首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Quantification of melanoidin concentration in sugar-casein systems   总被引:1,自引:0,他引:1  
Melanoidins are the final, brown, high molecular weight products of the Maillard reaction. The aim of the present study was to determine the average molar extinction coefficients of melanoidins formed in heated glucose-casein and fructose-casein systems. The value of the extinction coefficient can be used to translate spectrophotometrically measured browning (absorbance values) into melanoidin concentration. In the present study the melanoidins were quantified by measuring the concentration of sugar incorporated into the melanoidins, using (14)C-labeled sugar. The extinction coefficient of the melanoidins remained constant during the observation period as the absorbance at 420 nm increased to approximately 8 units, and it was calculated to be 477 (+/- 50) L mol(-1) cm(-1) in the glucose-casein reaction and 527 (+/- 35) L mol(-1) cm(-1) in the fructose-casein reaction. This difference is not significant. An increase of the number of sugar molecules per reactive amino group during the heating of glucose-casein and the fructose-casein mixtures was observed by the radiochemical method as well as by microanalysis of the high molecular weight fraction.  相似文献   

2.
Kinetics of reduction of iron(IV) in ferrylmyoglobin by chlorogenate in neutral or moderately acidic aqueous solutions (0.16 M NaCl) to yield metmyoglobin was studied using stopped flow absorption spectroscopy. The reaction occurs by direct bimolecular electron transfer with (2.7 +/- 0.3) x 10(3) M(-)(1).s(-)(1) at 25.0 degrees C (DeltaH( )(#) = 59 +/- 6 kJ.mol(-)(1), DeltaS(#) = 15 +/- 22 J. mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin (pK(a) = 4.95) and with 216 +/- 50 M(-)(1).s(-)(1) (DeltaH( )(#) = 73 +/- 8 kJ. mol(-)(1), DeltaS( )(#) = 41 +/- 30 J.mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin in parallel with reduction of a chlorogenate/ferrylmyoglobin complex by a second chlorogenate molecule with (8.6 +/- 1.1) x 10(2) M(-)(1).s(-)(1) (DeltaH( )(#) = 74 +/- 8 kJ.mol(-)(1), DeltaS( )(#) = 59 +/- 28 J.mol(-)(1).K(-)(1)) for protonated ferrylmyoglobin and with 61 +/- 9 M(-)(1).s(-)(1) (DeltaH( )(#) = 82 +/- 12 kJ.mol(-)(1), DeltaS( )(#) = 63 +/- 41 J. mol(-)(1).K(-)(1)) for nonprotonated ferrylmyoglobin. Previously published data on ascorbate reduction of ferrylmyoglobin are reevaluated according to a similar mechanism. For both protonated and nonprotonated ferrylmyoglobin the binding constant of chlorogenate is approximately 300 M(-)(1), and the modulation of ferrylmyoglobin as an oxidant by chlorogenate (or ascorbate) leads to a novel antioxidant interaction for reduction of ferrylmyoglobin by ascorbate in mixtures with chlorogenate.  相似文献   

3.
High-molecular-weight (HMW) water-soluble melanoidins were prepared from model systems of L-(+)-ascorbic acid-glycine, L-(+)-ascorbic acid-lysine, L-(+)-ascorbic acid-glutamic acid, and glucose-glycine using a very recently approved standard protocol. The amount of HMW water-soluble melanoidins prepared from L-(+)-ascorbic acid was over 5-15 times higher than the amount obtained from glucose. The study of the release of a model flavor compound, namely isoamyl acetate, from melanoidins by solid-phase microextraction (SPME) showed that SPME is a suitable technique for the analysis of flavor release from melanoidin-containing solutions. From the studies on the retention capacity of the melanoidins toward isoamyl acetate, an increased release of the flavor compound was observed from the melanoidins prepared from the L-(+)-ascorbic acid-glycine model system, whereas the opposite effect was observed from the melanoidins prepared from the L-(+)-ascorbic acid-lysine/glutamic acid model systems. The melanoidins prepared from the glucose-glycine model system had the same effect as the melanoidins prepared from the L-(+)-ascorbic acid-glycine model system.  相似文献   

4.
We followed the contribution of released glucose to the formation of melanoidins in the maltose-glycine reaction by adding (14)C glucose to the maltose-glycine mixture, after it already had undergone some reaction. This approach allowed us to confirm the turnover of glucose in this reaction and hence the role of glucose in forming melanoidins. A comparison of the total amount of glucose converted into the melanoidins with the total concentration of melanoidins formed from maltose and glycine showed that the concentration of melanoidins originating from the released glucose was relatively small in comparison to the total melanoidins concentration. Hence, the parallel glucose-glycine reaction is considered to be only a minor pathway in the formation of maltose-glycine melanoidins. The incorporation of glucose into the nondialyzable melanoidins in the maltose-glycine reaction was in excellent agreement with the amount estimated from a kinetic model for the reaction of maltose with glycine. The rate constants were estimated by nonlinear regression, via multiresponse modeling.  相似文献   

5.
Precarthamin, a yellow precursor of carthamin, was efficiently isolated from the yellow petals of safflower (Carthamus tinctorius L. ) with Sephadex LH-20 column chromatography and preparative HPLC, and identified with UV-vis and NMR spectrometry. The UV-vis spectrum of precarthamin showed lambda(max) of 238 and 406 nm in MeOH. The molar extinction coefficients of precarthamin at 406 nm in MeOH and 50 mM citrate buffer (pH 5.0) were 59 000 M(-)(1) cm(-)(1) and 45 400 M(-)(1) cm(-)(1), respectively. The isolated and structurally identified precarthamin was converted to a red pigment by a homogeneously purified enzyme from the immature petals of safflower in 50 mM citrate buffer (pH 5.0). The enzymatically converted red pigment was identified as carthamin, a red pigment of safflower by TLC, HPLC, and UV-vis spectral analysis.  相似文献   

6.
Chromatographic, chemical, and spectroscopic techniques were used to characterize the physicochemical properties of napin purified by preparative chromatography. The molar extinction coefficient was determined (epsilon = 0.56), and static and dynamic light scattering measurements enabled the average molecular weight (M(w) = 13919), the second virial coefficient (A(2) = 23.95 x 10(-)(5) mol cm(3) g(-)(2)), and the hydrodynamic radius (R(H) = 1.98 nm) to be determined. No conformational changes were observed by fluorescence and circular dichroism measurements in different buffers at pH 3, 4.6, 7, and 12, confirming the high pH stability of this protein. From MALDI-TOF analysis and after enzymatic digestion, it was found that this purified sample, extracted from the rapeseed variety Express, contained mainly isoform 2SS3_BRANA.  相似文献   

7.
The interactions between bovine folate-binding protein (FBP) and different folate derivatives in pure diastereoisomeric forms were studied at pH 7.4 by a surface plasmon resonance technology (Biacore). The results show that folic acid had the most rapid association rate (k(a) = 1.0 x 10(6) M(-)(1) s(-)(1)), whereas (6S)-5-HCO-5,6,7,8-tetrahydrofolic acid had the most rapid dissociation rate (k(d) = 3.2 x l0(-)(3) s(-)(1)). The equilibrium dissociation constant (K(D)), calculated from the quotient of k(d)/k(a), showed that the two forms of folates not occurring in nature, that is, folic acid and (6R)-5-CH(3)-5,6,7,8-tetrahydrofolic acid, had the highest affinities for FBP, 20 and 160 pmol/L, respectively. The results thus show that there were great differences in the interactions between folate-binding protein and the major forms of folate derivatives. The nutritional implications of these differences are discussed.  相似文献   

8.
Rocket (Eruca sativa Mill. or Eruca vesicaria L.) is widely distributed all over the world and is usually consumed fresh (leafs or sprouts) for its typical spicy taste. Nevertheless, it is mentioned in traditional pharmacopoeia and ancient literature for several therapeutic properties, and it does contain a number of health promoting agents including carotenoids, vitamin C, fibers, flavonoids, and glucosinolates (GLs). The latter phytochemicals have recently gained attention as being the precursors of isothiocyanates (ITCs), which are released by myrosinase hydrolysis during cutting, chewing, or processing of the vegetable. ITCs are recognized as potent inducers of phase II enzymes (e.g., glutathione transferases, NAD(P)H:quinone reductase, epoxide hydrolase, etc.), which are important in the detoxification of electrophiles and protection against oxidative stress. The major GL found in rocket seeds is glucoerucin, GER (108 +/- 5 micromol g(-)(1) d.w.) that represents 95% of total GLs. The content is largely conserved in sprouts (79% of total GLs), and GER is still present to some extent in adult leaves. Unlike other GLs (e.g., glucoraphanin, the bio-precursor of sulforaphane), GER possesses good direct as well as indirect antioxidant activity. GER (and its metabolite erucin, ERN) effectively decomposes hydrogen peroxide and alkyl hydroperoxides with second-order rate constants of k(2) = 6.9 +/- 0.1 x 10(-)(2) M(-)(1) s(-)(1) and 4.5 +/- 0.2 x 10(-)(3) M(-)(1) s(-) , respectively, in water at 37 degrees C, thereby acting as a peroxide-scavenging preventive antioxidant. Interestingly, upon removal of H(2)O(2) or hydroperoxides, ERN is converted into sulforaphane, the most effective inducer of phase II enzymes among ITCs. On the other hand, ERN (and conceivably GER), like other ITCs, does not possess any chain-breaking antioxidant activity, being unable to protect styrene from its thermally (37 degrees C) initiated autoxidation in the presence of AMVN. The mechanism and relevance of the antioxidant activity of GER and ERN are discussed.  相似文献   

9.
Using 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as substrate, it has been shown that the increased peroxidase activity for decreasing pH of myoglobin activated by hydrogen peroxide is due to a protonization of ferrylmyoglobin, MbFe(IV)=O, facilitating electron transfer from the substrate and corresponding to pK(a) approximately 5.2 at 25.0 degrees C and ionic strength 0.16, rather than due to specific acid catalysis. On the basis of stopped flow absorption spectroscopy with detection of the radical cation ABTS(.+), the second-order rate constant and activation parameters for the reaction between MbFe(IV)=O and ABTS were found to have the values k = 698 +/- 32 M(-1) s(-1), DeltaH# = 66 +/- 4 kJ mol(-1), and DeltaS# = 30 +/- 15 J mol(-1) K(-1) at 25.0 degrees C and physiological pH (7.4) and ionic strength (= 0.16 M NaCl). At a lower pH (5.8) corresponding to the conditions in meat, values were found as follows: k = 3.5 +/- 0.3 x 10(4) M(-1) s(-1), DeltaH# = 31 +/- 6 kJ mol(-1), and DeltaS# = -53 +/- 19 J mol(-1) K(-1), indicative of a shift from outersphere electron transfer to an innersphere mechanism. For steady state assay conditions, this shift is paralleled by a shift from saturation kinetics at pH 7.4 to first-order kinetics for H2O2 as substrate at pH 5.8. In contrast, the activation reaction between myoglobin and hydrogen peroxide was found at 25.0 degrees C to be slow and independent of pH with values of 171 +/- 7 and 196 +/- 19 M(-1) s(-1) found at physiological and meat pH, respectively, as determined by sequential stopped flow spectroscopy, from which a lower limit of k = 6 x 10(5) M(-1) s(-1) for the reaction between perferrylmyoglobin, .MbFe(IV)=O, and ABTS could be estimated. As compared to the traditional peroxidase assay, a better characterization of pseudoperoxidase activity of heme pigments and their denatured or proteolyzed forms is thus becoming possible, and specific kinetic effects on activation, substrate oxidation, or shift in rate determining steps may be detected.  相似文献   

10.
The reaction between the triplet excited state of riboflavin and amino acids, peptides, and bovine whey proteins was investigated in aqueous solution in the pH range from 4 to 9 at 24 degrees C using nanosecond laser flash photolysis. Only tyrosine and tryptophan (and their peptides) were found to compete with oxygen in quenching the triplet state of riboflavin in aqueous solution, with second-order rate constants close to the diffusion limit, 1.75 x 10(9) and 1.40 x 10(9) L mol(-1) s(-1) for tyrosine and tryptophan, respectively, with beta-lactoglobulin and bovine serum albumin having comparable rate constants of 3.62 x 10(8) and 2.25 x 10(8) L mol(-1) s(-1), respectively. Tyrosine, tryptophan, and their peptides react with the photoexcited triplet state of riboflavin by electron transfer from the tyrosine and tryptophan moieties followed by a fast protonation of the resulting riboflavin anion rather than by direct H-atom abstraction, which could be monitored by time-resolved transient absorption spectroscopy as a decay of triplet riboflavin followed by a rise in riboflavin anion radical absorption. For cysteine- and thiol-containing peptides, second-order rate constants depend strongly on pH, for cysteine corresponding to pKaRSH = 8.35. H-atom abstraction seems to operate at low pH, which with rising pH gradually is replaced by electron transfer from the thiol anion. From the pH dependence of the second-order rate constant, the respective values for the H-atom abstraction (k = 1.64 x 10(6) L mol(-1) s(-1)) and for the electron transfer (k = 1.20 x 10(9) L mol(-1) s(-1)) were determined.  相似文献   

11.
The color and polyphenol oxidase (PPO) activity of fresh-cut Golden delicious apples were evaluated throughout cold storage under modified atmospheres. The shelf life of cut apples was extended to several weeks, especially when an initial atmosphere of 90.5% N(2) + 7% CO(2) + 2.5% O(2) and plastic pouches of 30 cm(3)/cm(2) x bar x 24 h were used. Under these conditions, a maximum 62% PPO activity depletion was observed. In all cases, the faster the initial PPO activity decays, the less the color changes. A fractional conversion first-order model was proposed for predicting color changes in minimally processed apples. Browning was better described through lightness (L) (k(L) = 0.017 - 0.07 day(-1)) and color difference (Delta E*) values (k(Delta E) = 0.015 - 0.073 day(-1)), which fitted the model with enough accuracy.  相似文献   

12.
Hydrolyses of fenamiphos, fipronil, and trifluralin were studied in aqueous buffer solutions of pH 4.1, 7.1, and 9.1 at different temperatures, 5, 22 +/- 1, 32 +/- 1, and 50 +/- 1 degrees C. Fenamiphos, fipronil, and trifluralin were found to be more stable in acidic and neutral buffer solutions at temperatures of 5 and 22 +/- 1, and dissipation is rapid at 50 +/- 1 degrees C. In basic buffer and at higher temperature, degradation of fenamiphos was found to be very rapid when compared with fipronil and trifluralin. The rate constants calculated at 32 degrees C for fenamiphos were 2349.4 x 10(-)(8) (pH 4.1), 225.2 x 10(-)(8) (pH 7.1), and 30476.0 x 10(-)(8) (pH 9.1); for fipronil 1750.0 x 10(-)(8) (pH 4.1), 3103.0 x 10(-)(8) (pH 7.1), and 3883.0 x 10(-)(8) (pH 9.1); and for trifluralin 2331.0 x 10(-)(8) (pH 4.1), 2360.0 x 10(-)(8) (pH 7.1), and 3188.0 x 10(-)(8) (pH 9.1). On the basis of rate constant values, these pesticides appeared to be more susceptible to hydrolysis than synthetic organophosphorus compounds such as chlorpyriphos, diazinon, malathion, and ronnel. DT(50) values calculated at 32 degrees C were 228 (pH 4.1), 5310.24 (pH 7.1), and 37.68 (pH 9.1) h for fenamiphos; 608.6 (pH 4.1), 373.9 (pH 7.1), and 270.2 (pH 9.1) h for fipronil; and 502.1 (pH 4.1), 496.8 (pH 7.1), and 355.7 (pH 9.1) h for trifluralin.  相似文献   

13.
The rate of oxygen depletion, as measured by electron spin resonance spectroscopy (oximetry using a spin probe), in a homogeneous solution of peroxidating methyl linoleate (initiated by an azo initiator) in the presence or absence of antioxidants was converted to second-order rate constants for the inhibiting reaction of quercetin and epicatechin. In the non-hydrogen-bonding solvent chlorobenzene at 50 degrees C, k(inh) had values of 4.3 x 10(5) M(-)(1) s(-)(1) for quercetin and 4.2 x 10(5) M(-)(1) s(-)(1) for epicatechin, respectively. In the hydrogen-accepting "water-like" solvent tert-butyl alcohol, the values were 2.1 x 10(4) and 1.7 x 10(4) M(-)(1) s(-)(1), respectively. The solvent effect (factor of 20) is more significant than for alpha-tocopherol (factor of 4), and the two flavonoids have efficiencies comparable to that of alpha-tocopherol in scavenging peroxyl radicals in the nonpolar solvent but not in the hydrogen-bonding solvent.  相似文献   

14.
The oxidation of linolenic acid (LNA) and soy lecithin was studied by differential scanning calorimetry (DSC) with linear programmed heating rates (non-isothermal mode). The interpretation of the shape of DSC curves is discussed, and it has been concluded that temperatures of the extrapolated start of heat release are the most reliable data for the rapid estimation of the oxidative stability of lipid materials. The Ozawa-Flynn-Wall method was used to calculate the kinetic parameters of the process: for LNA autoxidation the activation energy, Ea, and pre-exponential factor, Z, are 66 +/- 4 kJ/mol and 1.5 x 10(7) s(-1), respectively, and the autoxidation of lecithin is described by Ea = 98 +/- 6 kJ/mol and Z = 9.1 x 10(10) s(-1). Values of Ea and Z can be applied for calculation of the overall first-order rate constant of autoxidation at various temperatures, k(T). For the two studied lipids the comparison of k(T) values shows the inversion of their oxidative stabilities; that is, below 167 degrees C lecithin is more stable than LNA, k(T)lecithin < k(T)LNA, and above that temperature (termed the isokinetic temperature) k(T)lecithin > k(T)LNA. The calculated inversion of oxidative stabilities can be an explanation of similar observations for other pairs of lipids if the results of accelerated tests measured at temperatures above 100 degrees C are compared with the results obtained at temperatures below 100 degrees C.  相似文献   

15.
A flow injection spectrophotometric procedure with enzymatic hydrolysis was developed for determination of orthophosphate, phytate and total phosphorus in cereal samples. Phosphorus species were extracted from cereals with 0.05 mol L(-1) potassium hydrogen phthalate buffer solution at pH 5.7. Orthophosphate was directly determined in the extracts by molybdenum blue spectrophotometric method. The phytate was hydrolyzed by the enzyme phytase coupled to a solid phase packed into an enzymatic reactor, and the resulting hydrolyzed orthophosphate was also determined by spectrophotometry at 650 nm. After optimization for phosphorus species extraction and enzymatic hydrolysis, a linear calibration graph was obtained up to 196 x 10(-6) mol L(-1) orthophosphate (P conc = -2.67 + 0.52x, r = 0.9998). Measurements are characterized by relative standard deviation of 1.6% for a standard of 72 x 10(-6) mol L(-1) orthophosphate and no baseline drift was observed during 4 h operation periods. It provides 72 measurements per hour, with 2.4 x 10(-)6) mol L(-1) and 7.9 x 10(-6) mol L(-1) as detection and quantification limits, respectively.  相似文献   

16.
Phototransformation of propiconazole in aqueous media.   总被引:2,自引:0,他引:2  
The photolysis of propiconazole in pure water, in water containing humic substances, and in natural water was investigated. The reaction rates were determined, and the main photoproducts were identified with the help of HPLC-mass spectrometry and by NMR. The quantum yield for direct photolysis was 0.11 +/- 0.01 at the maximum of absorption (269 nm). Photocyclization after HCl elimination and photohydrolysis of the cyclized intermediate were the main reaction pathways at 254 nm. By contrast, oxidation prevailed over dechlorination in simulated or natural solar light. Humic substances (10 mg x L(-)(1)) and naturally occurring chromophores contained in natural water enhanced the rate of propiconazole photodegradation in solar light. Half-life in June in Clermont-Ferrand (latitude 46 degrees N) was found to be 85 +/- 10 h in pure water and 60 +/- 10 h in natural water; showing that photodegradation of propiconazole in natural waters involves both direct photolysis and photoinduced reactions.  相似文献   

17.
Light-induced formation of lipid peroxides in a water-in-oil emulsion based on purified rape-seed oil (80%) was found to increase with decreasing wavelength and to have the (apparent) quantum yields (1.1 +/- 0.1) x 10(-)(3) for 436 nm, (2.6 +/- 0.1) x 10(-)(3) for 405 nm, and (4.5 +/- 0.4) x 10(-)(3) for 366 nm irradiation, as determined after 12 h of exposure to monochromatic light of an approximate intensity of 10(18) quanta.min(-)(1).mL(-)(1) and related to total light absorption. Riboflavin (0.8 ppm) had no effect on lipid peroxidation, but photodegraded with a quantum yield ((1.5 +/- 0.3) x 10(-)(5) for 436 nm, (1.7 +/- 0.2) x 10(-)(5) for 405 nm and (1.39 +/- 0.09) x 10(-)(5) for 366 nm irradiation) independent of irradiation wavelength. beta-Carotene was only photodegraded to a minor extent, but protected riboflavin against photodegradation and the lipids against peroxidation for 436 and 405 nm irradiation (reduction in quantum yield three times for 4.5 ppm beta-carotene for lipid oxidation and more for riboflavin degradation), but not for 366 nm irradiation, where beta-carotene has an absorption minimum.  相似文献   

18.
The changes occurring in two oil samples [EPG-00 soyate (transesterified soybean oil) and soy oil esterified propoxylated glycerol (EPG-08 soyate, a model, fat substitute compound)] were compared after heating at approximately 190 degrees C for 12 h/day. The EPG-00 soyate sample required 48 h of heating to attain a polymer content >20%, while the EPG-08 soyate required only 36 h. After 48 h of heating the EPG-00 soyate sample, the free fatty acid value (FFA) increased from 0.19 to 0.79, the acid value (AV) increased from 0.10 to 1.59, and the p-anisidine value (p-AV) increased from 1.6 to 195.4. In comparison, after only 36 h of heating, the EPG-08 soyate sample had FFA, AV, and p-AV increases from 0.19 to 0.71, from 0.26 to 1.36, and from 1.1 to 191.7, respectively. The triacylglycerol substrate degradation rate for EPG-00 soyate was k = 0.0126 +/- 0.0003 h(-)(1), while the rate for EPG-08 soyate was k = 0.0166 +/- 0.0017 h(-)(1). The results suggest that the EPG-00 soyate or transesterified soybean oil is slightly more stable than EPG-08 soyate.  相似文献   

19.
Polyphenol oxidase and peroxidase were extracted from two different varieties of strawberry fruit (Fragaria x ananassa D, cv. 'Elsanta' and Fragaria vesca L, cv. 'Madame Moutot') and characterized using reliable spectrophotometric methods. In all cases, the enzymes followed Michaelis-Menten kinetics, showing different values of peroxidase kinetics parameters between the two cultivars: Km = 50.68 +/- 2.42 mM ('Elsanta') and 18.18 +/- 8.79 mM ('Madame Moutot') mM and Vmax = 0.14 +/- 0.03 U/g ('Elsanta') and 0.05 +/- 0.01 U/g ('Madame Moutot'). The physiological pH of fruit at the red ripe stage negatively affected the expression of both oxidases, except polyphenol oxidase from 'Madame Moutot' that showed the highest residual activity (68% of the maximum). Peroxidase from both cultivars was much more thermolable as compared with PPO, losing over 60% of relative activity already after 60 min of incubation at 40 degrees C. The POD activation energy was much lower than the PPO activation energy (DeltaE = 97.5 and 57.8 kJ mol-1 for 'Elsanta' and 'Madame Moutot', respectively). Results obtained from d-glucose and d-fructose inhibition tests evidenced a decreasing course of PPO and POD activities from both cultivars as the sugar concentration in the assay medium increased. Changes in CIE L*, a*, b*, chroma, and hue angle values were taken as a browning index of the samples during storage at 4 degrees C. A decrease in L* was evident in both cultivars but more marked in 'Elsanta'. PPO and POD activities from cv. 'Elsanta' were very well-correlated with the parameter L* (r2=0.86 and 0.89, respectively) and hue angle (r2=0.85 and 0.93, respectively). According to these results, the browning of the fruit seemed to be in relation to both oxidase activities.  相似文献   

20.
The composition of melanoidins formed in the reactions of either glucose or maltose with glycine (70 degrees C, pH 5.5, [glucose] = [maltose] = [glycine] = 0.25 M) (MW > 3500) was investigated by microanalysis and the use of (14)C-labeled sugars and amino acid. The most reliable parameter obtained from microanalysis data is the C/N value, as it was calculated with no model assumption. The C/N value (7.6 +/- 0.2 for glucose and 10.5 +/- 0.2 for maltose) does not change with molecular weight (MW > 3500) as the polymers grow in size. A comparison between the radiochemically determined composition and that obtained from microanalysis suggests that the amino ketone, which is one of the products of Strecker degradation reaction, forms part of the of the melanoidin structure, together with the sugar-derived moiety and the Strecker aldehyde. Evidence is presented that glucose is formed at intermediate stages of the maltose-glycine reaction. The melanoidins are the result of the polymerization of glucose and intact, or substantially intact, maltose residues with glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号