily transpiration rose from 0.5 mm day−1 in winter to 0.9 mm day−1 in spring–summer, compared to 0.9 mm day−1 and 1.8 mm day−1 at the regrowth site. Annual water use by the overstorey trees was estimated to be ∼230 mm year−1 for the old stand and ∼500 mm year−1 at the regrowth stand, or 20% and 44% of annual rainfall. The overwhelming role of stand sapwood area in determining stand water use, combined with the marked changes in the ratio of sapwood area to basal area with tree age and size, suggest that stand overstorey structure can be managed to alter overstorey water use and catchment water yield. Silviculture to promote old-forest-like attributes may be a viable means of delivering multiple water and conservation benefits.  相似文献   

12.
A typhoon event catastrophically destroyed a 45-year-old Japanese larch plantation in southern Hokkaido, northern Japan in September 2004, and about 90% of trees were blown down. Vegetation was measured to investigate its regeneration process and CO2 flux, or net ecosystem production (NEP), was measured in 2006–2008 using an automated chamber system to investigate the effects of typhoon disturbance on the ecosystem carbon balance. Annual maximum aboveground biomass (AGB) increased from 2.7 Mg ha−1 in 2006 to 4.0 Mg ha−1 in 2007, whereas no change occurred in annual maximum leaf area index (LAI), which was 3.7 m2 m−2 in 2006 and 3.9 m2 m−2 in 2007. Red raspberry (Rubus idaeus) had become dominant within 2 years after the typhoon disturbance, and came to account for about 60% and 50% of AGB and LAI, respectively. In comparison with CO2 fluxes measured by the eddy covariance technique in 2001–2003, for 4.5 months during the growing season, the sum of gross primary production (GPP) decreased on average by 739 gC m−2 (64%) after the disturbance, whereas ecosystem respiration (RE) decreased by 501 gC m−2 (51%). As a result, NEP decreased from 159 ± 57 gC m−2 to −80 ± 30 gC m−2, which shows that the ecosystem shifted from a carbon sink to a source. Seasonal variation in RE was strongly correlated to soil temperature. The interannual variation in the seasonal trend of RE was small. Light-saturated GPP (Pmax) decreased from 30–45 μmol m−2 s−1 to 8–12 μmol m−2 s−1 during the summer season through the disturbance because of large reduction in LAI.  相似文献   

13.
With increasing CO2 in the atmosphere, there is an urgent need of reliable estimates of biomass and carbon pools in tropical forests, most especially in Africa where there is a serious lack of data. Information on current annual increment (CAI) of carbon biomass resulting from direct field measurements is crucial in this context, to know how forest ecosystems will affect the carbon cycle and also to validate eddy covariance flux measurements. Biomass data were collected from 25 plots of 13 ha spread over the different vegetation types and land uses of a moist evergreen forest of 772,066 ha in Cameroon. With site-specific allometric equations, we estimated biomass and aboveground and belowground carbon pools. We used GIS technology to develop a carbon biomass map of our study area. The CAI was estimated using the growth rates obtained from tree rings analysis. The carbon biomass was on average 264 ± 48 Mg ha−1. This estimate includes aboveground carbon, root carbon and soil organic carbon down to 30 cm depth. This value varied from 231 ± 45 Mg ha−1 of carbon in Agro-Forests to 283 ± 51 Mg ha−1 of carbon in Managed Forests and to 278 ± 56 Mg ha−1 of carbon in National Park. The carbon CAI varied from 2.54 ± 0.65 Mg ha−1 year−1 in Agro-Forests to 2.79 ± 0.72 Mg ha−1 year−1 in Managed Forests and to 2.85 ± 0.72 Mg ha−1 year−1 in National Park. This study provides estimates of biomass, carbon pools and CAI of carbon biomass from a forest landscape in Cameroon as well as an appropriate methodology to estimate these components and the related uncertainty.  相似文献   

14.
After a wildfire, the management of burnt wood may determine microclimatic conditions and microbiological activity with the potential to affect soil respiration. To experimentally analyze the effect on soil respiration, we manipulated a recently burned pine forest in a Mediterranean mountain (Sierra Nevada National and Natural Park, SE Spain). Three representative treatments of post-fire burnt wood management were established at two elevations: (1) “salvage logging” (SL), where all trees were cut, trunks removed, and branches chipped; (2) “non-intervention” (NI), leaving all burnt trees standing; and (3) “cut plus lopping” (CL), a treatment where burnt trees were felled, with the main branches lopped off, but left in situ partially covering the ground surface. Seasonal measurements were carried out over the course of two years. In addition, we performed continuous diurnal campaigns and an irrigation experiment to ascertain the roles of soil temperature and moisture in determining CO2 fluxes across treatments. Soil CO2 fluxes were highest in CL (average of 3.34 ± 0.19 μmol m−2 s−1) and the lowest in SL (2.21 ± 0.11 μmol m−2 s−1). Across seasons, basal values were registered during summer (average of 1.46 ± 0.04 μmol m−2 s−1), but increased during the humid seasons (up to 10.07 ± 1.08 μmol m−2 s−1 in spring in CL). Seasonal and treatment patterns were consistent at the two elevations (1477 and 2317 m a.s.l.), although respiration was half as high at the higher altitude.Respiration was mainly controlled by soil moisture. Watering during the summer drought boosted CO2 effluxes (up to 37 ± 6 μmol m−2 s−1 just after water addition), which then decreased to basal values as the soil dried. About 64% of CO2 emissions during the first 24 h could be attributed to the degasification of soil pores, with the rest likely related to biological processes. The patterns of CO2 effluxes under experimental watering were similar to the seasonal tendencies, with the highest pulse in CL. Temperature, however, had a weak effect on soil respiration, with Q10 values of ca. 1 across seasons and soil moisture conditions. These results represent a first step towards illustrating the effects of post-fire burnt wood management on soil respiration, and eventually carbon sequestration.  相似文献   

15.
Interest in the use of bioenergy is increasing because of the need to mitigate climate change, the increasing costs and finite supply of fossil fuels, and the declining price of lumber and paper. Sound bioenergy policies must be informed by accurate estimates of potential feedstock production, rights to the production, social values and economics. Two of the main sources of bioenergy feedstock from forests are (i) harvesting residue and (ii) dead wood resulting from natural disturbances (i.e. standing dead timber). We modeled the production of bioenergy feedstock from these two sources from 2005 to 2020 for Canada's managed forest south of 60° N so that this information can be used in provincial and national strategic planning. Published estimates of harvesting residue vary widely, and our objective was to provide more precise estimates based on new forest inventory data and regional modeling. Natural disturbances result in very large quantities of dead wood on the landscape, but estimates of future stocks and annual production have not previously been made. Our estimates included a 50% discount factor to net-down theoretically available quantities to a more realistic estimate of potential ecologically sustainable bioenergy feedstock. The total future annual production averaged 51 ± 17 Tg year−1 from natural disturbances and 20 ± 0.6 Tg year−1 from clearcut harvesting residues. Harvesting residue for the area logged varied spatially from a low of 1.0 ± 0.77 kg m−2 year−1 to a high of 6.7 ± 0.1 kg m−2 year−1. Dead wood production due to insects was forecast to peak in the Montane Cordillera of British Columbia (BC) at 16.7 Tg year−1 due to the current mountain pine beetle outbreak. Total dead wood production due to fire was highest in the western portion of the boreal forest (3.6 Tg year−1 in the Boreal Shield of Saskatchewan), in part due to the high frequency of fires in these ecosystems and the large area of western boreal forest, but the highest density production was in BC: >9 kg m−2 year−1 in the burned area. Our results showed that the dead wood stocks of 331 Tg oven-dry matter potentially available for bioenergy in 2020 are much smaller than the 3100 ± 84 Tg of dead wood stocks estimated based on ecosystem dynamics. While bioenergy use will accelerate the release of greenhouse gases compared to on-site decay, the energy is renewable and can be used as a substitute for fossil fuels. The net benefit to the atmosphere of forest bioenergy use is affected by many factors, and future research should further assess which sustainable wood-based bioenergy strategies yield the greatest net greenhouse gas benefits over the different time scales needed for post-disturbance forest recovery.  相似文献   

16.
Changes in stand density, basal area, off-take and annual increment were determined from 18 permanent sample plots established in 1997 in Got Ramogi Forest in western Kenya. The plots were assessed in 2003 and 2008. A total of 824 stems ?1.5 m in height were recorded from 43 woody species. Key merchantable woody species comprised 20% of the woody species and 67% of the overall stem density. There was a significant reduction in the overall stand density and in the stem density of key merchantable woody species, but not among other woody species between 1997 and 2008. The basal area decreased significantly among key merchantable woody species, but not for the overall forest. The basal area decreased from 22.6 to 9.7 m2 ha−1 for key merchantable woody species. The stand volume of key merchantable woody species decreased from 156 m3 ha−1 in 1997 to 61.7 m3 ha−1 in 2008. The mean annual off-take declined from 10.3 m3 ha−1 year−1 between 1997 and 2003 to 9.1 m3 ha−1 year−1 between 2003 and 2008, while the mean annual increment increased from 2.9 to 3.3 m3 ha−1 year−1. It was predicted that forest recovery would surpass the 1997 stand volume of 156 m3 ha−1 if off-take levels between 10% and 90% of the mean annual increment were adopted. We settled on an annual allowable cut of 80% of the mean annual increment as a compromise between consumptive and conservation interests. We identified over-harvesting as the main cause of the reduction in stem density among key merchantable woody species. A management plan with compartment registers indicating the diversity, abundance and distribution of each woody species was recommended to guide their utilization and monitor their population dynamics.  相似文献   

17.
Forest managers are increasingly required to enhance the productivity and profitability of plantation management while simultaneously reducing the negative ecological effects associated with forest operations. NuBalM (from Nutrient Balance Model) is presented here as a decision support tool that has the potential to assist forest managers in meeting these requirements in Pinus radiata D. Don (radiata pine) plantations. NuBalM incorporates nutrient dynamics and allocation into projections of growth, allowing management techniques to be optimised for productivity and nutrient pool retention over single or multiple rotations.NuBalM was developed using data from biomass, nutrient allocation and soil nutrient dynamics studies conducted in New Zealand radiata pine plantations. The capability of NuBalM to predict stem wood mass based on nitrogen supply and demand was tested against data from multiple trial sites established to examine the effects of variations in stocking, thinning and fertilization regimes. NuBalM satisfactorily predicted stem wood masses across a range of stand ages, with the exception of a trial examining ultra-high applications of nitrogen fertilizer. With the exclusion of the data from this trial, the predicted stem wood masses underestimated the observed figures by a mean value of 1.1 ± 1.0 t ha−1 (95% CI, n = 92).The utility of NuBalM as a tool to predict biomass allocation in radiata pine and nitrogen pools in the forest floor and soil was assessed using comprehensive biomass, nutritional and site data collected from two radiata pine trial sites subjected to differences in organic matter removal at site establishment. NuBalM performed acceptably, generating accurate estimates of stem mass (mean overestimate of 5.5 ± 7.4 t ha−1, 95% CI, n = 6) and total above ground biomass (mean overestimate of 3.1 ± 9.6 t ha−1, 95% CI, n = 6). The effects of organic matter removal and fertilization on total nitrogen pools were also predicted with a reasonable degree of accuracy (mean overestimate of 52 ± 53 kg N ha−1, 95% CI, n = 9).From these results we conclude that NuBalM can be utilised to provide projections of productivity and nitrogen pools in radiata pine plantations, and enables the effects of various management practices to be predicted with a reasonable degree of confidence.  相似文献   

18.
Eucalyptus plantations have a short rotation cycle and harvesting occurs every 12-15 years, with the potential to modify the ecological integrity of the small streams draining the harvested areas through the reduction of litterfall inputs. We studied litterfall inputs and benthic coarse particulate organic matter (CPOM) storage in a small headwater stream draining a eucalyptus (Eucalyptus globulus Labill.) plantation before and after clear felling of the plantation. We hypothesized that wood harvesting will result in a reduction of CPOM inputs and storage in the stream. Litterfall inputs ranged 530-700 g m−2 y−1 and were approximately halved (200-320 g m−2 y−1) after the harvesting of the eucalyptus trees. Bark and woody materials showed the largest reduction. Leaf inputs were initially reduced sharply, but, during the second year after the harvest, they recovered to about 90% of the values observed before the harvesting. Harvesting of the eucalyptus plantation caused an increase of benthic CPOM storage to 535 g m−2, but this was a temporary effect and these materials were washed downstream of the study reach. One year after the harvesting, benthic CPOM was reduced below 15 g m−2. Bark, twigs and other woody residues generated during the preparation of the logs for transportation were retained within the study site and represented the main component (>90%) of the benthic CPOM after timber harvesting. However, 2 years after the harvesting, low inputs of these materials caused an overall reduction of in-stream retention and residence time of benthic CPOM. Amount and composition of benthic CPOM changed quickly in response to alterations of the riparian forest, so we propose the use of CPOM as an indicator of the impact of forestry activities on the ecological functioning of small streams.  相似文献   

19.
We examined the potential growth of clonal Eucalyptus plantations at eight locations across a 1000+ km gradient in Brazil by manipulating the supplies of nutrients and water, and altering the uniformity of tree sizes within plots. With no fertilization or irrigation, mean annual increments of stem wood were about 28% lower (16.2 Mg ha−1 yr−1, about 33 m3 ha−1 yr−1) than yields achieved with current operational rates of fertilization (22.6 Mg ha−1 yr−1, about 46 m3 ha−1 yr−1). Fertilization beyond current operational rates did not increase growth, whereas irrigation raised growth by about 30% (to 30.6 Mg ha−1 yr−1, about 62 m3 ha−1 yr−1). The potential biological productivity (current annual increment) of the plantations was about one-third greater than these values, if based only on the period after achieving full canopies. The biological potential productivity was even greater if based only on the full-canopy period during the wet season, indicating that the maximum biological productivity across the sites (with irrigation, during the wet season) would be about 42 Mg ha−1 yr−1 (83 m3 ha−1 yr−1). Stands with uniform structure (trees in plots planted in a single day) showed 13% greater growth than stands with higher heterogeneity of tree sizes (owing to a staggered planting time of up to 80 days). Higher water supply increased growth and also delayed by about 1 year the point where current annual increment and mean annual increment intersected, indicating opportunities for lengthening rotations for more productive treatments as well as the influence of year-to-year climate variations on optimal rotations periods. The growth response to treatments after canopy closure (mid-rotation) related well with full-rotation responses, offering an early opportunity for estimating whole-rotation yields. These results underscore the importance of resource supply, the efficiency of resource use, and stand uniformity in setting the bounds for productivity, and provide a baseline for evaluating the productivity achieved in operational plantations. The BEPP Project showed that water supply is the key resource determining levels of plantation productivity in Brazil. Future collaboration between scientists working on silviculture and genetics should lead to new insights on the mechanisms connecting water and growth, leading to improved matching of sites, clones, and silviculture.  相似文献   

20.
To document the impacts of windthrow in riparian leave strips and identify the components needed for small stream large woody debris (LWD) recruitment modeling, we monitored nine small streams at a temperate rainforest site in coastal British Columbia. This study was a component of a larger integrated study of forest management impacts on small streams. A series of small clearcuts were harvested in 1998 in a 70-year-old second growth stand that had regenerated naturally following logging and wildfire. Three cutblocks each were assigned to 10 m and 30 m buffer width treatments and three areas were assigned as unharvested controls. Seven years after the 1998 logging, all logs greater than 10 cm diameter that spanned at least part of stream channel width were measured. A total of 179 logs were recorded. Post-harvest windthrow was higher in the 10 m buffer treatment, while competition-related standing tree mortality was higher in the controls. The major windthrow events had occurred in the first and second years after logging of adjacent stands. There was no significant difference in the number of spanning and in-stream logs in the 10 m, 30 m buffer and control treatments. More than 90% of the LWD was in the 10–30 cm diameter classes. The majority of logs were oriented perpendicular to the stream channel. At the time of measurement, the majority of these trees were still suspended above the stream channel, indicating that the recruitment of logs into the stream channel is a long-term process. Time to recruitment into the channel is dependent on log and valley geometry, log size, species, and log condition prior to toppling. Log height above stream was negatively correlated with log decay class and valley width. Log length was negatively correlated with state of decay, and many windthrown logs were in an advanced state of decay before they entered the stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号