首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
项嘉铭  戴茜  刘立军 《作物学报》2023,(7):1979-1993
工业大麻是我国重要的天然纤维作物,其主要种植区铜矿丰富,耕地土壤受铜污染严重;工业大麻有较强的耐铜性和较高的生物量,可代替粮食作物在铜污染土壤上种植,探究如何增强其耐铜性具有重要意义。水杨酸(SA)在植物抗逆方面有重要作用。本研究采用铜敏感品种云麻1号,探究外源SA对铜胁迫下工业大麻耐铜性和铜富集的影响。结果表明,铜胁迫对工业大麻具有明显毒害作用;外源SA降低了麻纤维铜含量,增强了根系对Cu2+的吸收和固定,地下部铜含量是胁迫组的1610.1%,铜累积量是胁迫组的857.1%,这可能是通过提高半纤维素和木葡聚糖的代谢及葡萄糖苷酶的活性实现的。外源SA促进了铜胁迫下工业大麻光合作用和干物质累积,显著增强了氧化还原酶的活性,降低了ROS和MDA含量,减少氧化损伤。在铜胁迫下施用外源SA,可以特异性诱导CsCIPK25和CsWRKY32表达,并通过调控作物离子转运、铜吸收固定、金属螯合物合成等多种途径增强铜胁迫下工业大麻的耐受性。  相似文献   

2.
金属伴侣蛋白在植物抵抗重金属胁迫和低温、干旱、高盐等非生物胁迫中发挥重要作用,但其应对热胁迫时发挥作用的报道还很少。前期研究从辣椒中分离到一个能够响应热胁迫的金属伴侣蛋白基因CaHPP7,通过生物信息学和定量分析发现该基因的氨基酸序列含有1个HMA结构域,且其表达受高温、Cu2+、Cd2+等重金属,以及ABA(Abscisic acid)、MeJA(Jasmonic acid methylester)和SA(Salicylic acid)等外源信号物质的诱导。为了进一步明确CaHPP7基因在植物重金属和热胁迫抗性形成中的功能,利用基因沉默和过表达技术改变Ca HPP7的表达水平。结果显示,基因沉默表达后,辣椒对铜和热胁迫的抗性都降低,表现为离体叶圆片叶绿素含量下降程度显著高于未沉默植株;而基因过表达后,拟南芥对铜和热胁迫的抗性都升高,其中热胁迫下表现为幼苗存活率高于对照,叶圆片叶绿素含量减少程度低于对照;铜胁迫下表现为种子发芽率高于对照,幼苗生长的受抑制程度和叶圆片叶绿素含量下降程度均低于对照。故推测CaHPP7基因在植物应对高温和铜胁迫的过程中起正调控作用。本研究结果将为进一步揭示植物抗逆性形成的分子机制提供理论依据,也将为农作物抗逆新品种的选育提供参考。  相似文献   

3.
植物硫化氢生理效应及机制研究进展   总被引:2,自引:1,他引:1  
硫化氢是继一氧化氮和一氧化碳之后的第三种气体信号分子。最近研究表明硫化氢在植物生长过程中起到非常重要的生理作用。本文总结了硫化氢在植物体内合成途径、硫化氢的生理效应及机制的研究进展,包括调节植物气孔关闭、种子萌发、根系发育、抗干旱、重金属胁迫、耐热激、植物抗病、植物衰老等多种生理过程,提出了利用现代生物技术进一步明确植物硫化氢信号功能及调控机制的建议。  相似文献   

4.
钾离子参与植物多个生理代谢过程,能不同程度地缓解植物受到的盐胁迫,促进植物生长发育。为了全面了解外源钾对盐胁迫下植物生长的影响,本研究归纳了盐胁迫对植物生长代谢的影响,钾在植物体内的生理作用以及外源钾对盐胁迫下植物生长生理特征的影响;分析了钾对盐胁迫下植物的生长发育、光合荧光特性、渗透物质及抗氧化酶活性、体内水分状况及离子分布的影响。针对当前钾离子缓解植物盐胁迫的分子机制及应用研究较少的问题,建议在今后的研究着重从以下两方面开展:(1)明确盐胁迫下植物体内钾离子转运机制、信号转导和相关基因的调控表达;(2)开展盐碱地肥料长期定位研究并研发可以提高植物耐盐性的新型钾肥。通过以上研究的开展,可为今后利用钾提高植物耐盐性以及盐渍土壤的改良提供解决方案。  相似文献   

5.
品质元素“钾”是植物生长过程中不可缺少的大量营养元素之一,环境中的钾含量过高或过低都会影响植物的正常生长,轻则致使植株的产量和品质有所下降,重则可能会导致植株的死亡。为了解决土壤缺钾和植物受钾胁迫的问题,归纳了钾营养胁迫概况、钾营养胁迫的形态学特征、钾营养胁迫对植物的影响、钾营养胁迫的生理生化变化以及钾营养胁迫在分子水平上的研究五个方面内容,从钾、钾营养胁迫、钾营养胁迫的表现症状总结了钾营养胁迫概况。从生长和形态学变化、光合作用、养分吸收、渗透调节和活性氧平衡、产量品质分析了钾营养胁迫对植物的影响。得到“植物钾营养胁迫的研究主要集中在生理生化和作用机制这两大方面,而对分子水平上的研究相对较少”的结论。强调了钾营养胁迫在分子水平上的相关研究进展,明确了钾营养胁迫研究的重要性和意义,并提出今后探究的侧重点应对植物钾营养胁迫的分子理化性质方面探究、适宜施肥方法和方式的研究(因地制宜、因植物制宜)、施肥工具的研发等三个方面的观点。  相似文献   

6.
铜胁迫对大豆幼苗抗氧化系统的影响   总被引:4,自引:4,他引:0  
杨昱  秦樊鑫 《作物杂志》2014,30(1):81-85
以大豆种子为实验材料,通过液体培养实验来探究铜胁迫对大豆种子发芽率、植株生长高度和杭氧化系统的影响,揭示大豆幼苗对于铜的生理杭性机制。结果表明:(1)低浓度的Cu2+对大豆种子的发芽率和幼苗生长高度影响不大,高浓度的Cu2+会抑制种子的发芽率和幼苗生长高度。(2)超氧化物竣化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和脯氨酸(Pro)的含量在大豆幼苗茎与叶中的变化趋势一致;多重分析比较:SOD,CAT,POD和Pro的含量均达到5%显著水平。(3)CAT与POD,Pro,POD与Pro之间在显著性水平。α=0.01的情况下,相关性明显。实验表明:杭氧化系统在抵御过量的Cu2+引起的胁迫过程中发挥了一定的作用。  相似文献   

7.
硼胁迫下植物生理调控机制的研究进展   总被引:2,自引:2,他引:0  
硼是植物的必需营养元素,它对植物的许多生理过程有着重要的作用,特别是在低硼或高硼胁迫情况时会影响植物正常的生理代谢。本文将对最近几年有关硼胁迫下植物生理调节机制的研究成果进行综述,着重阐述低硼胁迫下诱发植物产生硼高效吸收、转运、分配和再利用的机理,以及在高硼胁迫下植物自身可能存在的调控机制。  相似文献   

8.
蔗糖非酵解型蛋白激酶2(SnRK2)是一类在植物中普遍存在的蛋白激酶,属于Ser/Thr类蛋白激酶,在多种信号转导中均能发挥作用。为了研究SnRK2蛋白激酶在植物抗逆中的作用,分析了SnRK2基因家族的特点及研究历程,归纳了SnRK2基因在调控植物叶片气孔孔径,响应干旱胁迫、盐胁迫以及响应种子萌发和发育等方面的功能,指出SnRK2基因在多种信号转导中均能发挥作用,可以有效提高植物的抗逆能力。SnRK2基因在种子萌发和发育过程中具有重要意义,本研究为今后SnRK2分子机理研究和植物品种培育提供了参考依据。  相似文献   

9.
新型气体信号分子H2S在植物生长发育中的作用研究进展   总被引:2,自引:1,他引:1  
硫化氢(H2S)是新发现的第3种内源性气体信号分子,在植物多种生理过程起作用。本研究总结了植物体内源性H2S的产生方式,H2S参与调节种子萌发、根和叶片发育、气孔运动、光合作用、物质代谢、衰老等植物生长发育过程;以及其在植物体应答盐、高温、渗透、干旱、重金属等非生物胁迫中的缓解作用。同时,也提出了H2S调控植物生长发育可能的作用途径,并对该领域今后的研究进行了展望。  相似文献   

10.
植物在遭受到恶劣环境后,不能通过移动来解除损伤,因而自身在长期的进化过程中形成了一套防御机制。现如今的粮食产量低下,绝大部分是由于环境胁迫所造成的,因此要想提高产量需改善植物生长环境,避免植物遭到环境胁迫。研究表明,适宜浓度的钙离子信号在胁迫途径中能够增强信号的转导及时参与植物的生理调控,避免植物受到毒害;当植物在逆境时内质网会受到胁迫,若是不能及时地启动防御机制会导致生理发生紊乱,严重时将导致死亡。很多研究表明了钙离子在多种非生物胁迫中都有参与调控的实例,但在内质网胁迫中的研究还未见报道。因此,研究钙离子与内质网胁迫之间的关系对于植物在逆境育种中具有重要的生理意义。  相似文献   

11.
COP1蛋白是光形态建成的核心抑制因子,编码一个E3泛素连接酶,广泛存在于植物和动物中。参与植物生长发育、信号转导以及胁迫应答等多种生物学过程。本研究将从盐胁迫、温度胁迫、干旱胁迫和植物激素胁迫等方面,对植物COP1蛋白参与非生物胁迫调控机理的研究进展进行综述,为植物参与非生物胁迫的相关研究提供参考。  相似文献   

12.
microRNAs(miRNAs)是一类内源性的非编码的小RNA分子,它们在植物的生长发育和胁迫响应过程中起重要调控作用。本研究对植物miRNAs参与生物和非生物胁迫(盐胁迫,干旱胁迫,温度胁迫,营养胁迫和病原菌生物胁迫)响应过程的研究进展进行了综述,指出了miRNAs在植物研究过程中存在的问题并对未来发展情况进行了展望,为推动miRNAs在植物逆境胁迫中的研究和应用提供思路和参考。  相似文献   

13.
蔗糖是植物光合产物的主要输出形式。在植物生长过程中,蔗糖合酶和转化酶都可以分解蔗糖,后者催化蔗糖不可逆地水解为葡萄糖和果糖,为植物提供碳骨架和能量并影响其生长发育及形态的发生。除了影响植物的初级代谢,转化酶基因还在胁迫条件下特异性表达,同时,转化酶在纤维素的生物合成中发挥重要作用。本研究概述了植物转化酶的分类、生化特性、生理功能和表达调控等相关内容,重点简介了转化酶在植物逆境应答过程中发挥的相应功能,对深入研究转化酶在纤维素合成过程中的生理作用具有一定的参考价值。  相似文献   

14.
谢建春 《中国农学通报》2010,26(13):174-178
摘 要:随着采矿业的快速发展,金属尾矿在很大程度上影响着植物的生长发育。采用根伸长实验研究禾本科和百合科杂草对重金属的耐性随着溶液浓度(耐性指数)的变化。实验设铜浓度为5mg/L、10mg/L、 20mg/L、 50mg/L、100mg/L,以植物生长指标及生理指标为测试指标,实验周期为14天。结果表明,低浓度的铜能促进植物的生长,高浓度的铜则抑制植物的生长。当禾本科杂草紫羊茅和百合科杂草麦冬受到铜污染时,其耐性指数均有所下降。紫羊茅与麦冬相比,麦冬具有较强的抵御重金属的胁迫能力。因此在重金属污染土壤的植物修复及尾矿废弃地的植被重建中,麦冬可优先作为选择材料。  相似文献   

15.
植物抗旱生理研究进展与育种   总被引:4,自引:2,他引:2  
刘志玲  程丹 《中国农学通报》2011,27(24):249-252
植物在干旱胁迫下的生理代谢变化一直是抗旱生理的研究热点。植物为适应和抵御干旱环境所形成的形态特征和生理特性以及生理变化机制是一个复杂的系统。通过对部分抗旱生理生化研究进展的归纳和总结,主要从3个方面提出植物在干旱胁迫下的主要生理反应和生化变化指标。并通过比较分析,综述了在干旱胁迫下植物生理生化方面的反应和变化规律。从而为抗旱种质的鉴定、筛选和抗旱生理育种提供参考。  相似文献   

16.
逆境胁迫下甜菜生理特性的研究进展   总被引:1,自引:1,他引:0  
当前影响甜菜生长发育的主要因素有水分、温度、土地盐碱化等,因此,研究甜菜逆境条件下生长和生理特性变化是当前的热点话题。为了研究水分、温度和土地盐碱化对甜菜生长发育的影响,归纳了逆境胁迫对植物生长的影响,总结了逆境下甜菜地上部和根系的形态变化和生理指标变化趋势。叶片是植物重要营养器官之一,主要生理功能是进行呼吸作用、光合作用、蒸腾作用和养分转化作用。根系是植物生长发育的关键部位,起到固定、支撑植物、吸收运输养分的作用。由此得出甜菜对逆境胁迫的响应是通过改变外部形态和生理生化指标而完成的。建议今后进一步研究甜菜和环境间相互作用机制,加强对甜菜产业体系的管理及发展,为提高甜菜的产量和品质提供参考。  相似文献   

17.
植物micro RNAs(mi RNA)是一类长度20~24 nt的内源非编码小RNA,通过互补配对原则降解或抑制m RNA,从而调控植物生命过程的相关生理活动。植物在生物胁迫和非生物胁迫下可以应激表达一些mi RNA,并作用于逆境相关靶基因,使植物在生理反映上产生对胁迫的适应性。本综述扼要阐述植物mi RNA的合成途径和作用机制,对mi RNA与植物的逆境包括非生物胁迫和非生物胁迫响应的机理及作用机制等领域进行综述,并对其在果树抗逆研究中的利用前景进行分析。  相似文献   

18.
WRKY转录因子的结构及其在植物抗逆境胁迫中的功能   总被引:2,自引:0,他引:2  
WRKY转录因子是一超级基因家族,广泛存在于高等植物界,参与了植物的多种生理生化与生长发育过程,在植物应对外界逆境胁迫发挥了十分重要的功能。WRKY超级基因家族由于其N端包括保守的WRKYGQK氨基酸序列而得名,通过其保守的氨基酸序列与靶标基因启动子区W-box相互结合,从而对靶标基因进行表达调控。本文主要综述了WRKY基因的结构特征及其在植物应答外界逆境胁迫过程中的功能,为进一步研究WRKY超级基因家族提供有益的启示。  相似文献   

19.
植物钾营养性状遗传研究进展   总被引:2,自引:1,他引:2  
本文综述了近几十年植物钾素营养性状遗传的研究进展,讨论了植物营养性状遗传的几个主要概念;植物耐钾胁迫营养性状的形态学及生理生化的基因型差异;植物耐钾胁迫营养性状的遗传控制以及植物耐钾胁迫营养性状的基因克隆等方面的研究。并对目前植物钾营养性状遗传研究中存在的主要问题进行了探讨。  相似文献   

20.
李莹  柳参奎 《中国农学通报》2014,30(30):246-254
在植物整个生长发育过程中时刻受到外界环境信号调控,遭遇各种逆境胁迫。在研究植物对逆境胁迫响应中,很多胁迫响应蛋白被发现。植物类萌发素蛋白(Germin-like proteins,GLPs)是其中一类重要的胁迫响应蛋白。它是一类与小麦萌发素(Germin)序列高度同源的、位于胞外基质的可溶性糖蛋白,几乎在所有生物中均发现有该类蛋白的存在。它具有多种生物学功能,在植物的生长发育阶段、生物和非生物逆境胁迫应答中起重要的作用。从植物GLPs 的分类、结构等方面全面介绍了植物GLP蛋白的主要特点,同时归纳它在抵御生物胁迫及非生物胁迫等方面的研究进展,为今后的进一步研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号