首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sequential step filtration technique has been used to investigate the different particle size fractions of suspended solids in several raw, activated and digested sewage sludge samples. Liquid sludge was passed through filters with progressively smaller pore sizes, from 100 µm down to 0.2 µm. The concentrations of Cd, Cu, Ni, Pb, and Zn associated with each particle size fraction were also determined. The particle size distributions indicated that there was a greater proportion of larger particles in the raw and activated sludges than in the digested sludges. Generally in activated sludge the metals tended to be associated with the large particles of > 100 µm, whereas in raw and particularly digested sludges the metals were found in the smaller particle size fractions from 20 µm, down to 2.5 µm. Calculating specific associations in terms of mg kg?1 the 8 to 20 µm range appears important in complexing metals. This was especially evident when comparing the sludges from the same treatment works. Generally distributions were more widespread when results were expressed as mg kg?1 as opposed to mg L?1.  相似文献   

2.
《Journal of plant nutrition》2013,36(12):2067-2083
Abstract

Information is desired on plant species that have a great potential in phytoremediation of copper (Cu) contaminated soils. Two contrasting ecotypes of Elsholtzia argyi were comparatively studied using nutrient solution culture for their growth response and uptake, distribution, and translocation of Cu. The results show that the ecotype from an old mined area (Sanmen-ecotype) had greater tolerance to Cu than that from the nonmined area (Jiuxi-ecotype) based on dry matter yield at different Cu supply levels. Inhibited root and leaf growth was noted at the external Cu levels > 50 µmol L?1 for the Sanmen-ecotype, and at the Cu supply levels > 5 µmol L?1 for the Jiuxi-ecotype. Stem growth was most sensitive to Cu toxicity in E. argyi, and was inhibited at the Cu levels ≥ 2.5 µmol L?1 for Jiuxi-ecotype and ≥ 25 µmol L?1 for Sanmen-ecotype. Root Cu concentrations were higher in Sanmen-ecotype than in Jiuxi-ecotype, but leaf, especially stem Cu concentrations were much lower in the former than in the latter. Furthermore, Jiuxi-ecotype was much more efficient than Sanmen-ecotype in the translocation of Cu from root to the shoot, and it had higher ratios of stem/root and leaf/root Cu concentration. At the Cu supply levels higher than 10 µmol L?1, root concentrations of potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) considerably decreased in Jiuxi-ecotype, but were not affected or even increased in Sanmen-ecotype. Zinc concentrations in the stems, particularly in the leaves of Sanmen-ecotype increased by 3 folds, but were hardly changed in Juixi-ecotype when grown at the Cu levels higher than 10 µmol L?1. These results indicate that the Sanmen-ecotype of E. argyi is a Cu-tolerant ecotype, and its tolerance to high Cu levels was mainly related to its extraordinary capability to restrict Cu uptake, especially Cu translocation from root to the shoot, probably by competitive uptake and translocation of Zn.  相似文献   

3.
Elevated levels of As in contaminated water and soil could pose a major threat to the environment. Relatively high levels of As have been reported in agricultural drainage water and in evaporation pond sediments in Kern County, California. The objective of this study was to enumerate and isolate As-resistant microorganisms from agricultural drainage water and evaporation pond sediments and to assess their tolerance to metals, metalloids and antibiotics. The culture medium was amended with arsenite (III), arsenate (V), methylarsonic acid (MAA), and dimethylarsinic acid (DMA). Among the water samples, As(V), MAA, and DMA added to the medium at concentrations from 0.1 to 1000 mg L?1 showed no effect on the colony forming units (CFUs) compared with no As supplementation, while arsenite (III) (> 1.0 mg L?1) inhibited the population. The sediments showed three trends: (i) no effect on CFUs in the presence of As(V) up to 1000 mg kg?1, (ii) a decline in CFUs in the presence of > 100 mg kg?1, As(III), and (iii) an increase in CFUs upon the addition of MAA or DMA at > 25 mg kg?1, Arsenite (III) was much more toxic to the indigenous microflora than any other As species. Arsenite (III) inactivates many enzymes by having a high affinity for thiol groups of proteins. A plate diffusion method was used to assess the tolerance of the As-resistant bacteria to heavy metals, metalloids and antibiotics. Of 14 isolates tested, all were resistant to Co, Cu, Pb, Ni, Mo, Cr, Se(IV), Se(VI), As(III), As(V), Sb, Sn, and Ag (50 µg mL?1). The most toxic trace elements were Cd followed by Hg>Te>Zn. Multiple antibiotic tolerance (resistance to 2 or more antibiotics) was found among 43% of the isolates. The As-resistant bacteria showed a high tolerance to metals and antibiotics.  相似文献   

4.
Toxicity of heavy metals (Zn,Cu, Cd,Pb) to vascular plants   总被引:1,自引:0,他引:1  
The literature on heavy metal toxicity to vascular plants is reviewed. Special attention is given to forest plant species, especially trees, and effects at low metal concentrations, including growth, physiological, biochemical and cytological responses. Interactions between the metals in toxicity are considered and the role of mycorrhizal infection as well. Of the metals reviewed, Zn is the least toxic. Generally plant growth is affected at 1000 μg Zn L?1 or more in a nutrient solution, though 100 to 200 µg L?1 may give cytological disorders. At concentrations of 100 to 200 μg L?1, Cu and Cd disturb metabolic processes and growth, whereas the phytotoxicity of Pb generally is lower. Although a great variation between plant species, critical leaf tissue concentrations affecting growth in most species being 200 to 300 μg Zn g?1 dry weight, 15 to 20 μg Cu g?1 and 8–12 μg Cd g?1. With our present knowledge it is difficult to propose a limit for toxic concentrations of Zn, Cu, Cd and Pb in soils. Besides time of exposure, the degree of toxicity is influenced by biological availability of the metals and interactions with other metals in the soil, nutritional status, age and mycorrhizal infection of the plant.  相似文献   

5.
The genus Prosopis is a tree or shrub in the leguminosae family, subfamily fabaceae (mimosaceae). Many plants of the genus Prosopis are known to have medicinal properties. Only one species of Prosopis is found in Jordan, Prosopis farcta (Banks & Sol.) J.F. Macbr. The local name is Yanbout, and the English name is locust pods.

The aim of this study was to investigate some selected heavy metals including cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in Prosopis farcta, an unexplored Jordanian species of the Prosopis genus, because no data are available about these levels in this medicinal plant. These metals were tested in different parts of Prosopis farcta including root, aerial, and fruit as ethanolic extract plant and dry plant. Moreover, these metals were investigated in soil samples collected from the same area in which Prosopis farcta was grown. Results revealed that there was a significant difference between root and fruit for all test elements (P < 0.05). Roots were found to contain high average concentrations of Pb (2.14 µg g?1), Cu (18.56 µg g?1), and Zn (13.74 µg g?1). Copper and Zn concentrations in Prosopis farcta were within the permissible limits, whereas Pb concentration exceeded the permissible limit. Moreover, soil samples were analyzed for the metals. Results revealed that there was a positive correlation between the levels of Cu and Zn in medicinal plants and soils, whereas there was a negative correlation for Pb.

Two certified reference materials (tea leaves, NCSDC 73351; soil, GBW 07406) were analyzed to authenticate the accuracy of the method, and the precision was expressed by relative standard deviation.  相似文献   

6.
Abstract

Arsenic (As) is a deadly poison at high concentrations. It is mysterious in the sense that people are exposed to it most of the time through drinking groundwater, fortunately at much lower concentrations than the deadly levels, and usually without knowing it. Arsenic content in alluvial aquifers of Punjab varied from 3.5 to 688 µg L?1. Arsenic status of groundwater is classified into low (<10 µg L?1), moderate (≥10 to <25 µg L?1), high (≥25 to <50 µg L?1), and very high (>50 µg L?1). In zone I, the concentration of As in groundwater varied from 3.5 to 42 µg L?1 with a mean value of 23.4 µg L?1. On the basis of these limits, only 8% of samples were low, whereas 51 and 41% of the total samples collected from this region fall in the moderate and high As categories. The concentration of As in groundwater of zone II varied from 9.8 to 42.5 µg L?1 with a mean value of 24.1 µg L?1. Arsenic concentration in the alluvial aquifers of the central plain of zone II is 2 and 52% in the low and moderate limits. In this region, 46% of groundwater sites contain high As concentrations. Arsenic concentrations in the aridic southwestern parts are significantly different from other two provinces. The As concentration ranged from 11.4 to 688 µg L?1 with average value of 76.8 µg L?1. Eleven percent of the aquifers of the southwestern region of zone III are in the moderate category, 54% in the high, and 35% in the very high. According to safe As limits (<10 µg L?1), only 3 and 1% of the groundwater samples collected from zones I and II were fit for dinking purposes with respect to As content. In the aridic southwest, zone III, all water samples contained As concentrations greater than the safe limits and thus are not suitable for drinking purposes. The presence of elevated As concentrations in groundwater are generally due to the results of natural occurrences of As in the aquifer materials. The concentration of other competitive oxyanions in waters such as phosphate, sulfate, and borate also depressed the adsorption of As on the sorption sites of aquifer materials and thereby eventually elevate the As concentration in groundwaters. In groundwater of alluvial aquifers of Punjab, released from sulfide oxidation and oxyhydroxide of iron, elevated (>10 µg L?1) concentrations of As were widespread because of high pH (>8.0) and higher concentrations of phosphate, borate, sulfate, and hydroxyl anions. It is conclusively evident that geochemical conditions, such as pH, oxidation–reduction, associated or competing ions, and evaporative environments have significant effects on As concentration in groundwater. These conditions influence how much As is dissolved or precipitated into the water and how much is bound to the aquifer materials or the solid particles in water.  相似文献   

7.
Solvents, greases, and rinse waters from routine vehicle maintenance contain heavy metals and volatile organic chemicals (VOCs). In Wisconsin, these fluids enter catch basins along with rinsing waters and are discharged to soil infiltration systems drainfields after mixing with domestic wastewaters in a septic tank. The purpose of this study was to monitor heavy metal and VOC removal and treatment in catch basins and septic tanks at four publicly-owned motor vehicle service stations (MVSS). Cadmium, chromium, and lead were found in catch basin wastewater, septic tank effluent, and septic tank sludge at concentrations ranging from 0.002–7.7 mg L?1. Lead was found in the highest concentration. The highest concentrations of metals were in septic tank sludge. Of the >50 VOCs scanned for in catch basin wastewater, septic tank effluent, and septic tank sludge samples, 29 were found in concentrations that exceeded analytical detection limits. Concentrations of detected VOCs ranged from 1.0–15,800 µg L?1 and the highest concentrations of VOCs were found in catch basin wastewater and septic tank sludge. Acetone, ethylbenzene, toluene, and xylenes were the most commonly found VOCs at all sampling locations. Thus, heavy metals and VOCs were not completely removed in catch basins and were discharged to septic tanks where removal occured possibly as these contaminants settled with solids in the sludge. The level of treatment was, however, inadequate and heavy metals and VOCs were discharged to drainfields.  相似文献   

8.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

9.
Spatial and seasonal mobilization trends of metals in surface water were evaluated in the US–Mexico San Pedro River (SPR). Water samples were collected at five sampling stations for the analysis of dissolved oxygen, pH, electric conductivity, sulfates, and metals (Cd, Cu, Fe, Mn, Pb, and Zn). Quality of the water was characterized through Ecological Criteria of Water Quality (ECWQ) established in Mexico and Water Quality Criteria (Environmental Protection Agency (EPA)). High total metal concentrations were detected as follows: Fe?>?Cu?>?Mn?>?Zn?>?Pb?>?Cd. Metal concentrations were slightly higher in dry season than in rainy season: Cd (below detection limit (BDL)–0.21 mg L?1), Cu (BDL–13 mg L?1), Fe (0.16–345 mg L?1), Mn (0.12–52 mg L?1), Pb (BDL–0.48 mg L?1), and Zn (0.03–17.8 mg L?1). Low pH and dissolved oxygen values as well as high sulfate content were detected in both seasons. High values of metals (Cd, Cu, Fe, Mn, Pb, Zn) were detected at station E1 representing pollution source, as well as at stations E2 (Cd, Cu, Fe, Mn), E3 (Fe, Mn, Pb), and E4 and E5 (Fe, Mn). Detected concentrations exceeded maximum permissible established in ECWQ and Water Quality Criteria (EPA). Efflorescence salts on sediments in the dry season could increase levels of metals in water column. This study provides valuable information on the potential mobility of metals in surface water of SPR located in an arid environment where transport processes are strongly linked to climate. The information derived from this study should help the regional and national authorities to address present environmental regulations.  相似文献   

10.
《Journal of plant nutrition》2013,36(12):2745-2761
ABSTRACT

Effect of cadmium (Cd) on biomass accumulation and physiological activity and alleviation of Cd-toxicity by application of zinc (Zn) and ascorbic acid in barley was studied, using semisolid medium culture including 15 treatments [four Cd concentration treatments: 0.1, 1, 5, 50?µmol?L?1, four treatments with addition of 300?µmol?L?1 Zn or 250?mg?L?1 ascorbic acid (ASA) based on these four Cd concentrations, respectively, and three controls: basic nutrient medium, and with Zn or ASA, respectively]. Cadmium addition to semisolid medium, at a concentration of 1, 5, and 50?µmol?L?1, inhibited biomass accumulation and increased malondialdehyde (MDA) content of barley plants, while the addition of 0.1?µmol?L?1 Cd increased slightly dry mass. There was a tendency to a decrease in Zn, copper (Cu) concentrations both in shoots and roots and iron (Fe) in shoots of barley plants exposed to 1 to 50?µmol?L?1 Cd. In addition, there were indications of a stress repose characterized by increased superoxide dismutase (SOD) and peroxidase (POD) activities relative to plants not subjected to Cd. The physiological changes caused by Cd toxicity could be alleviated to different extent by application of 300?µmol?L?1 Zn or 250?mg?L?1 ASA in Cd stressed plants. The most pronounced effects of adding Zn or ASA in Cd stressed medium were expressed in the decreased MDA and increased biomass accumulation, e.g., MDA contents were reduced (p≤0.01) by 4.8%–17.8% in shoots and 0.5%–19.7% in roots by adding 300?µmol?L?1 Zn, in 50?µmol?L?1 Cd stressed plants, and by 1.3%–7.4% in shoots and 2.6%–4.5% in roots by application of 250?µmol?L?1 ASA, respectively. However, ASA addition may enhance Cd translation from root to shoot, accordingly, ASA would be unsuitable for the edible crops grown in Cd contaminated soils to alleviate phytotoxicity of Cd.  相似文献   

11.
The goal of this work was to investigate the occurrence of emerging contaminants in drinking water of the city of Campinas, Brazil. Tap water samples were analyzed using SPE-GC-MS for 11 contaminants of recent environmental concern. Six emerging contaminants (stigmasterol, cholesterol, bisphenol A, caffeine, estrone, and 17β-estradiol) were found in the samples. The latter two were detected only during the dry season, with concentrations below quantification limits. Stigmasterol showed the highest average concentration (0.34?±?0.13?µg L?1), followed by cholesterol (0.27?±?0.07?µg L?1), caffeine (0.22?±?0.06?µg L?1), and bisphenol A (0.16?±?0.03?µg L?1). In Campinas, where surface drinking water supplies receive large amounts of raw sewage inputs, the emerging contaminants levels in drinking waters were higher than median values compiled for drinking and finished water samples around the world.  相似文献   

12.
To determine the effects of irrigation water quality, plants were irrigated with normal potable water [0.25 dS m?1 electrical conductivity (EC), 25 mg L?1 sodium (Na), 55 mg L?1 chloride (Cl)], treated effluent (0.94 dS m?1 EC, 122 mg L?1 Na, 143 mg L?1 Cl) and saline water with low salinity (1.24 dS m?1 EC, 144 mg L?1 Na and 358 mg L?1 Cl) and high salinity (2.19 dS m?1 EC, 264 mg L ?1Na and 662 mg L?1 Cl) for snow peas, and high salinity (3.07 dS m?1 EC, 383 mg L?1 Na and 965 mg L?1 Cl) and very high salinity (5.83 dS m?1 EC, 741 mg L?1 Na and 1876 mg L?1 Cl) for celery. The greater salts build up in the soil and ion toxicity (Cl and Na) with saline water irrigation contributed to significantly greater reduction in root and shoot biomass, water use, yield and water productivity (yield kg kL?1 of water used) of snow peas and celery compared with treated effluent and potable water irrigation. There was 8%, 56% and 74% reduction in celery yield respectively with treated effluent, high salinity and very high salinity saline water irrigation compared with potable water irrigation. The Na concentration in snow peas shoots increased by 54%, 234% and 501% with treated effluent, low and high salinity saline water irrigation. Similarly, the increases in Na concentration in celery shoots were 19%, 35% and 82%. The treated effluent irrigation also resulted in a significant increase in soil EC, nitrogen (N) and phosphorus (P) content compared with potable water irrigation. The heavy metals besides salts build up appears to have contributed to yield reductions with treated effluent irrigation. The study reveals strong implications for the use of saline water and treated effluent for irrigation of snow peas and celery. The salt build up within the root zone and soil environment would be critical in the long-run with the use of saline water and treated effluent for irrigation of crops. To minimize the salinity level in rhizosphere, an alternate irrigation of potable water with treated effluent or low salinity level water may be better option.  相似文献   

13.
Runoff may cause losses of micronutrients from soils. This can result in environmental problems such as contaminant transfers to water or a decrease in soil fertility. Appropriate soil management may reduce these micronutrient losses. This study examined the effect of applying crop residues to the soil surface on iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) losses by runoff. Runoff and sediment yield were measured on 1-m2 plots using a rainfall simulator with constant 65 mm h?1 intensity. Eight successive rainfall applications were performed at 65 mm each. Corn (Zea mays L.) straw was applied to plots at rates ranging from 0 to 8 t ha?1. Both total and dissolved concentrations of the micronutrients studied were decreased by corn straw applications. After 520 mm cumulative rainfall, total soil losses ranged from 150 to 15354 kg ha?1 depending on the amount of corn straw applied. Total micronutrient concentrations in runoff were as follows: Fe from 14.98 to 611.12 mg L?1, Mn from 0.03 to 0.61 mg L?1, Cu from 0.10 to 1.43 mg L?1, and Zn from 0.21 to 5.45 mg L?1. The relative contribution of the dissolved fraction to the total micronutrient content loss was low, but varied depending on the nutrient, being less than 1 percent for Fe and Mn and almost 10 percent for Zn. Total and dissolved concentrations in runoff of the studied elements decreased exponentially as the rate of applied corn straw increased. In conclusion, the addition of corn straw to soil reduced micronutrient losses.  相似文献   

14.
Experimental addition of phosphate to enclosures in an acidified lake in Southern Norway was performed to study the effect on nitrate, pH and labile aluminium along a gradient of phosphate from 4–19 µg P L?1. Nitrate decreased from 180 µg L?1 to below detection limit after three weeks at P-concentrations > 17 µg L?1, due to phytoplankton uptake. pH increased from 4.9 to 5.2, corresponding to a 50% decrease of H+-equivalents from 12 to 6 µg P L?1 due to algal uptake of H+-ions when assimilating NO3 ?-ions. Due to the increased pH and probably also precipitation with phosphate, concentrations of labile aluminium decreased from 150 to 100 µg L?1 within the P-interval 4–19 µg L?1. Algal biomass increased from 0.5 to 6 µg chlorophyll a L?1 along the same P-gradient. The results suggest that moderate P-addition (< 15 µg P L?1 to avoid eutrophication problems) can improve water quality in moderately acidified lakes, and also increase nitrate retention in strongly acidified lakes. In humic lakes, the treatment will be less efficient due to light limitation of primary production and the presence of organic acids.  相似文献   

15.
A pilot-scale study and field measurements at commercial ponds were conducted to investigate the environmental fate of copper (Cu) applied as an algaecide in commercial catfish ponds. In the pilot study, a total of 774 g Cu(II) was applied to an experimental catfish pond over a period of 16 summer weeks. More than 90% of Cu applied became associated with suspended sediment particles within a few minutes of addition, and then nearly all Cu applied was transferred to the sediment phase within about 2 days. At the end of the study, the peak Cu content in the sediment increased from an initial concentration of 25~35 mg kg?1 to about 200 mg kg?1, and the applied Cu was able to reach a sediment depth of about 16 cm. Meanwhile, Cu concentration in the catfish body decreased from 12.7 ± 2.81 mg kg?1 to 6.15 ± 2.54 mg kg?1. Copper mass balance indicated that virtually all Cu applied was retained in the sediment. Only 0.01% of the total Cu applied was taken up by fish and 0.1% remained in pond water. Data from 3 commercial fishponds of different ages (1–25 years) and with different sediment types (acidic, neutral and calcareous) supported the pilot-scale observation. Both pilot-testing results and field measurements revealed that Cu is predominantly accumulated within the top sediment layer and barely reached the bottom soil regardless of the pond age and the type of the sediments. Field monitoring of groundwater quality suggested that the copper leaching into the groundwater surrounding the ponds was insignificant.  相似文献   

16.
Abstract

A hydroponic experiment was conducted to observe the effect of arsenic (As) on a number of physiological and mineralogical properties of rice (Oryza sativa L. cv. Akihikari) seedlings. Seedlings were treated with 0, 6.7, 13.4 and 26.8 µmol L?1 As (0, 0.5, 1.0 and 2.0 mg As L?1) for 14 days in a greenhouse. Shoot dry matter yield decreased by 23, 56 and 64%; however, the values for roots were 15, 35 and 42% for the 6.7, 13.4 and 26.8 µmol L?1 As treatments, respectively. Shoot height decreased by 11, 35 and 43%, while that of the roots decreased by 6, 11 and 33%, respectively. These results indicated that the shoot was more sensitive to As than the root in rice. Leaf number and width of leaf blade also decreased with As toxicity. Arsenic toxicity induced chlorosis symptoms in the youngest leaves of rice seedlings by decreasing chlorophyll content. Concentrations and accumulations of K, Mg, Fe, Mn, Zn and Cu decreased significantly in shoots in the 26.8 µmol L?1 As treatment. However, the concentration of P increased in shoots at 6.7 and 13.4 µmol L?1 As levels, indicating a cooperative rather than antagonistic relationship. Arsenic and Fe concentration increased in roots at higher As treatments. Arsenic translocation (%) decreased in the 13.4 and 26.8 µmol L?1 As treatments compared with the 6.7 µmol L?1 As treatment. Arsenic and Fe were mostly concentrated in the roots of rice seedlings, assuming co-existence of these two elements. Roots contained an almost 8–16-fold higher As concentration than shoots in plants in the As treatments. Considering the concentration of Mn, Zn and Cu, it was suggested that chlorosis resulted from Fe deficiency induced by As and not heavy-metal-induced Fe deficiency.  相似文献   

17.
《Journal of plant nutrition》2013,36(5):1065-1083
Abstract

Ten cvs. of four Brassicaceae species were tested to evaluate their copper (Cu) uptake and translocation. Germination and root length tests indicated that Brassica juncea cv. Aurea and Raphanus sativus cvs. Rimbo and Saxa were the species with the highest germinability and longest roots at Cu concentrations ranging from 25 up to 200 µM. Raphanus sativus cv. Rimbo grown in hydroponic culture at increasing Cu concentrations (from 0.12 up to 40 µM) for 10 days produced a relatively high biomass (17.2 mg plant?1) at the highest concentration and had a more efficient Cu translocation (17.8%) in comparison with cvs. Aurea and Saxa. The potential of cv. Rimbo for Cu uptake was then followed for 28 days at 5, 10, and 15 µM Cu. In comparison with the control, after 28 days of growth the 15 µM Cu‐treated plants showed a reduction in the tolerance index (?40%) and in the above‐ground dry biomass (?19%). On the contrary, an increase in the below‐ground dry weight was observed (+35%). Copper accumulated during the growth period both in the below‐ and above‐ground parts (about 14 and 4 µg plant?1 at 10 and 15 µM Cu, respectively), but the translocation decreased from 50 to 30% in the last week at all the concentrations used. In addition, cv. Rimbo grown in a multiple element [cadmium (Cd), chromium (Cr), Cu, lead (Pb), and zinc (Zn)] naturally‐contaminated site accumulated all elements in the above‐ground part in a range from 5 to 62 µg plant?1.  相似文献   

18.
Wet detention ponds are a preferable alternative in treating stormwater runoff. Literature suggests that a detention pond’s efficiency in removing principal pollutants of concern, TSS and metals, is highly variable and is affected by a complex array of factors including its geographic location. The objective of this paper was to investigate the TSS and metal removal efficiency of a highway stormwater detention pond in Spokane, Washington along with its flow regime. Pond influent and effluent data for TSS and metal were collected for approximately two years. TSS removal by the pond was found to be 68.1–99.4% with an average of 83.9%. Average metal removal efficiency was 54.7–64.6% which is 72.5–86.9% of the TSS removal. The pond’s flow regime was found to vary with its changing surface topography, a result of sedimentation of suspended solids.  相似文献   

19.
The toxic effects and accumulation of the heavy metals, Cd, Cu, and Zn by the sheath forming blue-green alga Chroococcus paris were investigated. All three of the metals were bound rapidly. Approximately 90% of the total amount of the added metal was bound within 1 min. Further significant binding occurred at a slower rate. The maximum metal binding capacity, as determined by filtration studies, was determined to be 53, 120, and 65 mg g?1 dry algal weight for Cd, Cu, and Zn, respectively. Binding curves for the metals followed the Langmuir adsorption isotherm model. The amount of metal bound increased with increasing pH. Metal binding increased significantly when pH was increased from 4 to 7. Nearly all of the metal was found to be rapidly EDTA extractable. Metals were found to be increasingly toxic to growing cultures in the order, Zn, Cd, and Cu. All of the metals studied exhibited toxic effects at concentrations greater than 1.0 mg L?1. The lowest concentrations used which showed detectable toxicity were 0.1 mg L?1 for Cu and >0.4 mg L?1 for Cd and Zn.  相似文献   

20.
Clarias anguillaris and Oreochromis niloticus were each exposed to solutions of Analar grade Cu sulphate in static bioassays at a temperature range of 20 to 23.5°C and CaCO3 hardness of 30 to 44 mg L?1. Copper accumulation was determined by Atomic Absorption Spectroscopy. The Cu residues in Clarias anguillaris exposed to 0.027, 0.055, and 0.11 mg Cu L?1. for 8 weeks were 15.7, 21.8, and 31.17 mg g?1 dry weight, respectively. Oreochromis niloticus exposed to 0.05, 0.1 and 0.2 mg Cu L?1. accumulated 34.69, 36.09, and 81.03 mg g?1 dry weight, respectively, over the 8-week period of exposure. The lowest and highest bioconcentration factors (BCF) were 117 and 581 for Clarias anguillaris and, 176 and 694 for Oreochromis niloticus. Copper concentrations in tissues of both species were directly related to the exposure concentrations and the duration of exposure. Increased accumulation towards the last 2 weeks of exposure may be due to impaired capacity of elimination or poor nutritional status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号