首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为进一步提高我国农作物智能灌溉系统的作业效率,基于农业互联网平台,针对其灌溉监测信息处理环节展开研究。以大数据及SOA平台为核心架构,建立土壤环境参数与灌溉系统数据监测之间的内在关系,完成监测信息的布局设计与精准灌溉作业实现。进行系统在互联网平台下的灌溉试验验证,结果表明:基于农业互联网平台的灌溉监测信息系统改进后,各灌溉模块的功能运转效率得到显著提升,信息监测准确率与系统控制精准度分别提升至95.56%与94.51%,灌溉系统效率相对平台应用前提升了7.79%。所设计的联网平台架构下的灌溉系统整体改善效果明显,是我国向智慧农业方向迈进的重要基础,对于类似智能灌溉装备广泛推广有重要的参考价值。  相似文献   

2.
为进一步实现农用无人机信息检测与数据处理的精准性,提高其智能化作业水平,结合DTN网络控制算法,针对其信息检测处理系统进行设计。以实现信息网络路由传递顺畅、性能高效为基点,考虑农用无人机作业低速低空特性,搭建DTN算法检测模型,进行基于DTN算法的农用无人机信息检测系统硬件结构配置与软件控制布局,并进行农用无人机作业飞行试验。结果表明:农用无人机的各姿态检测角误差与DTN算法应用前误差相差不大,验证了检测处理系统设计的可行性;将DTN算法应用到机载信息检测处理系统,具备较好的容错调节机制,其机载测量湿度与实际地面测量湿度相比平均误差为2.13%,整机作业过程信息传输与转换实时准确,可为类似农机装备的信息检测模块开发优化提供较好的参考。  相似文献   

3.
为进一步优化农业灌溉系统结构,提高其智能化作业水平,将模块化的网络分层策略融入农田灌溉体系进行智慧化布局。以灌溉系统网络信道带宽、拥塞控制参数为主要切入点,对系统网络进行合理分层后建立控制模型,根据灌溉信息采集、网络数据传输特性要求,进行系统的硬件紧凑配置与软件功能设计,并展开智慧农业灌溉系统作业试验。结果表明:该网络分层策略应用到灌溉系统,数据丢包率波动范围为0.33%~0.85%,满足灌溉系统的网络数据处理要求;经布局后的农业灌溉系统响应时间有效缩短且稳定性大大提高,整体的灌溉效率提高了9.18%,研究思路具有较好的参考价值。  相似文献   

4.
为进一步提高大面积灌溉系统的作业效率与灌溉后田间土壤效果,基于通信耦合理念针对系统展开设计。以大面积灌溉系统控制组成与作业机理为基础,根据灌溉流量与时间的内在关系,考虑信息冗余及检测攻击等条件,应用CI核心耦合算法,结合MatLab最优解,建立大面积灌溉控制的通信耦合理论计算模型,进行系统通信耦合硬件布置架构与软件布局,并实施灌溉作业试验。结果表明:在同一灌溉速率的试验条件下,灌溉前土壤湿度与灌溉时间呈负相关,符合实际;基于通信耦合后的通信数据丢包率在3.51%以下,灌溉均匀度在85.9%~90.3%之间,灌溉后土壤湿度达标率达到95.5%以上。系统可为类似智能控制农机通信改善提供思路与参考,具有较好的推广价值。  相似文献   

5.
针对秦岭-淮河以南的丘陵地区控制信号传输距离远且环境恶劣、灌溉用水效率低下等问题,设计了基于LoRa技术的智能灌溉系统,该系统终端节点传感器通过Modbus协议传输在稻田采集的参数,考虑未来降水因素,采用了风险灌溉策略。实验结果表明,所设计的灌溉系统准确率高、智能高效,可以精准灌溉作业。  相似文献   

6.
李媛 《农机化研究》2024,(2):207-211
为进一步实现农作物灌溉系统的精准作业目标,提高自动灌溉作业的综合水平,以物联网技术为支撑,针对灌溉系统的监控效能展开应用探究。以系统的组成及作业原理为基点,融入智能物联感知技术,建立物联监控模型,匹配适应性的监控平台架构,并展开基于智能物联监控平台应用的灌溉作业试验。结果表明:设计的监控系统数据丢包率小于3.00%,系统决策准确率与网络覆盖率分别相对提升了8.72%和8.60%,且整体灌溉区域的土壤湿度合格率与灌溉均匀度也得到了同步改善,具有良好的实施性与优越性,对于农机灌溉设备的智慧转型具有重要的推广价值。  相似文献   

7.
针对当前农业环境监测的需求,为精准农业提供科学依据,设计了基于无线传感网络的果树精准灌溉系统。采用ZigBee技术与GPRS网络相结合的体系结构,基于CC2530芯片设计无线传感节点,并开发其软件。无线传感器节点对其所在区域的土壤湿度信息进行实时监测,根据果树的合理需水量以及土壤的综合状况,精准地对灌溉进行控制,可应用于温室、果园等区域,有助于农业部门更加有效地提高果树产量。  相似文献   

8.
为促进"互联网+"在农业生产工程技术上的运用及发展,提出一种基于CC2530和嵌入式Web服务器的智能灌溉系统的设计方法。构建由终端采集控制节点,路由器节点,协调器节点组成的无线通信网络来采集和传输土壤中的温湿度信息以及实施灌溉命令。并且利用嵌入式技术对总的协调器对Web服务器的进行访问,实现用户可以远程通过浏览器访问该Web服务器的IP地址浏览网页,随时随地获得土壤环境中的参数并自动或手动通过网页实施灌溉命令。经过灌溉现场的长时间运行,证明该设计的可行性和可靠性,为进一步发展自动化、可视化的农业灌溉系统提供新思路。  相似文献   

9.
基于无线传感器网络的节水灌溉远程监控系统   总被引:1,自引:0,他引:1  
为了节约农田灌溉用水,提高水资源的使用效率,提出了一种基于无线传感器网络与GPRS网络相结的农田自动节水灌溉远程监控系统,该系统由中央监控计算机、灌溉监测控制器、无线传感器网络、GPRS模块和阀门控制器组成。系统以单片机为控制核心,由无线传感器节点、无线路由节点和无线网关实时监测土壤含水率变化,根据土壤含水率和农田用水规律实施精确灌溉。系统实现了节水灌溉的自动化控制,改善了农业灌溉水资源的高效利用和灌溉系统自动化水平。实验结果表明,整个系统的伸缩性较好,当土壤含水率太高或某种因素导致某些传感器节点损坏,系统中的其他部分仍能持续正常工作,具有自组织重新恢复的功能。监控中心能够实时地显示出各节点的土壤含水率参数和阀门的启停状况,实现节水灌溉的远程监控。  相似文献   

10.
以农田智慧灌溉系统为研究对象,针对目前现有灌溉系统中出现的不足,设计了一种基于"互联网+"的智慧灌溉系统。智慧灌溉系统通过对农田土壤湿度信息进行采集,借助无线网络传感技术,将采集到的数据信息通过数据传输模块发送至远程监控中心,远程监控中心服务器按照设定的通信方式建立各模块之间的通信协议,并与移动终端建立联系。节点性能试验和系统性能试验表明:智慧灌溉系统可有效建立通信网络,并对区域内进行灌溉智慧控制,使现阶段的农田灌溉方式得到改善。  相似文献   

11.
以农业灌溉控制过程为研究对象,基于网络数据库技术设计了一种远程智能灌溉系统平台。智慧灌溉系统平台以传感器技术、网络通讯技术及数据库技术为基础,采用自上而下的方式进行搭建,采用数据采集节点对灌溉区域内的环境参数进行采集和监测,并将数据传输至云服务平台,生成灌溉控制指令后发送至现场控制器节点,控制电磁阀或水泵执行灌溉任务。  相似文献   

12.
基于ZigBee的智能农业灌溉系统研究   总被引:2,自引:0,他引:2  
针对传统农业灌溉中有线网络成本高、布线困难、覆盖范围受限等问题,以AT91SAM9260微处理器为控制核心、CC2530芯片为网络节点,利用超声波水位传感器、STR型土壤水分传感器采集农田水位数据信息,构建ZigBee网络。同时,通过GSM通信模块TC35i,实现了终端节点数据信息反馈及用户控制命令传输的智能农业灌溉系统,为农业的大田灌溉提供了详细的解决方案。  相似文献   

13.
灌溉系统具有非线性、多干扰和时滞性等特点,为实现灌溉控制的智能决策与精准灌溉,提出基于阻尼累加离散灰色预测的Smith预估变论域模糊PID灌溉控制模型(DADGM-SVUFP)。针对模糊PID控制器控制精度不高、适应性不强等不足,设计指数函数型伸缩因子自适应调整模糊变量论域,采用Smith预估补偿器消除系统时滞性影响,改善系统适应性和鲁棒性。结合离散灰色预测(DGM)和阻尼累加灰色预测(DAGM)模型的预测性能优势,提出阻尼累加离散灰色预测(DADGM)利用阻尼趋势参数减缓预测过程数据变化趋势,有效提高了灌溉系统稳定性和控制精度。构建FPID、NVUFP、DGM-NVUFP和DADGM-SVUFP四个控制模型实施水肥灌溉控制仿真试验,结果表明DADGM-SVUFP与其他模型相比稳态误差最优,调节时间比NVUFP、DGM-NVUFP分别少3.75 s、1.29 s,超调量比NVUFP、DGM-NVUFP分别降低9.2%、5.4%。灌溉测试进一步验证基于DADGM-SVUFP的智能灌溉系统适应性好、响应迅速、控制精度高,控制效果和系统稳定性均优于其他模型,能够满足水肥气灌溉系统的智能决策和精准控制。  相似文献   

14.
周晓娟 《灌溉排水学报》2020,(3):I0003-I0004
我国水资源人均占有量仅为全球人均水量的25%左右,是世界贫水大国。在水资源消耗中,农业用水量约为总用水量的90%左右。在开展大棚种植及大规模的农田种植中,传统需要进行人工灌溉,以确保农业种植的产量。现如今,农业灌溉系统采用多个传感器分布节点进行水量控制,实现多点灌溉。为减少灌溉用水量,达成节水灌溉,要求开展节水灌溉的远程监控系统设计,依托监控系统对灌溉点出水量进行监测,并开展智能调节,进而确保灌溉效率。  相似文献   

15.
针对高效节水灌溉和自动控制技术应用现状,分析相关系统设备和控制参数,提出单物理量和多物理量的多种控制模式,并介绍各种灌溉形式可选择的控制模式和数据传输模式。通过应用实例,把灌溉系统与自动控制模式相结合,建立一套完整的智能灌溉控制系统。该系统具有多种控制模式,能灵活选择灌溉方式,实现智能化全自动控制,具有较强的扩展性,使用效果良好,能满足灌溉系统的日常管理,提高生产效率和管理水平,具有较好的经济效益,对智能化精准灌溉系统的设计和应用具有一定的参考作用。  相似文献   

16.
为解决目前山地果园果树灌溉系统存在作用范围小、中继节点布置多和系统部署成本高等问题,本文设计了基于LORA通信的山地果园灌溉系统。该系统通过信息采集终端节点实时采集果园的土壤含水率,通过LORA无线通信网络将土壤信息发送至山地通信控制节点内的路由与控制模块;路由与控制模块对数据进行打包处理,将数据包通过无线分组网(GPRS)将处理后的数据包传输到云服务器;最终,通过不同客户端对云服务器内信息进行展示,实现人机交互。经测试,系统采用直连的方式在面积为20 hm2的山地果园中,通信覆盖面积可达92%以上,较Zig Bee通信方式,可节省中继节点;其长距离通信特点,为系统部署地点提供了更灵活的选择。  相似文献   

17.
荔枝园智能灌溉决策系统模糊控制器设计与优化   总被引:2,自引:0,他引:2  
为解决荔枝园灌溉中水资源浪费严重的问题,根据现有装备条件,设计了基于无线传感器网的模糊专家决策系统,并对系统的模糊控制器进行优化以提升系统整体性能。该系统通过网关节点实时接收来自传感器节点采集的荔枝园环境信息,选择土壤实测含水率与预设土壤最佳含水率的误差及其变化率作为决策因子,得出预测灌溉值等决策结果。通过Matlab仿真并进行果园实地试验,分析该系统的有效性。仿真结果表明,该智能灌溉系统能结合荔枝园土壤含水率情况进行适时、适量灌溉,有效实现了经济灌溉,并且优化后的模糊灌溉系统实现了更高的暂态性能、控制精度及抗干扰性,系统响应时间更快。试验结果表明,基于模糊控制器的智能灌溉系统能有效地对荔枝园灌溉进行控制,使荔枝园土壤含水率维持在17.8%左右,符合荔枝树的生长环境;同时,基于优化后的模糊控制器的智能灌溉系统将荔枝园土壤含水率平均值控制在17.6%,更接近系统预设的荔枝园土壤最佳含水率17%,并且具有更高的控制精度、更强的抗干扰性与实用性。  相似文献   

18.
针对我国农业灌溉存在的水资源浪费、耗电量大的问题,建立了基于光伏发电技术的智能灌溉系统,主要由水泵、无线传感网络、光伏发电装置和中央控制中心组成。系统通过DV-Hop算法对需灌溉区域进行定位,采用最大功率点跟踪(MPPT)方法确定光伏电池板的最大功率。灌溉系统的性能测试结果表明:光伏发电装置可为该智能灌溉系统提供稳定的能量,且灌溉系统运行稳定,能够及时响应环境变化,针对农田实施灌溉。  相似文献   

19.
针对农田节水灌溉的需要,提出了把无线传感器网络应用于农田节水灌溉系统的思路和农田节水灌溉系统设计方案,该灌溉系统由农田监测区域的无线监测网络和远程监控中心组成,可对农田需水信息变量进行实时监测。介绍了系统的总体架构,设计开发了无线传感器网络节点、基站以及软件流程。该系统采用了无线传输的方式,解决了有线通信方式所存在的难以升级、难以扩展等问题,具有低功耗、低成本、扩展灵活等优点,在农业节水灌溉方面具有广阔的应用前景。  相似文献   

20.
为提高智能灌溉系统大面积推广和系统节点能量利用效率,采用MPPT算法结合太阳能、超级电容、聚合物锂电池设计出基于STM32智能灌溉WSN节点自供电系统。利用Matlab软件,搭建光伏电池模型分析光伏特性,完成系统供电设计与模块选型,并设计能量管理电路,结合Qt平台开发监控软件。结合软件对系统进行测试分析,软件平台读取光伏电池及锂电池电压、电流实时数据,同时计算MPPT效率。经实验验证,系统整体运行良好, WSN节点采用太阳能光伏电池供能结合聚合物合锂电池、超级电容储能工作寿命较长,MPPT效率在86%附近小幅度波动,WSN节点自供电系统设计有效解决了传统节点单个电源引起能量不足缺陷,为智能灌溉系统普及与推广提供试验支撑。为WSN节点自供电提供新思路与设计方案,有效提升智能灌溉系统可靠性与实用性,在一定程度上提高农业灌溉效率和智能化水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号