首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Metcalfe  S. E.  Derwent  R. G.  Whyatt  J. D.  Dyke  H. 《Water, air, and soil pollution》1998,107(1-4):121-145
It is now recognised that a multi-pollutant, multi-effect approach needsto be adopted to address the range of problems caused by atmosphericpollution. In this paper we use a relatively simple trajectory model (HARM)to explore the coupled behaviour of sulphur dioxide (SO2),oxides of nitrogen (NOx) and ammonia (NH3) andthe possible effects of future reductions in emissions of these pollutantson depositions of S and N across Great Britain. The performance of HARM withrespect to concentrations and depositions of NOy andNHx is assessed by comparison with data from nationalmonitoring networks. A range of emissions scenarios are modelled and theeffects of these reductions on critical loads exceedance are explored usingthe critical loads function (CLF), which allows both the acidification andeutrophication effects of S and N deposition to be explored simultaneously.Spatial variations in the reductions of deposition of S and/or N required tomeet critical loads are described. Reductions in emissions of the precursorsof strong acids (SO2 and NOx) yield benefits interms of ammonium deposition as a result of their coupled chemistry. Thedevelopment of strategies to control nitrogen deposition will need to take this non-linearity in to account.  相似文献   

2.
Acid deposition: Perspectives in time and space   总被引:1,自引:0,他引:1  
Most acid-deposition investigations have been concerned with the impact of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions on Europe and North America. This paper examines three issues beyond this central focus. Major conclusions are 1) ammonia (NH3) emissions and subsequent nitrogen (N) accumulation in terrestrial ecosystems have the potential to generate significant acidification in terrestrial and aquatic ecosystems; 2) sulfur (S) and N accumulation in environmental reservoirs will not only result in significant and extensive acidification but will also impact the earth's radiation balance, tropospheric oxidizing capacity, ecosystem nutrient balance and groundwater quality; and 3) future emissions will substantially increase in the developing world, especially in Asia. By 2020, Asian emissions of SO2, NOx and NH3 will be equal to or greater than the combined emissions from Europe and North America.  相似文献   

3.
After implementation of legislative measures for the reduction of environmental hazards from nitrate leaching and ammonia volatilisation when using organic manures and fertilizers in Europe, much attention is now paid to the specific effects of these fertilizers on the dynamics of global warming-relevant trace gases in soil. Particularly nitrogen fertilizers and slurry from animal husbandry are known to play a key role for the CH4 and N2O fluxes from soils. Here we report on a short-term evaluation of trace gas fluxes in grassland as affected by single or combined application of mineral fertilizer and organic manure in early spring. Methane fluxes were characterised by a short methane emission event immediately after application of cattle slurry. Within the same day methane fluxes returned to negative, and on average over the 4-day period after slurry application, only a small but insignificant trend to reduced methane oxidation was found. Nitrous oxide emissions showed a pronounced effect of combined slurry and mineral fertilizer application. In particular fresh cattle slurry combined with calcium ammonium nitrate (CAN) mineral fertilizer induced an increase in mean N2O flux during the first 4 days after application from 10 to 300 μg N2O-N m−2 h−1. 15N analysis of emitted N2O from 15N-labelled fertilizer or manure indicated that easily decomposable slurry C compounds induced a pronounced promotion of N2O-N emission derived from mineral CAN fertilizer. Fluxes after application of either mineral fertilizer or slurry alone showed an increase of less than 5-fold. The NOx sink strength of the soil was in the range of −6 to −10 μg NOx-N m−2 h−1 and after fertilization it showed a tendency to be reduced by no more than 2 μg NOx-N m−2 h−1, which was a result of both, increased NO emission and slightly increased NO2 deposition. Associated determination of the N2O:N2 emission ratio revealed that after mineral N application (CAN) a large proportion (c. 50%) was emitted as N2O, while after application of slurry with easily decomposable C and predominantly -N serving as N-source, the N2O:N2 emission ratio was 1:14, i.e. was changed in favour of N2. Our work provides evidence that particularly the combination of slurry and nitrate-containing N fertilizers gives rise to considerable N2O emissions from mineral fertilizer N pool.  相似文献   

4.
For the January 1985 smog episode concentrations of SO2, sulphate (SO4), NO x (sum of NO and NO2) and nitrate (NO3) have been calculated for north-western Europe by means of an atmospheric transport model. The unfavorable dispersion conditions (moderate to low wind speeds, a low mixing height and a strong inversion) and a reduced dry deposition over the snow-covered or frozen soil, in combination with increased space heating emissions due to the exceptionally cold weather, gave rise to high ground level concentrations. In order to study the effectiveness of control measures during this type of episodes, calculations were made for various emission scenarios. The results were evaluated for four receptor areas, two areas relatively close to the major sources (The Netherlands and the Black Forest) and two more remote areas (Scotland and the SW coast of Sweden, near Gothenburg).  相似文献   

5.
Woo  J.-H.  Baek  J. M.  Kim  J.-W.  Carmichael  G. R.  Thongboonchoo  N.  Kim  S. T.  An  J. H. 《Water, air, and soil pollution》2003,148(1-4):259-278
Emissions in East Asia for 1993 by administrative units and source types are estimated to support regional emission assessments and transport modeling studies. Total emission of SOx, NOx, soil NOx, N2O, and NH3 are 24 150, 12 610, 1963, 908, and 8263 kton yr-1, respectively.China's emission contribution is the highest for every species.The area sources are the most significant source type for SOx and NOx, but the fraction due to mobile source is highest for NOx. Major LPSs are located from the middle to the east part of China, south and middle-west part of South Korea, and the east part of Japan. The area sources of SOx show a pattern similar to population density, whereas NH3 shows a strong landuse dependency. Detail emissions analysis reveals higher SOx emission `cores' within each province. The estimated emissions are used to estimate sulfur deposition in the regions. The seasonal average sulfur distribution amounts are estimated from the ATMOS2 chemical transport model. The results showed anti-correlation with temperature for sulfur (SO2 + SO4 -2) concentrations and a positive correlation with rainfall for deposition.  相似文献   

6.
Studies aimed at determining the deposition history of energy related, potentially carcinogenic, polycyclic aromatic hydrocarbons (PAHs) deposited in the sediments of Cayuga Lake, in the Finger Lakes Region of central New York State, are described. PAH fluxes in the 1850's were at least an order of magnitude less than the maximum rates in the period of 1940 to 1955. PAH fluxes began to decline before the Milliken coal fired power plant, located on Cayuga Lake, started service in 1955. Correlation between the PAH flux into the sediments and fossil fuel usage and emissions for the states of New York, Ohio and Pennsylvania and the United States as a whole, suggests that modern, high efficiency fossil fuel fired power plants are minor sources of PAHs compared to coal related residential heating and industrial combustion. Similar comparisons with historic emissions data do not support the hypothesis that PAH flux is a useful indicator of the combustion sources which produce the `acidifying' compounds SO2 and NOx for the Finger Lakes region.  相似文献   

7.
We measured atmospheric nutrient deposition as wet deposition and dry deposition to dry and wet surfaces. Our analyses offer estimates of atmospheric transport of nitrogen (N), phosphorus (P) and silicon (Si) in an agricultural region. Annual dry and wet deposition (ha?1 year?1) was 0.3 kg of P, 7.7 kg of N, and 6.1 kg of Si; lower than or similar to values seen in other landscapes. N:P and Si:N imply that atmospheric deposition enhances P and Si limitation. Most P and soluble reactive P (SRP) deposition occurred as dryfall and most dry-deposited P was SRP so would be more readily assimilable by plant life than rainfall P. Dry deposition of N to wet surfaces was several times greater than to dry surfaces, suggesting that ammonia (NH x ) gas absorbtion by water associated with wet surfaces is an important N transport mechanism. Deposition of all nutrients peaked when agricultural planting and fertilization were active; ratios of NH x :nitrate (NO x ) hbox{reflected} the predominant use of NH x fertilizer. Wet deposition estimates were consistent over hundreds of km, but dry deposition estimates were influenced by animal confinements and construction. Precipitation wash-out of atmospheric nutrients was substantial but larger rain events yielded higher rates of wet deposition. Methodological results showed that local dust contaminated wet deposition more than dry; insects, bird droppings and leaves may have biased past deposition estimates; and estimating dry deposition to dry plastic buckets may underestimate annual deposition of N, especially NH x .  相似文献   

8.
Computer assessments of the atmospheric chemistry and air quality of the past, present, and future rely in part on inventories of emissions constructed on appropriate spatial and temporal scales and with appropriate chemical species. Accurate inventories are also of substantial utility to field measurement scientists and the regulatory and policy communities. The production of global emissions inventories is the task of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry Project (IGAC). This paper presents a summary of recent emissions inventories from GEIA and other programs for reference year 1985, with special attention directed to emissions of the acid-related compounds CO2 (6.2 Pg C yr–1 anthropogenic), SOx (65 Tg S yr–1 anthropogenic and 15 Tg S yr–1 natural), NOx (21 Tg N yr–1 anthropogenic and 15–20 Tg N yr–1 natural), HCl (55 Tg Cl yr–1 total), and NH3 (45 Tg N yr–1 total). The global acid-equivalent flux of about 4.2 Teq H+yr–1 is about equally attributable to SOx and NOx emissions. For some of the acid-related species, historic inventories are available for a century or more; all show dramatic emissions increases over that period. IPCC scenario IS92a is used here as the basis for constructing global acid-related emissions estimates for selected years to 2100; among the results are that acid equivalent emissions are expected to more than double in the coming century.  相似文献   

9.
Regional oxidant distributions produced under various atmospheric conditions and emission scenarios are investigated using the Regional Acid Deposition Model (RADM). RADM is a complex, evolving three-dimensional Eulerian model that describes the chemistry, transport and deposition of tropospheric trace species including SO2, sulfate, NO x and volatile organic compounds as well as O3, other major oxidants and acids. The model calculates the short-term temporal evolution of atmospheric trace gas concentrations and their deposition on the regional scale. This study is focused on oxidant production in the eastern United States and southeastern Canada. The influence of atmospheric conditions is explored by comparing three characteristic winter, summer and spring/fall cases. Base-case 1985 emissions of SO x , NO x , volatile organic compounds (VOCs), NH3 and CO are specified using the comprehensive pollutant emissions inventory developed as part of the National Acid Precipitation Assessment Program (NAPAP). The perturbed case, which represents projected anthropogenic emission changes for 2010, indicates changes in daily total 80 km grid average NO x emissions ranging from increases of 75% to decreases of 45% and VOC emission changes ranging from increases of 65% to decreases of 20%. The largest NO x emission changes occur in the northeast, and the largest VOC changes occur in the Gulf Coast area. Ground level grid average midday O3 concentrations for the 1985 emission cases are highest (on the order of 70 to 100 ppb) in the New York City and Houston metropolitan areas for the summer and spring cases; the summer case also indicates relatively high grid average O3 concentrations of greater than 80 ppb in the southeast. Winter case values are much lower than summer O3 values throughout the region, with highs of 40 to 50 ppb occurring in the southeast and the Great Lakes area. Changes in NO x and other emissions under the complex 2010 emissions scenario for the summer case result in maximum O3 concentration reductions of 10% in the Houston area and increases in O3 of a few percent in some rural areas of the southeast. This study underscores the need for more comprehensive assessment of the complex relationships among regional emission changes, oxidant production and atmospheric conditions.  相似文献   

10.
The technological options currently available to reduce SO2 and NOx emissions including abatement technologies and high efficient energy conversion technologies are reviewed. The energy emission model EFOMENV (Energy Flow Optimization Model-Environment) which takes into account all relevant emission reduction measures is used to determine the cost optimized energy pathway, the ranking of reduction measures and the corresponding costs as a function of given reduction levels of SO2 and/or NOx emissions for different scenarios in selected Central and Eastern European countries. It is shown that restructuring of the energy system is a major emission reduction option in all countries but with a potential varying greatly from country to country depending mainly on the existing structure and the age of the plants and on the development of the energy demand. The emission reduction costs for SO2 in Central and Eastern European countries are 50% to 70% lower than in Western countries due to high potential of fuel/technology switching and energy saving measures. Cost efficient measures to reduce CO2 emissions also lead to a significant decrease of SO2 and NOx emissions.  相似文献   

11.
Nitrification is a process in which ammonia is oxidized to nitrite (NO 2 ? ) that is further oxidized to nitrate (NO 3 ? ). The relations between these two steps and ambient ammonia concentrations were studied in surface water of Chinese shallow lakes with different trophic status. For the oxidations of both ammonia and NO 2 ? , more eutrophic lakes generally showed significantly higher potential and actual rates, which was linked with excessive ammonia concentrations. Additionally, both potential and actual rates for ammonia oxidation were higher than those for NO 2 ? oxidation in the more eutrophic lakes, while in the lakes with lower trophic status, both potential and actual rates for ammonia oxidation were almost equivalent to those for NO 2 ? oxidation. This can be explained by the excessive unionized ammonia (NH3) concentration that inhibits nitrite-oxidizing bacteria in the more eutrophic lakes. The laboratory experiment with different ammonia concentrations, using the surface water in a eutrophic lake, showed that ammonia oxidation rates were proportional to the ammonia concentrations, but NO 2 ? oxidation rates did not increase in parallel. Furthermore, NO 2 ? oxidation was less associated with particles in natural water of the studied lakes. Without effective protection, it would be selectively inhibited by the excessive ammonia in hypereutrophic lakes, resulting in NO 2 ? accumulation. Shortly, the increased concentrations of ammonia cause a misbalance between the NO 2 ? -producing and the NO 2 ? -consuming processes, thereby exacerbating the lake eutrophication.  相似文献   

12.
 Land use changes in semiarid grasslands have long-lasting effects. Reversion to near-original conditions with respect to plant populations and productivity requires more than 50 years following plowing. The impact of more subtle management changes like small, annual applications of N fertilizer or changing cattle stocking rates, which alters N redistribution caused by grazing and cattle urine deposition, is not known. To investigate the long-term effects of N addition to the Colorado shortgrass steppe we made weekly, year-round measurements of N2O and CH4 from the spring of 1990 through June 1996. Fluxes of NOx (NO plus NO2) were measured from October 1995 through June 1996. These measurements illustrated that large N applications, either in a single dose (45 g N m–2), simulating cattle urine deposition, or in small annual applications over a 15-year period (30 g N m–2) continued to stimulate N2O emissions from both sandy loam and clay loam soils 6–15 years after N application. In sandy loam soils last fertilized 6 years earlier, average NOx emissions were 60% greater than those from a comparable, unfertilized site. The long-term impact of these N additions on CH4 uptake was soil-dependent, with CH4 uptake decreased by N addition only in the coarser textured soils. The short-term impact of small N additions (0.5–2 g N m–2) on N2O, NOx emissions and CH4 uptake was observed in field studies made during the summer of 1996. There was little short-term effect of N addition on CH4 uptake in either sandy loam or clay loam soils. Small N additions did not result in an immediate increase in N2O emissions from the sandy loam soil, but did significantly increase N2O flux from the clay loam soil. The reverse soil type, N addition interaction occurred for NOx emissions where N addition increased NOx emissions in the coarser textured soil 10–20 times those of N2O. Received: 31 October 1997  相似文献   

13.
The International Cooperative Programme on Integrated Monitoring (ICP IM) is part of the effects monitoring strategy of the UN/ECE Convention on Long-Range Transboundary Air Pollution. We calculated input-output budgets and trends of N and S compounds, base cations and hydrogen ions for 22 forested ICP IM catchments/plots across Europe. The site-specific trends were calculated for deposition and runoff water fluxes and concentrations using monthly data and non-parametric methods. The reduction in deposition of S and N compounds, caused by the new Gothenburg Protocol of the Convention, was estimated for the year 2010 using atmospheric transfer matrices and official emissions. Statistically significant downward trends of SO4, NO3 and NH4 bulk deposition (fluxes or concentrations) were observed at 50% of the ICP IM sites. Implementation of the new UN/ECE emission reduction protocol will further decrease the deposition of S and N at the ICP IM sites in western and northwestern parts of Europe. Sites with higher N deposition and lower C/N-ratios clearly showed an increased risk of elevated N leaching. Decreasing SO4 and base cation trends in output fluxes and/or concentrations of surface/soil water were commonly observed at the ICP IM sites. At several sites in Nordic countries decreasing NO3 and H+ trends (increasing pH) were also observed. These results partly confirm the effective implementation of emission reduction policy in Europe. However, clear responses were not observed at all sites, showing that recovery at many sensitive sites can be slow and that the response at individual sites may vary greatly.  相似文献   

14.
The primary object of this paper is to provide a preliminary assessment of the effectiveness of NO x vs Volatile Organic Compounds (VOC) emissions control options in improving O3 air quality over the New York metropolitan area. To this end, we have applied the Urban Airshed Model (UAM) with the Carbon Bond IV (CB-IV) chemical mechanism utilizing the results of the Regional Oxidant Model (ROM) for the specification of initial/boundary concentrations and wind fields to the UAM. After examining the sensitivity of the predicted O3 concentrations to initial/boundary conditions and biogenic emissions, we have evaluated the impact of various hypothetical emissions reduction options on O3 air quality. Nested ROM/UAM simulations with an across-the-board reduction of 75% in the NO x and VOC emissions from sources located within the New York metropolitan area indicate that the option of VOC-only control is superior to the NO x -only control in reducing not only peak O3 levels over the entire modeling domain but also population exposure to unhealthy O3 levels. The model predicts that the combined 75% NO x and VOC control option also reduces the peak O3 concentration, but the improvement in O3 air quality is less than that predicted for the 75% VOC-only control strategy. Additional modeling analyses with different mix and levels of emissions control and meteorological conditions are needed to confirm these preliminary findings.  相似文献   

15.
We conducted a microcosm experiment with soil being sterilized, reinoculated with native microbial community and subsequently manipulated the bacterivorous nematodes, including three treatments: without (CK) or with introducing one species of the two bacterivores characterized with different body size but similar c-p (colonizer-persister) value (Rhabditis intermedia and Protorhabditis oxyuroides, accounted for 6 and 59% of bacterivores in initially undisturbed soil, respectively). We monitored the N2O and CO2 emissions, soil properties, and especially quantified gross N transformation rates using 15N tracing technique after the 50 days incubation. No significant differences were observed on soil NH4 + and NO3 ? concentrations between the CK and two bacterivores, but this was not the case for gross N transformation rates. In comparison to CK, R. intermedia did not affect soil N transformation rates, while P. oxyuroides significantly increased the rates of mineralization of organic N to NH4 +, oxidation of NH4 + to NO3 ?, immobilization of NO3 ? to organic N and dissimilatory NO3 ? reduction to NH4 +. Furthermore, the mean residence time of NH4 + and NO3 ? pool was greatly lowered by P. oxyuroides, suggesting it stimulated soil N turnover. Such stimulatory effect was unrelated to the changes in abundance of bacteria and ammonia-oxidizing bacteria (AOB). In contrast to CK, only P. oxyuroides significantly promoted soil N2O and CO2 emissions. Noticeably, bacterivores increased the mineralization of recalcitrant organic N but decreased soil δ13C-TOC and δ15N-TN values, in particular for P. oxyuroides. Combining trait-based approach and isotope-based analysis showed high potential in moving forward to a mechanistic understanding of bacterivore-mediated N cycling.  相似文献   

16.
The contributions of the anthropogenic sources of NOx from various combinations of contiguous U.S. states or Canadian provinces to integrated deposition across selected states or provinces are estimated with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model. The model assumes linearity between emissions and deposition, and uses the same parameterization methods, although with different rates, as in simulations of transport and deposition of SOX. Vertical distributions of emissions for the two classes of pollutants are substantially different in the gridded inventories used in simulations, with a weighted mean effective emission height of 160 m for NOX and 310 m for SOX. This might be expected to lead to an effective transport distance before deposition shorter for NOX than for SOX. However, the calculated fraction of NOX emissions deposited within the contiguous United States and Canada south of 60 deg N (57%) is not greatly different from the fraction calculated for SOX emissions (54%). This suggests that there may be compensating factors in the horizontal distribution of NOX emissions, and in the lower dry deposition velocities for NO/NO2 than for SO2 in ASTRAP.  相似文献   

17.
Four years of precipitation chemistry data for eastern North America were used to investigate seasonal and geographical variations in \({\text{SO}}_{\text{4}}^{\text{ = }} {\text{/NO}}_{\text{3}}^{\text{ - }} \) ratio. Several distinct regimes occur. One, in the region of heaviest acidic deposition extending from the states south of the Great Lakes across New England and southeastern Canada, has a very strong seasonal variation in the \({\text{SO}}_{\text{4}}^{\text{ = }} {\text{/NO}}_{\text{3}}^{\text{ - }} \) molar ratio in deposition. The ratio ranges from about 1.5 in summer to about 0.5 in winter. Another, in the smaller area of Texas and surrounding states, shows the reverse seasonal pattern. Yet another, in the high plains states, has a double maximum in the ratio in Spring and Fall. The remainder of the region has an irregular seasonal pattern. Insight into the cause of \({\text{SO}}_{\text{4}}^{\text{ = }} {\text{/NO}}_{\text{3}}^{\text{ - }} \) variations was obtained using a simple chemical transport box model. It showed that the chemical transformation of S02 and NOx in the atmosphere is a major factor. A comparison of model predictions and observations indicate that in the vicinity of mid-western American sources the molar ratio of amount of S02 oxidized in-cloud to that of N02 is O.5 in winter and 1.5 in summer.  相似文献   

18.

Purpose

Climate change is arguably the biggest environmental challenge facing humanity today. Livestock production systems are a major source of greenhouse gases that contribute to climate change. Nitrous oxide (N2O) is a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide (CO2). Nitrate (NO3 ?) leaching from soil causes water contamination, and this is a major environmental issue worldwide. Agriculture is identified as the dominant source for NO3 ? in surface and ground waters. In grazed grassland systems where animals graze outdoor pastures, most of the N2O and NO3 ? are from nitrogen (N) returned to the soil in the excreta of the grazing animal, particularly the urine. This paper reviews published literature on the use of nitrification inhibitors (NI) to treat grazed pasture soils to mitigate NO3 ? leaching and N2O emissions.

Materials and methods

This paper provides a review on: ammonia oxidisers, including ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA), that are responsible for ammonia oxidation in the urine patch areas of grazed pastures; the effectiveness of NIs, such as dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), in inhibiting the growth and activity of ammonia oxidisers; the efficacy of DCD and DMPP in reducing NO3 ? leaching and N2O emissions in grazed pastures; additional benefits of using NI in grazed pasture, including increased pasture production, decreased cation leaching and decreased NO3 ? concentrations in plants; and major factors that may affect the efficacy of NIs.

Results and discussion

Research from a number of laboratory and field studies have conclusively demonstrated that treating grazed pasture soils with a NI, such as DCD, is an effective means of reducing NO3 ? leaching and N2O emissions from grazed livestock production systems. Results show that N2O emissions from animal urine-N can be reduced by an average of 57 % and NO3 ? leaching from animal urine patches can be reduced by 30 to 50 %. The NI technology has been shown to be effective under a wide range of soil and environmental conditions. The NI technology also provides other benefits, including increased pasture production, reduced cation (Ca2+, Mg2+ and K+) leaching and reduced NO3 ? concentration in pasture plants which would reduce the risk of NO3 ? poisoning for the animal.

Conclusions

The use of NIs such as DCD to treat grazed pasture soil is a scientifically sound and practically viable technology that can effectively mitigate NO3 ? leaching and N2O emissions in grazed livestock production systems.
  相似文献   

19.
The ionic composition of 55 aerosol samples and 31 precipitation events collected in a coastal site in southern Sardinia (Capo Carbonara, 39°06 N; 09°31 E) were compared. The samples were collected during one year period (Oct'90/Oct'91) and showed high variability in composition according to meteorological conditions. Rain and soluble part of aerosol showed a strikingly similar ionic composition: most significant anions were chlorine and sulphate, and sodium is the principal cations, followed by magnesium and calcium. The acid events are associated with N-NW trajectories (anthropogenic influxes from N. Europe) with avg. pH=4.65, non sea salt (nss) Ca=60 eq/l and NO3/nssSO4=0.6. Southern precipitations are influenced by Saharan dust alkaline effects, with avg. pH=6.75,nssCa=271 eq/l and NO3/nssSO4=0.4. Na/Cl ratio in rain is similar to sea water (0.87), whilst in aerosols there is a Cl loss (Na/Cl=1.10), probably due to reaction with nitric acid. Total fluxes of Ca, Mg, NO3 and SO4 were 104, 9, 64 and 113 g/cm2, and wet deposition exceeded (65–90%) dry deposition. Scavenging ratios (SR) as defined by the equation:SR=[(Ci)rain/(Ci)air] *d, (d=1200g/m3) were calculated, using geometric means (Ci) of precipitation and aerosols collected concurrently during the period (a total of 23 samples). The SR values are Ca=3400, Cl=2400, Na, K, SO4=1700, Mg=1000 and NO3=750. These numbers could be useful to infer total fluxes by using simply rainwater ionic composition in Mediterranean semi-arid sites like Sardinia.  相似文献   

20.
Soil moisture affects the degradation of organic fertilizers in soils considerably, but less is known about the importance of rainfall pattern on the turnover of C and N. The objective of this study was to determine the effects of different rainfall patterns on C and N dynamics in soil amended with either biogas slurry (BS) or composted cattle manure (CM). Undisturbed soil cores without (control) or with BS or CM, which were incorporated at a rate of 100 kg N ha–1, were incubated for 140 d at 13.5°C. Irrigation treatments were (1) continuous irrigation (cont_irr; 3 mm d–1); (2) partial drying and stronger irrigation (part_dry; no irrigation for 3 weeks, 1 week with 13.5 mm d–1), and (3) periodic heavy rainfall (hvy_rain; 24 mm d–1 every 3 weeks for 1 d and 2 mm d–1 for the other days). The average irrigation was 3 mm d–1 in each treatment. Cumulative emissions of CO2 and N2O from soils amended with BS were 92.8 g CO2‐C m–2 and 162.4 mg N2O‐N m–2, respectively, whereas emissions from soils amended with CM were 87.8 g CO2‐C m–2 and only 38.9 mg N2O‐N m–2. While both organic fertilizers significantly increased CO2 production compared to the control, N2O emissions were only significantly increased in the BS‐amended soil. Under the conditions of the experiment, the rainfall pattern affected the temporal production of CO2 and N2O, but not the cumulative emissions. Cumulative NO leaching was highest in the BS‐amended soils (9.2 g NO ‐N m–2) followed by the CM‐amended soil (6.1 g NO ‐N m–2) and lowest in the control (4.7 g NO ‐N m–2). Nitrate leaching was also independent of the rainfall pattern. Our study shows that rainfall pattern may not affect CO2 and N2O emissions and NO leaching markedly provided that the soil does not completely dry out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号