首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of amoxicillin (Amx) were determined in pigs following intravenous (IV) administration of a single dose of 15 mg/kg and a single dose of 15 mg/kg of a new oral formulation (Amx-FP containing 10% amoxicillin). Residue studies were performed to determine residues in edible tissues of healthy pigs after chronic oral administration of Amx-FP at a daily dose of 15 mg/kg for five consecutive days. After IV administration, the plasma concentration was characteristic of a two-compartment open model. The main pharmacokinetic variables were: t(1/2lambda(n)), MRT=90.1 min, V(darea)=0.81 L/kg and Cl(b)=3.9 mL/kg/min. After single oral administration the main pharmacokinetic variables were: C(max)=758 mug/L, t(max)=347 min and Cl(b/f)=3.7 mL/kg/min for Amx-FP. The oral bioavailability (F) was calculated at 11% for Amx-FP. Based on maximum residue levels (MRL) for AMX in pigs established at 50 microg/kg for all tissues, the withdrawal times of AMX in muscle and skin plus fat were estimated (95% tolerance limit and 95% confidence) to fall below the MRL after a withdrawal period of seven days. Levels of AMX in the liver and kidneys were estimated to fall below the MRL after a withdrawal period of four days.  相似文献   

2.
The pharmacokinetic properties of amoxicillin and clavulanic acid were studied in healthy, fasted pigs after single intravenous (i.v.) and oral (p.o.) dosage of 20 mg/kg of amoxicillin and 5 mg/kg of clavulanic acid. The plasma concentrations of the drugs were determined by validated high-performance liquid chromatographic methods and the pharmacokinetic parameters were calculated by compartmental and noncompartmental analyses. After i.v. administration of the two drugs, plasma concentration-time curves were best described by a three-compartmental open model for amoxicillin and a two-compartmental open model for clavulanic acid. Amoxicillin (with a t(1/2 gamma) = 1.03 h and a clearance of 0.58 L/h.kg) and clavulanic acid (with a t(1/2 beta) of 0.74 h and a clearance of 0.41 L/h.kg) were both rapidly eliminated from plasma. Both drugs had apparently the same volume of distribution of 0.34 L/kg. After p.o. administration of the two drugs, a noncompartmental model was used. Elimination half-lives of amoxicillin and clavulanic acid were not significantly different, i.e. 0.73 and 0.67 h respectively. The mean maximal plasma concentrations of amoxicillin and clavulanic acid were 3.14 and 2.42 mg/L, and these were reached after 1.19 and 0.88 h respectively. The mean p.o. bioavailability was found to be 22.8% for amoxicillin and 44.7% for clavulanic acid.  相似文献   

3.
The pharmacokinetics of ampicillin and amoxicillin following intravenous administration at a dose rate of 15 and 10 mg/kg respectively were studied in four healthy adult horses. Pharmacokinetics of pivampicillin and amoxicillin were studied after oral administration to four healthy adult horses. Pivampicillin, a prodrug of ampicillin, was administered orally to starved and fed horses at a dose rate of 19.9 mg/kg, which is equivalent on a molecular basis to 15 mg/kg ampicillin. Amoxicillin was administered orally to starved horses only, at a dose rate of 20 mg/kg. Ampicillin and amoxicillin concentrations in plasma, synovial fluid and urine were determined. Mean biological half-life of intravenously administered ampicillin and amoxicillin was 1.72 and 1.43 h respectively, whilst the distribution volume (Vss) appeared to be 0.180 and 0.192 1/kg. Orally administered pivampicillin and amoxicillin were rapidly absorbed. A maximum concentration in plasma of 3.80 micrograms/ml was reached 2 h after administration of pivampicillin to starved horses; in fed horses a maximum concentration of 5.12 micrograms/ml was reached 1 h after administration. After oral administration of amoxicillin a maximum concentration of 2.03 micrograms/ml was reached after 1 h. The (absolute) bioavailability of pivampicillin administered orally was 30.9% in starved horses and 35.9% in fed horses. The bioavailability of amoxicillin administered orally was 5.3% in starved horses.  相似文献   

4.
Pijpers, A., Schoevers, E.J., van Gogh, H., van Leengoed, L.A.M.G., Visser, I.J.R., van Miert, A.S.J.P.A.M. & Verheijden, J.H.M. The pharmacokinetics of oxytetracycline following intravenous administration in healthy and diseased pigs. J. vet. Pharmacol. Therap. 13, 320–326.
The pharmacokinetics of oxytetracycline (OTC) were studied in healthy pigs and in pigs endobronchially inoculated with Actinobacillus pleuropneumoniae toxins. In two groups of seven pigs OTC was administered intravenously in a single dose of 10 or 50 mg/kg, respectively. OTC was administered to clinically healthy pigs and 7 days later at 3 h after a challenge with A. pleuropneumoniae toxins. Pneumonia developed in toxin-treated pigs. In the challenged pigs there was a decreased distribution-rate constant (α) and a significantly increased elimination-rate constant (ß) ( P <0.05). Moreover, the apparent volume of distribution (V) was decreased. The elimination half-lives (t1/2ß) were approximately 6 h in the healthy pigs and 5 h in the diseased animals. There was no difference in the pharmacokinetic profile of OTC following administration of 50 mg/kg compared to 10 mg/kg.
A. Pijpers, Department of Herd Health and Reproduction, PO Box 80.151, 3508 TD Utrecht, The Netherlands.  相似文献   

5.
The main goal of present study was to determine the effects of an Escherichia coli endotoxin-induced endotoxaemic status on disposition of enrofloxacin after a single intravenous dose (5 mg/kg) in rabbits. Septic shock was induced by the i.v. bolus administration at a single dose of E. coli lipopolysaccharide. Six adult New Zealand White rabbits were used. Concentrations of drug in plasma were determined by HPLC. The plasma pharmacokinetic values for enrofloxacin were best represented using a two-compartment open model. Total plasma clearance (Cl(T)) decreased from 2.11 (l/h/kg) in healthy animals to 1.50 (l/h/kg) in rabbits with septic shock, which is related to an increase in the AUC(0-->infinity). In endotoxaemic rabbits, volume of distribution at steady state (V(dss) = 3.61 l/kg) was significantly lower (P < 0.05) than in healthy animals (V(dss) = 4.97 l/kg). However, the elimination half-life of enrofloxacin was not affected by lipopolysaccharide administration.  相似文献   

6.
1. The pharmacokinetic properties of doxycycline were determined in healthy chickens and chickens naturally infected with Mycoplasma gallisepticum after a single intravenous (i.v.) and oral administration of the drug at 20 mg/kg body weight. Tissue residues of the tested drug after an oral dose of 20 mg/kg given twice daily for 5 consecutive days were also estimated in diseased chickens. 2. The plasma concentrations of doxycycline following single i.v. and oral administration were higher in healthy chickens than in diseased ones. Following i.v. injection, the elimination half-life (t1/2beta), distribution half-life and mean residence time (MRT) were longer in healthy chickens than in diseased birds. The values of total body clearance (ClB) and volume of distribution (Vdss) were larger in healthy chickens than in diseased birds. 3. After single oral administration, the absorption half-life (tl/2ab) and the elimination half-life were longer in normal birds than in diseased ones. The maximum plasma concentration of the drug was higher in normal chickens than in diseased ones. 4. Following repeated oral administration, the concentration of doxycycline in all tissues except muscle was higher than the corresponding concentrations in plasma. Concentrations of doxycycline in different tissues were in the following order: kidney > liver > lung > muscle. The drug was detected in liver and kidney in substantial concentrations on d 5 post administration of the last dose whereas, on d 7, its concentration in all tissues was below the lower limit of the sensitivity of the assay method used. Because of the low sensitivity of the microbiological assay method used in this study, a safe withdrawal time for doxycycline in diseased birds could not be estimated for the meanwhile.  相似文献   

7.
The disposition of theophylline in healthy ruminating calves was best described by a first-order 2-compartment open pharmacokinetic model. The drug had a mean elimination half-life of 6.4 hours and a mean distribution half-life of 22 minutes. Total body clearance averaged 91 ml/kg/h. The mean values for the pharmacokinetic volume of the central compartment, pharmacokinetic volume of distribution during the terminal phase, and volume of distribution at steady state were 0.502, 0.870, and 0.815 L/kg, respectively. Theophylline was readily absorbed after oral administration to the ruminating calf, with a mean fraction of 0.93 absorbed. The plasma concentrations after oral dosing peaked in approximately 5 to 6 hours, with a mean absorption half-life of 3.7 hours. A flip-flop model (rate constant of input is much smaller than the rate constant of output) of drug absorption was not found because the elimination process roughly paralleled that of the study concerning IV administration. In a multiple-dose trial that used a dosage regimen based on single-dose pharmacokinetic values, clinically normal calves responded as predicted. However, diseased calves had higher than expected plasma concentrations after being given multiple oral doses of theophylline at 28 mg/kg once daily. Overt signs of toxicosis were not seen, but this aspect of the drug was not formally investigated. Theophylline can be used as an ancillary therapeutic agent to treat bovine respiratory disease, but not without risk. The suggested oral dose of theophylline at 28 mg/kg of body weight once daily should be tailored to each case.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Tulathromycin is a macrolide antimicrobial agent proposed for therapeutic use in treatment of porcine and bovine respiratory disease. In this study, the absolute bioavailability of tulathromycin solution was investigated in pigs. Eight pigs, with body weight of 20.5 ± 1.6 kg, were given a single dose of tulathromycin at 2.5 mg/kg oral (p.o.) and intravenous (i.v.) in a crossover design. The plasma concentrations of tulathromycin and its metabolite were determined by LC-MS/MS method, and the pharmacokinetic parameters of tulathromycin were calculated by noncompartmental analysis. After p.o. administration, the maximum plasma concentration (C(max) ) was 0.20 ± 0.05 μg/mL at 3.75 ± 0.71 h. The terminal half-life (t(1/2λz) ) in plasma was 78.7 ± 6.75 h, and plasma clearance (Cl/F) was 1.14 ± 0.28 L/h/kg. After i.v. injection, plasma clearance (Cl) was 0.580 ± 0.170 L/h/kg, the volume of distribution (Vz) was 64.3 ± 21.2 L/kg, and the t(1/2λz) was 76.5 ± 13.4 h. In conclusion, an analytical method for the quantification of tulathromycin and its metabolite in plasma in swine was developed and validated. Following p.o. administration to pigs at 2.5 mg/kg b.w., tulathromycin was rapidly absorbed and the systemic bioavailability was 51.1 ± 10.2.  相似文献   

9.
Bioavailability of amoxycillin in pigs   总被引:4,自引:0,他引:4  
Amoxycillin was administered to pigs intravenously (i.v.), intramuscularly (i.m.) and orally (p.o.), in a cross-over design to examine the bioavailability ( F ) of various drug formulations. These included: a sodium salt for reconstitution in water and administration i.v.; trihydrate salt in an oil base for intramuscular administration producing 'conventional' duration of plasma concentrations; a trihydrate salt in oil base giving prolonged (LA) duration, and a trihydrate powder for oral administration in solution. The concentration of amoxycillin in plasma was measured by high-performance liquid chromatography, and its pharmacokinetic variables were assessed for the individual pigs by use of non-compartmental methods.
  Following i.v. administration (8.6 mg/kg), amoxycillin was eliminated rapidly with a mean residence time ( MRT ) of 1.4 h. After i.m. administration of the conventional formulation (14.7 mg/kg), the plasma amoxycillin concentration peaked at 2 h at 5.1 μg/mL. The bioavailability was 0.83. Intramuscular administration (14.1 mg/kg) of the long acting formulation (i.m. LA), lead to two peaks in plasma at 1.3 and 6.6 h. The bioavailability was calculated to be 1.11. After p.o. administration to fasted pigs, peak concentration was reached after 1.9 h, and the bioavailability was 0.33. In fed pigs, the corresponding values were 3.6 h and 0.28. Data showed that treatment of respiratory tract diseases in pigs by p.o. dosing alone, may not be optimal, because of the relatively low bioavailability and the fact that infections often result in reduced feed and water consumption. A rational treatment regime for susceptible respiratory pathogens includes an initial i.m. injection, followed by p.o. dosing every 12 h. Alternatively, the long acting formulation may be administered i.m. in a dose of 15 mg/kg, which would lead to active plasma concentrations for approximately 48 h.  相似文献   

10.
Twenty-three hybrid pigs (23 ± 3 kg body wt) were assigned to three groups to investigate the pharmacokinetics of ampicillin (APC, 10 mg/kg) administered intravenously (i.v.) and intramuscularly (i.m.), and sulfadimidine (SDM, 50 mg/kg) administered intravenously as a bolus injection. In the first series of experiments the animals remained healthy. Subsequently, the pigs were infected with Streptococcus suum by subcutaneous (s.c.) inoculation and the experiments were repeated. The total apparent distribution volume of APC given intravenously was increased from 0.512 ± 0.026 L/kg in uninfected pigs to 0.68 ± 0.06 L/kg (P < 0.01) in infected pigs, whereas there were no significant changes in the same parameter for SDM (P > 0.05). The clearance of APC was increased markedly from 0.52 ± 0.07 L/kg/h in uninfected pigs to 0.62 ± 0.10 L/kg/h in infected pigs. In contrast, SDM clearance was decreased markedly from 0.023 ± 0.003 L/kg/h to 0.017 ± 0.003 L/kg/h (P < 0.05). As a result, the biological half-lives of the drugs were altered to varying degrees in infected pigs. The half-life of SDM was increased from 15.0 ± 3.0 h in uninfected pigs to 20 ± 7h in infected pigs (P < 0.05), but differences in APC half-lives between uninfected and infected animals were not observed (P > 0.05). There were no statistically significant differences in pharmacokinetic parameters of APC administered by intramuscular injection between the healthy and the diseased status, although its half-life was shortened from 0.76 ± 0.22 h in the healthy to 0.57 ± 0.23 h in the diseased. The results suggest that blood concentrations of APC and SDM are affected differently by the same disease due to its specific effects on their distribution and elimination.  相似文献   

11.
Twenty-six healthy female pigs weighing 19.5-33 kg were used in three separate experiments. The animals were fed individually twice a day. Trimethoprim/sulphadiazine (TMP/SDZ) formulation was added to feed in the amount of 6 mg/kg bw (TMP) and 30 mg/kg bw (SDZ). TMP and SDZ concentrations in blood plasma, muscles, liver and kidneys were measured. Pharmacokinetic parameters show that the absorption of TMP from the alimentary tract in pigs is faster than the absorption of SDZ, and the elimination of TMP is slower than that of SDZ. The absorption half-lives were 0.96 (TMP) and 2.24 h (SDZ), whereas elimination half-lives were 5.49 (TMP) and 4.19 h (SDZ). The observed TMP:SDZ ratios in blood plasma after multiple dose administration ranged from 1:11.4 to 1:23.2. One day after administration of the last dose of TMP/SDZ the plasma concentration ratio was 1:15.5, but in muscles, liver and kidneys it was much lower: 1:0.79, 1:0.14 and 1:1.53 respectively. The absolute TMP and SDZ tissue concentrations 1 day after the last multiple dose administration were very low (maximum TMP: 0.29 μg/g in liver; maximum SDZ: 0.23 μg/g in kidneys). Neither drug was detected in any tissue 8 days after the last administration of TMP/SDZ. Based on our results, it was concluded that there is no support for the TMP:SDZ pharmaceutical ratio 1:5 in oral formulations of these compounds for pigs. The administration of oral TMP/SDZ formulations once a day may result in the absolute tissue concentrations of these drugs being too low for antibacterial activity. The withdrawal period for such an oral TMP/SDZ formulation for pigs (according to accepted guidelines in Europe for MRL of TMP < 0.05 mg/kg of tissue) should not be less than 5 days.  相似文献   

12.
Abo-El-Sooud, K., Goudah, A. Influence of Pasteurella multocida infection on the pharmacokinetic behavior of marbofloxacin after intravenous and intramuscular administrations in rabbits. J. vet. Pharmacol. Therap. 33 , 63–68.
The pharmacokinetic behavior of marbofloxacin was studied in healthy ( n  = 12) and Pasteurella multocida infected rabbits ( n  = 12) after single intravenous (i.v.) and intramuscular (i.m.) administrations. Six rabbits in each group (control and diseased) were given a single dose of 2 mg/kg body weight (bw) of marbofloxacin intravenously. The other six rabbits in each group were given the same dose of the drug intramuscularly. The concentration of marbofloxacin in plasma was determined using high-performance liquid chromatography. The plasma concentrations were higher in diseased rabbits than in healthy rabbits following both routes of injections. Following i.v. administration, the values of the elimination half-life ( t 1/2β), and area under the curve were significantly higher, whereas total body clearance was significantly lower in diseased rabbits. After i.m. administration, the elimination half-life ( t 1/2el), mean residence time, and maximum plasma concentration ( C max) were higher in diseased rabbits (5.33 h, 7.35 h and 2.24 μg/mL) than in healthy rabbits (4.33 h, 6.81 h and 1.81 μg/mL, respectively). Marbofloxacin was bound to the extent of 26 ± 1.3% and 23 ± 1.6% to plasma protein of healthy and diseased rabbits, respectively. The C max /MIC (minimum inhibitory concentration) and AUC/MIC ratios were significantly higher in diseased rabbits (28 and 189 h) than in healthy rabbits (23 and 157 h), indicating the favorable pharmacodynamic characteristics of the drug in diseased rabbits.  相似文献   

13.
In the present study the feed and water consumption and pharmacokinetic parameters of orally administered oxytetracycline were compared in clinically healthy pigs and in the same pigs following a challenge with Actinobacillus (Haemophilus) pleuropneumoniae toxins. Endobronchial challenge with A. pleuropneumniae toxins was accompanied by anorexia, increased lassitude, labored breathing, fever, and increased white blood cell counts. Pleuropneumonia was evident in all pigs on autopsy. Following the challenge, both feed and water consumption were markedly reduced. In contrast to recommendations in the literature, it is concluded that drugs should not be administered to pneumonic pigs via water. In healthy pigs the oral bioavailability of oxytetracycline (50 mg/kg), given on an empty stomach, was 4.8% and the elimination half-life (t1/2 beta) was 5.92 h. After challenge, the pigs showed great variation in oxytetracycline plasma concentrations. In addition, the mean computed elimination rate constant (beta), t1/2 beta, the area under the plasma concentration-time curve (AUC), and clearance in pneumonic pigs differed significantly (P less than .05) from the values found in healthy pigs. The elimination half-life (t1/2 beta), AUC, and volume of distribution (Vd area) were increased. In diseased pigs the mean of maximum plasma concentrations (.87 micrograms/ml) was reached after 7 h, in contrast to 1.74 h (1.87 micrograms/ml) in the healthy pigs.  相似文献   

14.
The disposition of spiramycin and lincomycin was measured after intravenous (i.v.) and oral (p.o.) administration to pigs. Twelve healthy pigs (six for each compound) weighing 16–43 kg received a dose of 10 mg/kg intravenously, and 55 mg/kg (spiramycin) or 33 mg/kg (lincomycin) orally in both a fasted and a fed condition in a three-way cross-over design. Spiramycin was detectable in plasma up to 30 h after intravenous and oral administration to both fasted and fed pigs, whereas lincomycin was detected for only 12 h after intravenous administration and up to 15 h after oral administration. The volume of distribution was 5.6 ± 1.5 and 1.1 ± 0.2 L/kg body weight for spiramycin and lincomycin, respectively. For both compounds the bioavailability was strongly dependent on the presence of food in the gastrointestinal tract. For spiramycin the bioavailability was determined to be 60% and 24% in fasted and fed pigs, respectively, whereas the corresponding figures for lincomycin were 73% and 41%. The maximum plasma concentration of spiramycin (Cmax) was estimated to be 5 μg/mL in fasted pigs and 1 μg/mL only in fed pigs. It is concluded that an oral dose of 55 mg/kg body weight is not enough to give a therapeutically effective plasma concentration of spiramycin against species of Mycoplasma, Streptoccocus, Staphylococcus and Pasteurella multocida. The maximum plasma concentration of lincomycin was estimated to be 8 μg/mL in fasted pigs and 5 μg/mL in fed pigs, but as the minimum inhibitory concentration for lincomycin against Actinobacillus pleuropneumoniae and P. multocida is higher than 32 μg/mL a therapeutically effective plasma concentration could not be obtained following oral administration of the drug. For Mycoplasma the MIC90 is below 1 μg/mL and a therapeutically effective plasma concentration of lincomycin was thus obtained after oral administration to both fed and fasted pigs.  相似文献   

15.
Bimazubute, M., Cambier, C., Baert, K., Vanbelle, S., Chiap, P., Gustin, P. Penetration of oxytetracycline into the nasal secretions and relationship between nasal secretions and plasma oxytetracycline concentrations after oral and intramuscular administration in healthy pigs. J. vet. Pharmacol. Therap. 34 , 176–183. The penetration of oxytetracycline (OTC) in plasma and nasal secretions of healthy pigs was evaluated during the first study, in response to oral dose of 20 mg of OTC per kg of body weight (bwt) per day as a 400 mg/kg feed medication (n = 5) and to intramuscular (i.m.)‐administered formulations at 10 mg/kg bwt (n = 5), 20 mg/kg bwt (n = 5), 40 mg/kg bwt (n = 5). Concentrations of OTC in plasma and nasal secretions were determined by a validated ultra‐high performance liquid chromatography associated to tandem mass spectrometry method (UPLC/MS/MS). The objectives were to select the efficacy treatment and to evaluate the possibility to predict nasal secretions concentrations from those determined in plasma. The animals were housed together in each experiment. In each group, the treatment was administered once daily during 6 consecutive days, and nasal secretions and plasma were collected after 4 and 24 h at day 2 and day 6. For oral administration, only one medicated feed was prepared and distributed to all the animals together and was consumed in approximately 1 h. To meet recommendations of efficacy for OTC in nasal secretions, only the i.m. of 40 mg/kg bwt associated to an inter‐dosing interval of 24 h provides and maintains concentrations in nasal secretions ≥1 μg/mL, appropriate to the MIC 50 and 90 of Pasteurella multocida and Bordetella bronchiseptica, respectively, the main pathological strains in nasal secretions. It has been demonstrated that, using a generalized linear mixed model (GLMM), OTC in the nasal secretions (μg/mL) can be predicted taking into account the OTC concentrations in plasma (μg/mL), according to the following equation: OTCnasal secretions = 0.28 OTCplasma?1.49. In a second study, the pharmacokinetic behaviour of OTC in plasma and nasal secretions of healthy pigs was investigated, after single‐dose i.m. of 40 mg/kg bwt of the drug. Blood samples and nasal secretions were collected at predetermined times after drug administration. The data collected in 10 pigs for OTC were subjected to non‐compartmental analysis. In plasma, the maximum concentration of drug (Cmax), the time at which this maximum concentration of drug (Tmax) was reached, the elimination half‐life (t½) and the area under the concentration vs. time curve (AUC) were, respectively, 19.4 μg/mL, 4.0, 5.1 h and 150 μg·h/mL. In nasal secretions, Cmax, Tmax, t½ and AUC were, respectively, 6.29 μg/mL, 4.0, 6.6 h and 51.1 μg·h/mL.  相似文献   

16.
The pharmacokinetics of flunixin were determined after intravenous bolus injection at a single dose (2.2 mg/kg) in healthy rabbits and diseased rabbits with Escherichia coli lipopolysaccharide-induced septic shock. Six adult New Zealand White rabbits were used. Concentrations of drug in plasma were determined by HPLC. Pharmacokinetics were best described by a two-compartment open model. In healthy rabbits, there was a high plasma clearance (0.62 L/(h kg)), and a relatively short elimination half-life (1.19 h). In endotoxaemic rabbits, total plasma clearance (0.43 L/(h kg)) was significantly lower (p<0.05), and elimination half-life (1.90 h) and AUC0-∞ (5.29 (μg h)/ml) were significantly higher (p<0.05) than in healthy animals. The changes of pharmacokinetics of flunixin in rabbits with septic shock could be of clinical significance, and may require monitoring of plasma flunixin levels in endotoxaemic status.  相似文献   

17.
The pharmacokinetic behaviours of amoxicillin (AMX) and clavulanic acid (CA) in swine were studied after either an intravenous or oral administration of AMX (10 mg/kg) and CA (2.5 mg/kg). The concentrations of these two medicines in swine plasma were determined using high‐performance liquid chromatographic‐tandem mass spectrometry, and the data were analysed using a noncompartmental model with the WinNonlin software. After intravenous administration, both substances were absorbed rapidly and reached their effective therapeutic concentration quickly. CA was eliminated more slowly compared with AMX. Moreover, the distribution volume of AMX was larger than that of CA, suggesting that AMX could penetrate tissues better. After oral administration of the granular formulation, no significant difference was observed in the mean elimination half‐life value between AMX and CA. The mean maximal plasma concentrations of AMX and CA, reached after 1.14 and 1.32 hr, were 2.58 and 1.91 μg/m, respectively. The mean oral bioavailability of AMX and CA was 23.6% and 26.4%, respectively. After oral administration, the T>MIC50 for three common respiratory pathogens was over 6.12 hr. Therefore, oral administration could be more effective in the clinical therapy of pigs, especially when administered twice daily.  相似文献   

18.
The macrolide antibiotic tilmicosin has potential for treating bacterial respiratory tract infections in horses. A pharmacokinetic study evaluated the disposition of tilmicosin in the horse after oral (4 mg/kg) or subcutaneous (s.c.) (10 mg/kg) administration. Tilmicosin was not detected in equine plasma or tissues after oral administration at this dose. With s.c. injection, tilmicosin concentrations reached a maximum concentration of approximately 200 ng/mL in the plasma of the horses. Tilmicosin concentrations in plasma persisted with a mean residence time (MRT) of 19 h. Maximum tissue residue concentrations (C(max)) of tilmicosin measured in equine lung, kidney, liver and muscle tissues after s.c. administration were 2784, 4877, 1398, and 881 ng/g, respectively. The MRT of tilmicosin in these tissues was approximately 27 h. Subcutaneous administration of tilmicosin resulted in severe reactions at the injection sites.  相似文献   

19.
Chicken infected with caecal coccidiosis (Eimeria tenella) was used to evaluate the effect of coccidiosis on the pharmacokinetic and bioavailability of amoxicillin. The level of amoxicillin was estimated by high‐performance chromatography (HPLC) to calculate the pharmacokinetic parameters and oral bioavailability. For i.v. injection of amoxicillin, Vd and CL were 0.29 and 0.27 (mg/kg)/(μg/mL)/h, respectively. Compared with healthy chicken, intravenous injection of amoxicillin in the infected chicken showed higher distribution and elimination constants, delayed clearance and statistically significant higher AUC and MRT. Oral administration in healthy chicken was accompanied by rapid absorption and high bioavailability with Tmax, Cmax and F about 1.03 h, 3.26 μg/mL and 40.2, respectively. Furthermore, oral administration in the infected chicken produced higher mean absorption time, delayed Tmax, lower Cmax, smaller AUC value and lower bioavailability (16.76). Based on these results, monitoring and adjustment of amoxicillin dosing could be practiced during the presence of coccidiosis. The measured Cmax values suggest the administration of 1.3‐folds of the normal dose to maintain the normal maximal serum concentrations of amoxicillin in chicken infected with caecal coccidiosis.  相似文献   

20.
The pharmacokinetics of two sulfonamide/trimethoprim combinations were investigated after intravenous administration to clinically healthy pigs and to the same pigs following a challenge with Actinobacillus pleuropneumoniae toxins. Endobronchial challenge with A.pleuropneumoniae toxins resulted in fever, increased white blood cell counts and decreased water and feed consumption. Healthy, as well as febrile, pigs were given sulfadimethoxine (SDM) or sulfamethoxazole (SMX) intravenously at a dose of 25 mg/kg b.w. in combination with 5 mg trimethoprim (TMP) per kg body weight. The pharmacokinetic parameters of the sulfonamides as well as their main metabolites (acetyl sulfonamides) were not significantly different in healthy and febrile pigs. In healthy and pneumonic pigs, the mean elimination half-lives of SDM were 12.9 h and 13.4 h, respectively, those of SMX 2.5 h and 2.7 h, respectively, and those of TMP 2.8 h and 2.6 h, respectively. Distribution volumes in healthy and febrile pigs of SDM and SMX varied between 0.2 and 0.4 L/kg, and those of TMP between 1.1 and 1.6 L/kg. The mean AUC of TMP was decreased and the volume of distribution and total body clearance of TMP were increased in febrile pigs. Protein binding of the drugs and metabolites studied were not significantly changed after toxin-induced fever. The extent of protein binding of SDM, SMX and TMP was in the range 94–99%, 45–56% and 40–50%, respectively. Based on knowledge of in vitro antimicrobial activity of the drug combinations against A.pleuropneumoniae it was concluded that after intravenous administration of the dose administered (30 mg/kg of the combination preparations) to healthy and pneumonic pigs, plasma concentrations of SMX and TMP were above the concentration required for growth inhibition of 50% of A., pleuropneumoniae strains for approximately 16 h, whereas bacteriostatic plasma concentrations of SDM were still present after TMP had been eliminated from plasma. Because of similar elimination half-lives of SMX and TMP in pigs this combination is preferred to the combination of SDM with TMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号