首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of paleosols with different ages of burial mounds and the unique fortified city of Arkhaim in the steppe zone of the Southern Trans-Urals (Chelyabinsk region) is carried out. They are located on the remnants of the Big Karaganka River valley. The time of construction of archaeological monuments dates back to the Early Iron Age (Sarmatian Culture, 2300–2200 years ago) and Middle Bronze Age (Sintashta culture, 3800–4100 years ago). The soils are of medium and light loamy granulometric composition. Morphological, chemical, and mineralogical investigations of paleosols and background soils indicate that, in the Sarmatian time, the climatic conditions in the region were drier than currently, while during the Sintashta cultural development, the climate of the region was similar to the present one.  相似文献   

2.
The development of the solonetzic process in paleosols buried under kurgans and in the modern surface soils has been studied on the basis of the analysis of the clay (<1 μm) fraction. The revealed changes in the textural differentiation of the soils and the mineralogical composition of the clay fraction during 4500 years are assessed from the viewpoint of the “memory“ of the solid-phase soil components. The mineralogical characteristics show that the solonetzic process in the modern background soil is more developed. The mineralogical approach allows us to reveal the long-term changes in the soil status; it is less useful for studying the effect of short-term bioclimatic fluctuations. In the latter case, more labile soil characteristics should be used. The mineralogical method, combined with other methods, becomes more informative upon the study of soil chronosequences. Our studies have shown that the data on the clay minerals in the buried paleosols may contain specific information useful for paleoreconstructions that is not provided by other methods.  相似文献   

3.
A digital version of the map of salt-affected soils on a scale of 1 : 2.5 M has been used to calculate the areas of these soils in the four federal okrugs (the Southern, Central, Volga, and Northwestern) of European Russia. The total area of soils with soluble salts in the upper meter reaches 23.3 million ha. More than half of them are solonchakous soils (with soluble salts in the layer deeper than 30 cm), and about 25% are saline from the surface. Soils of sulfate and chloride-sulfate salinization predominate (>50% of the area of salt-affected soils). Alkaline soda-saline soils and soils with the participation of soda comprise about 6%. We consider this value to be underestimated and requiring refinement, because soils of solonetzic complexes with neutral salts in the upper horizons may also contain soda in the solonetzic and subsolonetzic horizons, which was not always taken into consideration upon assessing the chemical composition of the salts. Solonetzes proper and solonetzic soils predominate among the salt-affected soils in the European part of Russia. The area of solonetzes is up to 9.4 million ha. The area of solonetzic soils (including solonetzic soils with salts in the layers of 0–100 and/or 100–200 cm) is 15.5 million ha. The highest percentage (32.2%) of salt-affected soils is in the Southern federal okrug.  相似文献   

4.
The microbial communities were studied in the modern and buried under kurgans (1st century AD) soils of solonetzic complexes on the dry steppes of the northern part of the Yergeni Upland. It was found that the changes in the numbers of microorganisms from different trophic groups and in the biomass of the fungal mycelium along the profiles of the modern and buried solonetzic chestnut soils and solonetzes do not differ significantly. The quantitative estimate of the impact of the solonetzic process on the spatial variability of the microbiological parameters of the soils was given on the basis of the ANOVA. As a rule, the values of the microbiological parameters in all the horizons of the modern and buried chestnut soils were 1.2–2.8 times higher than those in the modern and buried solonetzes. The influence of the degree of solonetzicity of the buried paleosols on the microbiological parameters manifested itself in the entire profile, though in each particular horizon it was only seen in the numbers of some particular trophic groups of microorganisms. The comparison between the mean weighted values of the microbiological parameters in the entire soil profiles (the A1 + B1 + B2 horizons) demonstrated an inverse relationship between the population density of the microorganisms utilizing easily available organic matter and the degree of solonetzicity of the buried paleosols. The maximum biomass of the fungal mycelium was found in the solonetzic chestnut paleosol; it exceeded the biomass of the fungal mycelium in the other paleosols (which did not differ significantly in that parameter from one another) by 1.5–1.6 times.  相似文献   

5.
The regularities of the formation of the humus profiles in chernozems of the Azov province (“priazovskii chernozems”) were revealed from studying the paleosols of burial mounds (archeological monuments) of the Bronze Age, Early Iron Age, and Middle Ages. The principal differences in the geneses of different parts of the humus profiles were revealed. From 40 to 70% of the current humus reserves in the 1-m-thick layer were shown to be accumulated by the late 3rd and early 2nd millennia BC. In the following 4000 thousand years, the development of the upper soil layers was cyclic. In favorable climatic periods, the humus content increased and accumulation processes predominated. Under aridization, the humus mineralization was intensified, the humus content decreased to 3%, and its reserves did not exceed 18 kg/m2. The fluctuations in the humus reserves in the past were not higher than 30% as compared to the recent reference soils. They were most actively replenished from the 1st to the 8th centuries A.D., and the rate of this process reached 0.5 kg/m2 for 100 years. In the same period, the thickness of the layer with the humus content above 1% drastically increased. The illuviation of peptized organic matter and its further bioturbation upon the development of the solonetzic process had the greatest importance in the formation of the lower part of the humus profiles.  相似文献   

6.
The state of irrigated soils of the Svetloyarsk irrigation system (Volgograd oblast) after 50 years or irrigation and ameliorative impacts has been assessed with the use of published and new field data, cadastral materials, and remote sensing materials. In the recent two decades, the area of regular irrigation and the volume of irrigation water have decreased, which has led to the lowering of the groundwater level to the depth of 5 m and more. The pattern of sown areas is characterized by a rise in the portion of winter cereals. Surface planing during the construction of the irrigation system led to a considerable transformation of the soil cover. On convex elements, solonetzic and other topsoil horizons were almost completely cut off. In many areas, they were replaced by a mixture of different horizons, including carbonaceous material. There are now significant areas of soils of different geneses with carbonates from the surface. Former solonchakous and slightly solonchakous soils are now at the stage of deep desalinization: soluble salts in them have been washed to the second meter, where slightly or moderately saline horizons with a predominance of sulfates have been formed. Irrigated areas on satellite images are specified by spotty patterns differing from those of natural solonetzic soil complexes because of the significant transformation of the soil cover during the construction and operation of irrigation system. The anthropogenically transformed soils can be mapped. Soil maps reflecting the modern state of the of soil cover of irrigated areas are given.  相似文献   

7.
Borisov  A. V.  Ganchak  T. V.  Demkina  T. S.  Demkin  V. A. 《Eurasian Soil Science》2006,39(1):S106-S111
The contents of fungal mycelium have been studied in paleosols of ancient archeological monuments and in surface soils within the steppe, dry steppe, and desert zones of European Russia, on the Stavropol, Privolzhskaya, and Ergeni uplands. The buried paleosols date back to the Bronze Age (4600–4500 and 4000–3900 BP), the Early Iron Age (1900–1800 BP), and the early 18th century (1719–1721). The fungal mycelium has been found in all these paleosols. The biomass of fungal mycelium varies from 2 to 124 μg/g of soil. The distribution patterns of fungal mycelium in the profiles of buried paleosols and surface soils have been identified. It is shown that the dark-colored mycelium is typical of the ancient paleosols. In some cases, the content of the dark-colored mycelium in them may reach 100% of the total mycelium biomass.  相似文献   

8.
The contents of phospholipids and carbon of the total microbial biomass were determined in the modern chestnut soil and in the paleosols buried under mounds of the Bronze and Early Iron Ages (5000–1800 years ago) in the dry steppe of the Lower Volga River basin. Judging from data on the ratio between the contents of phospholipids and organic carbon in the microbial cells, the carbon content of the living microbial biomass was calculated and compared with the total microbial biomass and total organic carbon in the studied soils. In the background chestnut soil, the content of phospholipids in the A1, B1, and B2 horizons amounted to 452, 205, and 189 nmol/g, respectively; in the paleosols, it was 28–130% of the present-day level. The maximum content was measured in the paleosols buried 5000 and 2000 years ago, in the periods with an increased humidity of the climate. In the background chestnut soil, the total microbial biomass was estimated at 5680 (the A1 horizon), 3380 (B1), and 4250 (B2) μg C/g; in the paleosols, it was by 2.5–7.0 times lower. In the upper horizons of the background soil, the portion of the living microbial biomass in the total biomass was much less than that in the paleosols under the burial mounds; it varied within 8.5–15.3% and 15–81%, respectively. The portion of living microbial biomass in the total organic carbon content of the background chestnut soil was about 4–8%. In the paleosols buried in the Early Iron Age (2000 and 1800 years ago), this value did not exceed 3–8%; in the paleosols of the Bronze Age (5000–4000 years ago), it reached 40% of the total organic carbon.  相似文献   

9.
To diagnose solonetzic process in virgin and agrogenically transformed soils of solonetzic soil complexes in the chernozemic and chestnut soil zones of European Russia and Western Siberia, their swelling kinetics and physicochemical characteristics were been studied. It was shown that a simultaneous application of these two approaches is more efficient than their separate use. The degree of manifestation of solonetzic process in the studied soils was determined. Swelling curves of sodic reclaimed solonetzes of Lyubinsk district of Omsk oblast and of a virgin solonetz of the Baraba Lowland with a moderate content of adsorbed sodium proved to be similar to those described for the vertic soils with a low infiltration capacity in the North Caucasus.  相似文献   

10.
Soil Salinization Map of Russia on a scale of 1: 2500000 (the paper version) has been used for compiling an electronic map of the Ural Federal Region and an attribute database containing twelve characteristics of soil salinization. The areas of saline soils have been quantified for the entire region and its administrative districts. The total area of saline soils in the 0- to 200-cm layer averages up to 6.85 million ha or 5.53% of the plains in the region. The area of soilssaline in the 0- to 100-cm layer averages up to 4.91 million ha, including 4.13 million ha of weakly solonchakous soils (84%) and 0.78 million ha of solonchakous ones (16%). More than half of them (58.3%) are assigned to the moderately and strongly saline soils. The soils saline in the 0- to 100-cm layer are characterized by the neutral salinization type (45%) or the types of soda salinization and neutral salinization with soda (55%). The areas of the region with saline soils are dominated by solonetzic microassociations. The average area of the solonetzes is about 3 million ha. The area of solonchaks is about 0.09 million ha. The area of saline soils is the greatest in Kurgan oblast and the lowest in Sverdlovsk oblast and the Yamal-Nenets autonomous okrug. The formation of saline soils in the Ural Federal Region is related to the climatic conditions of the steppe zone with insufficient moistening and lithologicgeomorphologic conditions (saline Paleogene-Neogene deposits and poor drainage of the area).  相似文献   

11.
Morphological, physicochemical, and isotopic properties of a two-member soil complex developed under dry steppe have been studied in the central part of the Manych Depression. The soils are formed on chocolate-colored clayey sediments, and have pronounced microrelief and the complex vegetation pattern. A specific feature of the studied soil complex is the inverse position of its components: vertic chestnut soil occupies the microhigh, while solonetz is in the microlow. The formation of such complexes is explained by the biological factor, i.e., by the destruction of the solonetzic horizon under the impact of vegetation and earth-burrowing animals with further transformation under steppe plants and dealkalinization of the soil in the microhighs. The manifestation of vertic features and shrink-swell process in soils of the complex developing in dry steppe are compared with those in the vertic soils of the Central Pre-Caucasus formed under more humid environment. It is supposed that slickensides in the investigated vertic chestnut soil are relict feature inherited from the former wetter stage of the soil development and are subjected to a gradual degradation at present. In the modern period, vertic processes are weak and cannot be distinctly diagnosed. However, their activation may take place upon an increase of precipitation or the rise in the groundwater level.  相似文献   

12.
The physicochemical conditions and morphological features of solonetzic process in soils of chernozemic solonetzic complexes were studied in the area of solonetzic experimental station no. 1 in the Kamennaya Steppe area in 55 years after a single application of ameliorative measures (earthening, gypsuming, and manuring) and cessation of the annual plowing. It was found that the modern soil-forming factors favor the development of soil processes inherent in native chernozems and solonetzes prior to their plowing and amelioration. They cause the restoration of the humus horizon in chernozems and the morphological differentiation of solonetzes after the cessation of plowing. Active postameliorative and postagrogenic restoration of solonetzic features is related to the preservation of the physicochemical conditions (the low concentration of salts and the presence of exchangeable sodium) in the soil profile. The humus horizon of chernozems applied over the surface of solonetzes is characterized by the appearance of solonetzic features under hydromorphic conditions.  相似文献   

13.
The results of the study of paleosols preserved in the Upper Permian deposits in the central part of the Russian plate are presented. The paleosol profiles consist of the medium loamy dark brown BMg,ca horizon and the hard cemented calcareous Mm,ca and Mca horizons. The imprints of plant roots in the Mm,ca horizon and in the upper part of the Mca horizon serve as a vivid diagnostic feature of these paleosols. Two paleosol morphotypes are distinguished according to the development of the structural-metamorphic BMg,ca horizon and the micromorphological features. These paleosols were developed from highly calcareous lacustrine deposits that were initially loose and then subjected to cementation. The processes of leaching and redistribution of carbonates, as well as the development of the soil structure, vertic properties, eluvialgley processes, lessivage, and soil creep, can be identified in the studied paleosols. They bear the record of the geomorphic conditions on a flat plain with recurrently drying inland water reservoirs in a semiarid paleoclimate with well-pronounced seasons.  相似文献   

14.
Paleosols of the unique fortress of Arkaim located in the steppe zone of the southern Transural region (Chelyabinsk oblast) were investigated. The dating of the buried soils was performed using the radiocarbon method. The time of building this archeological monument is the Middle Bronze Age (the Sintashta culture; the calibrated dating with 1σ confidence is 3700–4000 years ago). Seven pits of paleosols and ten pits of background ordinary chernozems were studied. The soils are loamy and sandy-loamy. The morphological and chemical properties of the buried and background ordinary chernozems are similar; they differ by the lower content of readily soluble salts in the paleosols as compared to the background ones. The sporepollen spectrum of the Arkaim paleosol is transitional from the steppe to the forest-steppe type. During the existence of this settlement, pine forests with fern ground cover grew, and hygrophytic species (alder and spruce) that nowadays are not recorded in the plant cover occurred. The main feature of the paleosols is the presence of pollen of xerophytic and halophytic herbaceous plants there. The few pollen grains of broad-leaved species testify to a higher heat supply as compared to the current one. Judging by the results of the spore-pollen and microbiomorphic analyses, the climate during the time of building the walls of the settlement was somewhat moister and warmer (or less continental) than the present-day climate. The duration of this period appeared to be short; therefore, soil properties corresponding to the changed environment could not be formed. They reflect the situation of the preceding period with the climatic characteristics close to the present-day ones.  相似文献   

15.
Diagnostic features of a catastrophic aridization of climate, desertification, and paleoecological crisis in steppes of the Lower Volga region have been identified on the basis of data on the morphological, chemical, and microbiological properties of paleosols under archeological monuments (burial mounds) of the Middle Bronze Age. These processes resulted in a certain convergence of the soil cover with transformation of zonal chestnut (Kastanozems) paleosols and paleosolonetzes (Solonetz Humic) into specific chestnut-like eroded saline calcareous paleosols analogous to the modern brown desert-steppe soils (Calcisols Haplic) that predominated in this region 4300–3800 years ago.1 In the second millennium BC, humidization of the climate led to the divergence of the soil cover with secondary formation of the complexes of chestnut soils and solonetzes. This paleoecological crisis had a significant effect on the economy of the tribes in the Late Catacomb and Post-Catacomb time stipulating their higher mobility and transition to the nomadic cattle breeding.  相似文献   

16.
Soil sequences along catenas crossing the peripheral parts of shallow-water drying lakes in the south of Siberia have been studied. They include the sulfidic and typical playa (sor) solonchaks (Gleyic Solonchaks), playa solonchak over the buried solonetz (Gleyic Solonchak Thapto-Solonetz)), shallow solonetz–solonchak (Salic Solonetz), and solonetzic and solonchakous chernozemic-meadow soil (Luvic Gleyic Chernozem (Sodic, Salic)). This spatial sequence also represents a series of historical stages of the development of halomorphic soils: the amphibian, hydromorphic, semihydromorphic, and automorphic–paleohydromorphic stages. During all of them, the biogenic component plays a significant role in the matter budget of halomorphic soils. The diversity, number, and functional activity of large insects and spiders are particularly important. Their total abundance in the course of transformation of the halomorphic soils decreases from several thousand to about 100 specimens/(m2 day), whereas their species diversity increases from 17 to 45 species. Changes in the functional structure of the soil zoocenosis and its impact on the character and intensity of pedogenetic processes can be considered driving forces of the transformation of hydromorphic soils. This is ensured by the sequential alteration of the groups of invertebrates with different types of cenotic strategy and different mechanisms of adaptation to biotic and abiotic components of the soil in the course of the development of the soil zoocenosis.  相似文献   

17.
The results of soil studies performed in 2005–2009 at the first experimental plot of the Arshan’-Zelmen Research Station of the Institute of Forest Science of the Russian Academy of Sciences are discussed. The post-reclamation state (about 55 years after reclamation) of the soils under forest shelterbelts and adjacent croplands in the rainfed agriculture was studied. The long-term efficiency of forest reclamation and crop-growing technologies developed in the 1950s by the Dokuchaev Soil Science Institute and the Institute of Forest to reclaim strongly saline solonetzic soils was proved. In 55 years, strongly saline sodic solonetzes with sulfate-chloride and chloride-sulfate composition of salts were replaced by agrogenic soils with new properties. Under forest shelterbelts, where deep (40–60 cm) plowing was performed, the soils were transformed into slightly saline solonetzic agrozems with slight soda salinization in the upper meter and with dealkalized plowed and turbated horizons (0–20(40) cm). Under the adjacent cropland subjected to the influence of the shelterbelts on the soil water regime, strongly saline solonetzes were transformed into solonchakous agrosolonetzes with slight soda salinization in the upper 50 cm. In the plow layer, the content of exchangeable sodium decreased to 4–12% of the sum of exchangeable cations. An increased alkalinity and the presence of soda were found in the middle-profile horizons of the anthropogenically transformed soils.  相似文献   

18.
A multilayered archaeological site Turganik Settlement in the valley of the Tok River in the Cis- Ural steppe (Orenburg oblast) was examined with the use of paleopedological and microbiomorph methods. Ancient people inhabited this area in the Latest Neolithic (Eneolithic) (5th millennium BC) and Early Bronze (4th millennium BC) ages. It was found that cultural layers dating back to the Atlantic period of the Holocene had been formed under conditions of a predominance of grassy–forb vegetation with a small portion of tree species and dry climate; the ancient settlement was not affected by floods and was suitable for permanent living. It is probable that soils of the chestnut type with salinization and solonetzic features were developed in that time. The final stages of the accumulation of cultural layers were marked by strong shortterm floods, whose sediments partly masked the features of the previous long arid epoch. The highest degree of aridity was at the end of the Atlantic period. In the Subboreal and Subatlantic periods, soils of the meadowchernozemic type were formed; the spore–pollen spectra of these periods are characterized by a higher portion of tree species and by the presence of phytoliths of meadow grasses. The climatic conditions were generally colder and more humid, though some short-term aridization stages could take place. Some of these stages are recorded in the thickness of the studied sediments.  相似文献   

19.
Physical and chemical properties, macro‐ and micromorphology, clay mineralogy, and stable‐isotope compositions of paleosols within a pedostratigraphic column (PSC) of early to late Pleistocene age, interstratified paleosols, and loess (NW Caucasus, S Russia) were examined to better understand the evolution of the pedogenic environment over this time period, separating the effects of postpedogenic diagenesis. The column includes eight paleosols and six intercalated loessic horizons. Most of paleosols represent Vertisols or vertic intergrades. Vertic features increase in the middle of the PSC, where the paleosols are more clayey in texture and reddish in color. The morphology of carbonate nodules and soft masses, morphology‐ and depth(age)‐related changes in stable C and O isotope compositions, soil color, redoximorphic features, clay mineralogy, and illuviated clay indicate periods of wetter pedoenvironment in the past and suggest the Pleistocene paleosols are polygenetic and were formed with several wet/dry stages under a climate generally similar to the modern environment in the N Caucasus (mean annual temperature approx. 9°C–12°C). Interpretation of the time sequence of climate/environmental change requires careful separation of pedogenic mineral phases from phases altered by later diagenesis. The early Pleistocene period of paleosol formation appeared to be wetter or more humid, resulting in more significant development of vertic features. The terrestrial ecosystem remained dominated by C3 vegetation throughout the formation of the PSC, with four small periods of change towards a greater proportion of C4 plants or increased moisture stress.  相似文献   

20.
Several series of well-developed paleosols of different ages have been examined on the Moskva River floodplain. In the beginning of the Holocene, forest-steppe biomes were widespread in this area, and dark-humus (Black) soils with stable humate humus and without features of textural differentiation predominated on the floodplain. The presence of meadow-steppe vegetation communities during this period is confirmed by the results of palynological and anthracological analyses. The lower paleosol in section RANIS 2 is represented by the deep humus horizon with 14C dates from 5500 to 8400 BP and the carbonate-accumulative horizon; it also contains large and deep tunnels of burrowing animals typical of chernozems. Wood charcoal is absent, and pollen of Artemisia and Chenopodium species predominates. Paleosols of the second half of the Holocene are represented by gray-humus and soddy-podzolic soils (Luvisols). In these soils and in the alluvial sediments, beginning from the Subboreal period, pollen of trees predominates; there are abundant charcoal of spruce and burnt spruce needles. In that time, forest-steppe and broadleaved forest biomes on the floodplain were replaced by southern taiga biomes. The second half of the Holocene is also specified by the human impacts on the local landscapes. Palynological and anthracological data attest to the large-scale burning of forests for pastures in the Bronze Age and, later, for cropland. The paleosol of the Iron Age is enriched in humus. It contains tunnels of burrowing animals related to the stage of anthropogenic meadows. It also contains pyrogenic calcite. The recent centuries have been characterized by extremely high floods triggered by the human activity; they have been accompanied by the fast accumulation of coarse-textured alluvial sediments and the formation of weakly developed alluvial soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号