首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
山东省小麦赤霉病菌种群组成及其致病力分化   总被引:2,自引:2,他引:0  
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

2.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

3.
Twenty four isolates of Fusarium graminearum, half of which were 3-acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) chemotypes, were tested for their ability to produce deoxynivalenol and to cause Fusarium head blight (FHB) in spring wheat cultivars. The objectives of this study were to determine (1) whether 3-ADON isolates differ in aggressiveness, as measured by the FHB index, and DON production from 15-ADON isolates under field conditions, and (2) whether the performance of resistant host cultivars was stable across isolates. Field tests of all isolates were conducted with three replicates at each of two locations in Canada and Germany in 2008 with three host genotypes differing in FHB resistance level. The resistant host genotype showed resistance regardless of the chemotype or location. The differences between mean FHB indices of 3-ADON and 15-ADON isolates were not significant for any wheat genotype. In contrast, average DON production by the 3-ADON isolates (10.44 mg kg−1) was significantly (P < 0.05) higher than for the 15-ADON isolates (6.95 mg kg−1) at three of the four locations where moderately resistant lines were tested, and at both locations where susceptible lines were evaluated. These results indicate that 3-ADON isolates could pose a greater risk to food safety. However, as the mean aggressiveness and DON production of 3-ADON and 15-ADON chemotypes was similar on highly resistant lines, breeding and use of highly resistant lines is still the most effective measure of reducing the risks associated with DON in wheat.  相似文献   

4.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

5.
Different sets of wheat genotypes were tested under field conditions by spraying inocula of isolates of seven Fusarium spp. and Microdochium nivale (formerly F. nivale) in the period 1998–2002. The severity of Fusarium head blight (FHB), Fusarium-damaged kernels (FDK), the yield reduction and the deoxynivalenol (DON) contamination were also measured to describe the nature of the resistance. The degrees of FHB severity of genotypes to F. graminearum, F. culmorum, F. avenaceum, F. sporotrichioides, F. poae, F.␣verticillioides, F. sambucinum and M. nivale were very similar, indicating that the resistance to F.␣graminearum was similar to that for other Fusarium spp. listed. This is an important message to breeders as the resistance relates not only to any particular isolate of F. graminearum, but similarly to isolates of other Fusarium spp. This holds true for all the parameters measured. The DON contamination refers only to DON-producers F. graminearum and F. culmorum. Highly significant correlations were found between FHB, FDK, yield loss and DON contamination. Resistance components such as resistance to kernel infection, resistance to DON and tolerance were identified in the more susceptible genotypes. As compared with western European genotypes which produced up to 700 mg kg−1 DON, the Hungarian genotypes produced only 100 mg kg−1 at a similar FDK level. This research demonstrates the importance of measuring both FDK and DON in the breeding and selection of resistant germplasm and cultivars.  相似文献   

6.
Fusarium head blight (FHB) is an important fungal disease of wheat. The aim of this research was to determine the diversity of Fusarium species infecting winter wheat ears in East Croatia. In 2008 wheat kernels were obtained from three locations in the eastern part of Croatia (Tovarnik, Osijek, Pozega), and in 2009 from two additional locations (Slavonski Brod, Nova Gradiska). In total, 498 visually diseased kernels were selected for morphological identification of Fusarium spp. The identity of 226 selected isolates was further investigated by molecular techniques. The predominant species on wheat kernels in East Croatia in 2008 were F. graminearum, isolated and confirmed from more than 80% of sampled wheat kernels, followed by F. avenaceum (8%) and F. culmorum (7%). Incidence of F. poae was less than 2%. The most common species identified in 2009 were F. graminearum (50%), F. culmorum (13%), F. avenaceum (12%) and F. poae (7%). This is the first report on the identification of Fusarium species isolated from naturally infected wheat ears in Croatia.  相似文献   

7.
The average amount of precipitation in spring and summer 2010 and 2011 coupled with relatively high temperatures caused massive Fusarium spp. infection of maize and yield losses in southern Poland. In order to examine the cause of this disease outbreak, Fusarium spp. were isolated and fungal strains were identified based on morphological characters and species-specific PCR assays. A total of 200 maize samples were processed, resulting in the obtention of 71 strains, which belonged to five Fusarium species, F. poae being the predominant one (74.56%). Other isolates were identified as F. graminearum, F. oxysporum, F. verticillioides and F. proliferatum. PCR-based detection of mycotoxin-synthesis-pathway genes was also used to determine the potential of the analyzed strains to produce trichothecenes (DON and NIV) and fumonisins (FUM). Only 14 isolates revealed the potential to produce DON (11 strains) and FUM (3 strains). HPLC analyses of grain samples revealed the presence of DON only – other mycotoxins were not detected. Moreover, 57.1% of potentially mycotoxin-producing isolates indicated the toxicity in a biological test.  相似文献   

8.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum species complex (FGSC) and also by other species of this genus, is one of the most destructive cereal diseases with high yield losses and mycotoxin contamination worldwide. The aim of this study was to identify Fusarium species, characterize their virulence factors such as trichothecene genotypes and cell wall degrading enzymes (CWDEs), and also investigate virulence of the isolates obtained from wheat plants with FHB symptoms in Golestan province of Iran. Among 41 isolates tested, 24 were F. graminearum sensu stricto (s.s.), six were F. proliferatum, four were F. culmorum, three isolates belonged to each of F. subglutinans and F. meridionale species and one isolate of F. asiaticum was identified. Among Fusarium isolates, the nivalenol (NIV) genotype could be found more frequently, followed by 3-acetyl deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol (15-ADON) genotypes. Production of trichothecenes in autoclaved rice cultures was analyzed by gas chromatography (GC) and confirmed by GC–MS. The mean levels of NIV, 3-ADON and 15-ADON produced by Fusarium spp. were 824, 665 and 622 μg kg?1, respectively. All Fusarium isolates were capable of producing CWDEs, mainly cellulase and xylanase. Lipase and pectinase activities appeared later and at less quantities. In overall, the isolates FH1 of F. graminearum and FH8 of F. proliferatum showed the maximum activity of CWDEs, which was correlated with high level of their virulence and aggressiveness on wheat. On the other hand, correlation was observed between the level and type of trichothecene produced by each isolate and its virulence on wheat. Virulence of trichothecene producing isolates was higher than that of non-trichothecene producing isolates. Our results suggested that CWDEs and trichothecenes, as virulence factors, have considerable roles on virulence and aggressiveness of the pathogen. This is the first report on the effect of trichothecenes and CWDEs on virulence and aggressiveness of Fusarium spp. associated with FHB disease in wheat growing regions of Iran.  相似文献   

9.
Fusarium head blight (FHB) in Brazil is caused mainly by two members of the Fusarium graminearum species complex, each possessing either a DON/15-ADON chemotype (F. graminearum sensu stricto, Fgss) or a NIV chemotype (F. meridionale, Fmer). In this work, we aimed to characterize and compare isolates belonging to each species, obtained either from wheat or barley, in relation to phenotypic traits (mycelial growth, sporulation and germination) and pathogenicity (in vitro glume infection and in vivo central floret inoculation) to two Brazilian wheat cultivars, Guamirim (moderate susceptible) and BRS 194 (susceptible). Results showed significantly higher growth rates, greater spore production and quicker germination for the Fgss isolates compared to the Fmer isolates, which were also more sensitivity to tebuconazole than the Fgss isolates. All isolates were capable of infecting glume tissues of both varieties, with an overall higher infection frequency for Fgss than Fmer isolates when inoculated in cv. Guamirim than in cv. BRS194, which showed similar infection frequency between the species. Accordingly, in the central-floret inoculation assay, Fgss isolates were also more aggressive than Fmer isolates towards cv. Guamirim, but not towards BRS194, based on the mean area under disease progress curves. It is hypothesized that phenotypic traits and host resistance may play a role in the selection of more aggressive populations under field conditions, thus partially explaining the dominance of Fgss populations associated with FHB of wheat in Brazil.  相似文献   

10.
Fusarium head blight (FHB) of wheat and other small-grain cereals is a disease complex caused by several fungal species. To monitor and quantify the major species in the FHB complex during the growing season, real-time PCR was developed. TaqMan primers and probes were designed that showed high specificity for Fusarium avenaceum, F. culmorum, F. graminearum, F. poae and Microdochium nivale var. majus. Inclusion of an internal PCR control and serial dilutions of pure genomic DNAs allowed accurate determination of the concentration of fungal DNA for each of these species in leaves, ears as well as harvested grains of winter wheat. The DNA concentration of F. graminearum in grain samples correlated (r 2= 0.7917) with the incidence of this species on the grain as determined by isolation from individual kernels. Application of the TaqMan technology to field samples collected in 40 wheat crops in the Netherlands during the growing season of 2001 revealed that M. nivale var. majus predominated on leaves early in the season (GS 45-65). Ears and harvested grains from the same fields, however, showed F. graminearum as the major species. In 2002, grain samples from 40 Dutch fields showed a much wider range of species, whereas in ears from 29 wheat crops in France, F. graminearum was the predominant species. The concentration of DON correlated equally well with the incidence of the DON-producing species F. culmorum and F. graminearum in the grain samples (r 2= 0.8232) as well as with total DNA of both these species (r 2= 0.8259). The Fusarium TaqMan technology is an important tool to quantify and monitor the dynamics of individual species of the complex causing FHB in cereals during the growing season. This versatile tool has been applied in a comparison of different genotypes, but can also be applied to other disease management systems, e.g. fungicide treatments.  相似文献   

11.
The objective of this study was to evaluate the potential role of gramineous weeds present near paddy fields as alternative hosts for the Fusarium graminearum species complex (FGSC) that causes fusarium head blight (FHB) in rice. A total of 142 weed samples were collected from 10 gramineous weed species near paddy fields from August to October 2018 in Jiangsu Province, China. Of the 145 isolates of seven Fusarium species isolated from the weed samples, F. asiaticum was the most abundant (86.9%), followed by F. fujikuroi (5.5%), F. proliferatum (2.8%), F. graminearum (2.1%), F. tricinctum (1.4%), F. acuminatum (0.7%), and F. sporotrichioides (0.7%). Genotype and mycotoxin analyses confirmed that 72.2% of F. asiaticum isolates were producers of deoxynivalenol (DON) with 3-acetyl deoxynivalenol (3ADON), and the remainder were nivalenol (NIV) producers. Pathogenicity assays showed that both 3ADON and NIV chemotypes of F. asiaticum could cause FHB in rice, but NIV chemotypes were significantly (p < .05) more aggressive than 3ADON chemotypes. Three Fusarium mycotoxins, DON, NIV, and zearalenone, occurred naturally at low concentrations in the weed samples. Taken together, this study provides insight into the mycotoxin production and aggressiveness of F. asiaticum isolates from gramineous weeds in China.  相似文献   

12.
During the years 2003 and 2004 grains of wheat and rye were examined for the occurrence of different Fusarium species in Bavaria. The data obtained indicate that rye is infected with Fusarium spp. on a lower level than wheat. Overall F. graminearum was the most important Desoxynivalenol (DON) producing species with infected kernels per sample up to 18,5% whereas F. culmorum recedes more in the background. In addition F. poae was detected in high amounts: up to 28,5% kernels per sample were infected. Also the incidence of F. avenaceum was high. In contrast F. equiseti, F. tricinctum, F. sporotrichioides, F. oxysporum and Microdochium nivale were detected to a much lower extent.  相似文献   

13.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

14.
We conducted a five-year survey (2011–2015) of barley and wheat fields in Paraná state, Brazil, obtaining 754 Fusarium isolates from spikes with fusarium head blight (FHB)-symptoms. Multilocus genotyping and TEF-1α gene sequence analyses confirmed the dominance of the F. graminearum species complex (FGSC, 75.7%), but F. poae (11.5%), as well as F. avenaceum and related members of the F. tricinctum species complex (FTSC, 8.1%) appeared as substantial contributors to FHB. Within the FGSC, F. graminearum of the 15-ADON genotype was dominant (63%), followed by F. meridionale of the NIV genotype (23.1%), F. cortaderiae of the NIV (7%) or 3-ADON (2.6%) genotypes, and F. austroamericanum (3.8%) of the 3-ADON genotype. Substantial variation in pathogen composition was observed across years, with F. poae and F. meridionale frequencies significantly elevated in some years. Most F. poae strains produced DAS, diANIV, and butenolide, but not neosolaniol, T-2, or HT-2. All FTSC species produced moniliformin. Enniatin production was widespread among FTSC species, with the single F. acuminatum strain found to be the strongest producer of enniatins. Our findings confirm FGSC as a major contributor to FHB and expand considerably our knowledge of the presence, frequency, and conditions under which other pathogens may emerge, altering the spectrum of toxins that may accumulate in grain.  相似文献   

15.
The Fusarium species predominantly found associated with Fusarium head blight (FHB) in wheat and other small-grain cereals all over Europe are F. graminearum, F. avenaceum and F. culmorum. Among the less frequently encountered species are several others which are less pathogenic or opportunistic, but also toxigenic. These include F. poae, F. cerealis F. equiseti F. sporotrichioides F. tricinctum and, to a lesser extent, F. acuminatum F. subglutinans F. solani F. oxysporum F. verticillioides F. semitectum and F. proliferatum. The species profile of FHB is due to several factors, primarily climatic conditions, particularly rain and the temperature at flowering stage, but also agronomic factors, such as soil cultivation, nitrogen fertilization, fungicides, crop rotation, and host genotype. The most frequently encountered Fusarium mycotoxins in FHB in Europe has proved to be deoxynivalenol and zearalenone produced by F. graminearum and F. culmorum with the former more common in southern (warmer) and the latter in northern (colder) European areas. Nivalenol was usually found associated with deoxynivalenol and its derivatives (mono-acetyldeoxynivalenols), together with fusarenone-X, formed by F. graminearum F. cerealis F. culmorum and, in northern areas, by F. poae. Moreover, from central to northern European countries, moniliformin has been consistently reported, as a consequence of the widespread distribution of F. avenaceum whereas the occurrence of T-2 toxin derivatives, such as T-2 toxin and HT-2 toxin, and diacetoxyscirpenol have been recorded in conjunction with sporadic epidemics of F. sporotrichioides and F. poae. Finally, beauvericin and various enniatins have recently been found in Finnish wheat colonized by F.avenaceum and F. poae.  相似文献   

16.
通过对江苏、安徽、山东、河南、湖北、河北和四川7省小麦赤霉病菌对多菌灵抗性及敏感菌株Fusarium asiaticum和F.graminearum的鉴定、所产生毒素的化学型及多菌灵抗性菌株检出时序性的分析,初步推测了小麦赤霉病菌对多菌灵抗性群体在中国麦区的扩散路径。结果表明:江淮流域的江苏、安徽、湖北3省和四川省小麦赤霉病菌对多菌灵的抗性或敏感菌株优势群体均是F.asiaticum,而黄淮流域的山东、河南2省及河北省小麦赤霉病菌对多菌灵的敏感菌株优势群体为F.graminearum,抗性菌株优势群体则为F.asiaticum。江苏、安徽、山东和河南抗多菌灵菌株F.asiaticum产生毒素的化学型为3-AcDON和NIV,并以3-AcDON为主。江苏省连续使用多菌灵防治小麦赤霉病长达20多年后才检测到田间抗性菌株,而近年来检测到田间抗性菌株的山东、河南2省用多菌灵防治赤霉病的历史较短,且为偶尔使用,药剂的选择压力相对较小,因此推测山东和河南麦区出现的小麦赤霉病菌抗多菌灵菌株可能是通过种子调运及联合收割机跨区作业等方式从抗药性发生较早的江淮麦区流入的。  相似文献   

17.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

18.
Within-field variability in the Fusarium head blight (FHB) and its associated mycotoxins was studied in four European countries. At each of 14 sites, each FHB pathogen and associated mycotoxins were quantified in 16 quadrat samples at harvest. Overall, the incidence of quadrat samples with detectable and quantifiable pathogen DNA was significantly lower in the grain than in the corresponding chaff. Deoxynivalenol (DON) was the most frequently detected toxin in the samples and its accumulation was most strongly associated with the presence of Fusarium graminearum. Nivalenol (NIV) accumulation was significantly associated only with the presence of F. culmorum. Zearalenone (ZON) accumulation was strongly associated with the presence of all three pathogens (F. graminearum, F. culmorum and F. poae). The levels of both DON and ZON concentrations were positively related to the amount of F. graminearum DNA in the grain or in the chaff. The presence/absence of FHB pathogens within a single quadrat appeared to be independent of each other. The presence of a particular FHB pathogen and the amount of its DNA, as well as the associated mycotoxin(s), varied greatly among samples at each site. This study demonstrated the large extent of within-field variability of FHB and its associated mycotoxins, and the importance of representative sampling in FHB studies.  相似文献   

19.
Fusarium graminearum species complexes (FGSCs), such as Fusarium asiaticum and F. graminearum, are important pathogens that cause Fusarium head blight (FHB) in several cereal crops worldwide. In this study, we collected 342 gramineous weed samples in the proximity of rice fields from May to June 2018 in Korea. Among the 500 Fusarium isolates from the weed samples, 13 species of Fusarium were identified, and F. asiaticum (41.2%), F. avenaceum (18.0%), F. acuminatum (16.4%) and F. graminearum (14.8%) were the most frequently isolated. The trichothecene genotype analysis showed that 206 F. asiaticum strains consisted of the nivalenol (NIV) genotype (n = 195, 94.7%) and 3-acetyldeoxynivalenol (3ADON) genotype (n = 11, 5.3%), whereas 74 F. graminearum strains consisted of the 15-acetyldeoxynivalenol (15ADON) genotype (n = 58, 78.4%) and 3ADON genotype (= 16, 21.6%). Geographical differences were observed in the FGSC and trichothecene genotype compositions, which appeared host-dependent between the southern provinces and mid-eastern provinces. The aggressiveness assessment of FHB showed that the 3ADON chemotype was most aggressive followed by the 15ADON and NIV chemotypes in wheat, while the NIV chemotype was most aggressive followed by the 3ADON and 15ADON chemotypes in rice. The F. asiaticum strains grew slowly and produced fewer conidia and perithecia than the F. graminearum strains, regardless of their chemotypes. The results of this study suggest that F. asiaticum with the NIV chemotype has a host preference for rice, and FHB-causing pathogens can be harboured in gramineous weeds, which play a role in the dispersal of FHB pathogens to rice and other cereal crops.  相似文献   

20.
Fusarium head blight (FHB) of cereals is a disease complex. Fusarium graminearum is the major pathogen worldwide, while F. culmorum, F. avenaceum and F. poae are also associated with this disease. In addition to the true Fusarium species, Microdochium nivale may also cause head blight and is particularly prevalent where cooler, wetter conditions prevail. Other species such as F. sporotrichioides, F. equiseti and even F. verticillioides may also be of significance in particular situations. FHB is of particular concern because of the ability of the Fusarium species to produce mycotoxins in the grain that are harmful to human and animal consumers. The predominant mycotoxins within cereals are the trichothecenes, chiefly deoxynivalenol, nivalenol and their acetylated derivatives, along with T-2, HT-2, diacetoxyscirpenol and neosolaniol. This paper reviews the use of molecular techniques to identify the individual causal agents and to quantify their relative amounts within plant tissue. Diagnostic and quantitative polymerase chain reaction assays have been developed to detect and quantify individual fungal species within the disease complex and, where relevant, to differentiate between chemotypes within a single species. Assays to determine the type of toxin produced, or monitor the regulation of toxin production also provide valuable tools for understanding this disease. These techniques are being used to dissect the disease complex into its component parts in order to study interactions between the pathogens and their host and between the pathogens themselves as well as to determine the influence of environmental factors on the disease and the toxins produced by these fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号