首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
为了探讨金芩芍注射液含量测定的不确定度分析评定,通过分析测量过程,建立数学模型,确定不确定度来源,评价各标准不确定度分量合成标准不确定度,评定扩展不确定度,给出不确定度评定结果报告。金芩芍注射液含量测定结果可表示为(2.96±0.04)mg/m L(k=2)。测量结果不确定度的主要来源为天平称量、高效液相色谱仪和小体积玻璃量具。  相似文献   

2.
目的:探讨气相色谱法测定维生素E注射液含量的不确定度评定方法。方法:通过分析测量过程,确定并简化不确定度来源,计算各分量的不确定度,最后计算出合成标准不确定度和扩展不确定度。结果:维生素E注射液含量测定的结果可表示为(99.9±7.6)%(k=2),扩展不确定度为7.6%。结论:所建立的方法可用于维生素E注射液含量的不确定度的评定。  相似文献   

3.
为了建立离子色谱法测定饲料中水溶性氯化物含量的不确定度评定方法,分析不确定度来源并进行量化,找出不确定度的主要影响因素。依据《测量不确定度评定与表示》(JJF1059.1-2012),分别从样品重复测量、样品前处理、标准曲线拟合、标准溶液配制方面分析各不确定度分量,通过合成各不确定度分量得到方法的不确定度。离子色谱法测定饲料中水溶性氯化物含量为0.537%,其扩展不确定度为0.018%,k=2。标准系列溶液的配制过程和标准曲线拟合对扩展不确定度的影响较大,是不确定度的主要影响因素。  相似文献   

4.
以磺胺间甲氧嘧啶钠注射液为例,阐述永停滴定法含量测定结果的不确定度评定。通过建立数学模型,分析不确定度来源,对各个不确定度分量进行了评估,计算了扩展不确定度,含量测定结果可表述为(95.3±0.8)%(k=2)。结果表明,重复性测量、校准和温度差异引入的不确定度为测量结果不确定度的主要来源。  相似文献   

5.
试验为评定液相色谱-串联质谱法测定鱼饵中地西泮含量的不确定度。试验通过建立数学模型分析不同来源的不确定度,评定各不确定度分量。结果显示,测量结果的相对标准不确定度为4.55%,相对扩展的不确定度为9.10%,样品中地西泮含量为(23.821±2.168)μg/kg (K=2)。研究表明,鱼饵中地西泮含量的测量不确定度主要源于试样重复测量、标准溶液配制和试样称量。  相似文献   

6.
为建立紫外分光光度法测定维生素B_1注射液含量的不确定度评价方法,利用数学模型分析溶液配置过程和仪器测定过程的不确定度来源,并对各分量进行评价,最后计算了扩展不确定度并给出测量不确定度报告。维生素B_1注射液含量测定结果可表示为(93.9±0.9)%(k=2)。测量结果不确定度的主要来源为紫外分光光度计和小容量量器。  相似文献   

7.
为对管碟法测定硫酸安普霉素效价的不确定度进行评定,根据JJF1059-2019《测量不确定度评定与表示》中的有关规定,建立数学模型,应用测量不确定度评定与表达理论,分析不确定度来源,对各个不确定度分量进行评估,计算扩展不确定度。测定结果的扩展不确定度为U=1.8单位,可表示为(103.6±1.8)单位/mg(k=2)。测量不确定度的主要来源为重复性试验引入的不确定度,其次为溶液稀释过程中引入的不确定度,提示试验人员应注意效价测定试验中稀释定容的操作过程,并注意保持重复性试验条件的一致性。  相似文献   

8.
依据JJF 1059-1999《测量不确定度评定与表示》的原理与方法,建立高效液相色谱法测定乳制品中纳他霉素结果不确定度评定的数学模型.对整个测量过程的不确定度来源进行分析,并对不确定度各个分量进行评估和合成,得出合成标准不确定度为0.014,扩展不确定度为0.28mg/kg,乳制品中纳他霉素测定结果的置信区间为(9.95±028)mg/kg,k=2.  相似文献   

9.
对紫外-可见分光光度法测定阿苯达唑片含量的不确定度进行评定以及测量过程中各种不确定度来源进行分析与评估,含量测定结果可表示为(95.7±2.0)%(k=2)。结果表明,仪器的吸光度、重量差异、称样量和移液管的体积引入的不确定度为测量结果不确定度的主要影响因素。  相似文献   

10.
为提高检验结果的准确性,确定检验过程中的关键影响因素,对液相色谱法测定氟尼辛葡甲胺注射液含量进行不确定度评估。依据《中国兽药典》2020 版氟尼辛葡甲胺注射液质量标准对其含量进行测定,分析影响不确定度的因素,参照 JJF 1135 - 2005《化学分析测量不确定度评定》和JJF 1059.1-2012《测量不确定度评定与表示》中的规定及要求,对检验过程中的不确定因素进行评估,根据CNAS-GL006:2019 构建了氟尼辛含量的不确定度评估数学模型,对检测过程中各种不确定度的来源进行分析,并计算合成相对标准不确定度和扩展不确定度?氟尼辛葡甲胺注射液含量的不确定度结果表示为(102.2 ± 2.72)% ,(k = 2,置信区间为 95% ),主要来源于仪器重复性?  相似文献   

11.
评定气相色谱法测定乳粉中1-油酸-2-棕榈酸-3-亚油酸甘油三酯(1-oleic-2-palmitic-3-linoleic acid triglyceride,OPL)含量的不确定度。根据JJF 1059.1—2012《测量不确定度评定与表示》和CNAS-GL 006:2019《化学分析中不确定度的评估指南》等标准,建立不确定度模型,分析气相色谱法测定乳粉中OPL的不确定度来源,对主要影响不确定度的要素进行评定。结果表明:6?份试样OPL测量结果的平均值为1.172?g/100?g,OPL含量测量结果的相对扩展不确定度urel为0.023 6,提供约95%的包含概率;试样溶解并定容后的溶液质量浓度引入的标准不确定度是主要不确定度来源。  相似文献   

12.
本文根据《测量不确定度评定与表示》(JJF 1059.1-2012)[1]的有关规定,对抗生素微生物检定法测定酒石酸泰万菌素预混剂含量的不确定度进行分析和评定。通过量化各分量的相对不确定度,计算出合成不确定度,取置信概率为95%时,得到本次含量测定的扩展不确定度为99.9%±5.2%(P=95%)。  相似文献   

13.
采用电感耦合等离子体质谱法测定进口鱼粉中的镉含量,对整个测量过程的不确定来源进行了分析,并对不确定度各个分类进行了评定和合成。结果表明,电感耦合等离子体质谱法测定进口鱼粉中的镉含量的不确定度来源主要为工作曲线的拟合和样品的重复性测定。采用本方法测定了一个进口鱼粉中镉含量的测定结果为(0.959±0.048)mg/kg(k=2,p=95%)。  相似文献   

14.
对饲料中维生素A含量的测量不确定度进行评定,分析测量不确定度的来源,建立数学模型,经计算得到维生素A的含量测定结果的扩展不确定度为46 IU/g.在维生素A的含量测定过程中,标准溶液浓度是影响含量测量不确定度的主要因素.  相似文献   

15.
本文采用液相色谱法对饲料中巴氯芬残留量的不确定度进行评估,根据《测量不确定度评定与表示》等有关规定,建立数学模型,对试样的称量、标准溶液的配制、样品浓缩、标准品和样品的峰面积以及样品回收率等影响因素进行了评定,并对测量结果的不确定度来源进行量化,计算合成不确定度,得出本次含量测定的扩展不确定度为0.099mg/kg。  相似文献   

16.
砷作为有毒、有害物质是饲料质量安全控制一项重要指标,目前配合饲料中总砷测定的仲裁方法为银盐法,即分光光度法。为了评定分光光度法测定配合饲料中总砷含量结果的可靠性以及整个实验的检验水平,有必要对实验室的测量数据进行不确定度来源分析,比较各不确定度分量的大小,特别对那些显著性不确定度分量给予关注,以减小测量结果的不确定度,进而满足客户要求。本文对分光光度法测定配合饲料中总砷含量的不确定度进行了计算和评定。  相似文献   

17.
试验建立了高锰酸钾法测定饲料中钙含量不确定度评定的数学模型,分析了检测过程中不确定度的来源,计算了各不确定度的分量,得出了合成标准不确定度和扩展不确定度。饲料中钙含量的测定结果,钙含量为0.856 2%时,其扩展不确定度为0.022%,k=2。影响钙含量测量结果不确定度的最大因素是高锰酸钾标准溶液及试样处理、滴定体积带来的不确定度。  相似文献   

18.
建立微生物法测定婴幼儿配方乳粉中生物素含量的不确定度评定方法,以进行检测结果的质量控制,提高检测数据的准确性。按照GB 5009.259—2016《食品安全国家标准食品中生物素的测定》进行婴幼儿配方乳粉中生物素含量的检测,根据JJF 1059.1—2012《测量不确定度评定与表示》和GB/T 27418—2017《测量不确定度评定和表示》等要求,对检测过程中产生的各不确定度分量进行评定,合成标准不确定度。结果表明:标准曲线拟合和重复性检测产生的不确定度最大;婴幼儿配方乳粉中3个含量生物素的不确定度报告:样品A(19.87±2.84)μg/100 g,样品B(30.35±4.41)μg/100 g,样品C(53.15±7.15)μg/100 g(置信区间95%,包含因子k=2);随着样品中生物素含量的增高,检测结果的扩展不确定度也随之增大。  相似文献   

19.
为提高检验结果的准确性,确定检验过程中的关键影响因素,对气相色谱内标法测定多西环素中乙醇的含量进行不确定度评估。依据《中国兽药典》2020版多西环素质量标准对其乙醇含量进行测定,分析影响不确定度的因素,参照JJF 1135-2005《化学分析测量不确定度评定》和JJF 1059.1-2012《测量不确定度评定与表示》中的规定及要求,对检验过程中的不确定因素进行评估,根据CNAS-GL006:2019构建了乙醇含量的不确定度评估数学模型,,对检测过程中各种不确定度的来源进行分析,并计算合成相对标准不确定度和扩展不确定度。多西环素中乙醇含量的不确定度结果表示为(5±0.06)%,(k=2,置信区间为95%)。多西环素中乙醇含量的不确定度主要来源于供试品溶液的配制。  相似文献   

20.
研究旨在建立电感耦合等离子体发射光谱法(inductively coupled plasma optical emission spectroscopy,ICP-OES)测定饲料中锰的不确定度评定方法。样品经微波消解,将一定量的样品消解液注入ICP-OES仪器中,采用标准曲线法定量。分析了测定过程中的不确定度来源,对不确定度的组成进行评定和量化。根据数学模型计算了样品中锰的含量,合成标准不确定度和扩展不确定度。结果表明,ICP-OES测定饲料中锰的含量为508 mg/kg,扩展不确定度为46 mg/kg(k=2),结果表达为(508±46) mg/kg(k=2)。分析过程显示,不确定度的主要来源是加标回收试验,其次是样品溶液中锰浓度的测定和重复试验,其他因素引起的不确定度可以忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号