首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The already high and increasing occurrence of extended-spectrum beta-lactamases (ESBL) producing Escherichia coli in European broiler populations is of concern due to the fact that third and fourth generation cephalosporins are deemed critically important in human medicine. In Sweden 34% of the broilers carry ESBL/pAmpC producing E. coli in their gut, despite the absence of a known selection pressure such as antimicrobial usages. The aim of the current study was to characterise a selection of E. coli strains carrying the blaCTX-M-1, to determine if the spread was due to a specific clone.

Findings

Ten isolates carrying blaCTX-M-1 from Swedish broilers belonged to eight different multi-locus sequence types with three isolates belonging to ST155. The ST155 isolates were identical as assessed by PFGE. The blaCTX-M-1 was in all isolates carried on a plasmid of replicon type incI, which also transferred resistance to tetracycline and sulfamethoxazole.

Conclusion

The occurrence of ESBL-producing E. coli in the Swedish broilers is not due to the emergence of a single clone, but rather the spread of a specific incI plasmid carrying blaCTX-M-1.  相似文献   

2.
食品动物源产CTX-M-14大肠杆菌传播分子机制的演变   总被引:1,自引:1,他引:0  
从保存的2002-2009年分离的食品动物源大肠杆菌中,挑选16株blaCTX-M-14阳性菌,用PCR方法检测超广谱β-内酰胺酶(ESBLs)编码基因、PMQR耐药基因及其他重要抗生素耐药基因(rmtB和floR);通过脉冲场凝胶电泳(PFGE)及种族进化关系分析16株细菌的亲缘关系;通过接合转移试验、复制子分型和blaCTX-M-14上下游插入元件的检测,分析产CTX-M-14大肠杆菌的传播分子机制。PCR检测结果表明,16株食品动物源产CTX-M-14大肠杆菌大多属于系统发育组A组,其次为B1和D组,没有B2组;PFGE分型结果表明,同一时间内不同动物间存在产CTX-M-14共生型大肠杆菌克隆的扩散传播,但养殖场内CTX-M-14主要是随质粒或其他元件进行水平传播;质粒复制子分型结果表明,携带blaCTX-M-14的质粒属于IncK(3/14)、 IncF(5/14)、 IncHI2(1/14)、IncFIB 和 IncF(1/14)、IncHI1和IncN(2/14)、 IncI1(2/14)等,且随着时间推移,复制子的种类呈增多趋势。2002-2007年的菌株blaCTX-M基因的上下游均检测到ISEcp1和IS903;但2009年菌株除了部分在上下游都可以检测到ISEcp1和IS903外,还有的只检测到上游的ISEcp1或下游的IS903;2002-2009年的菌均未检测到ISCR1。16株产CTX-M-14大肠杆菌除了携带其他ESBLs编码基因,如blaCTX-M79和blaTEM-135外,还携带其他重要抗生素耐药基因,如oqxA、floR、aac(6')-1b-cr及rmtB,而且2002-2009年大肠杆菌携带耐药基因的种类和数量逐年增多;接合转移试验发现,2002-2005年的菌株,blaCTX-M-14往往发生单独转移,而2009年分离菌blaCTX-M-14往往和floR或rmtB位于同一质粒上发生共同转移。这说明养殖场使用氨基糖苷类或氟苯尼考等任何一种抗生素,都可以筛选出产CTX-M-14大肠杆菌并促进其扩散,所以动物养殖过程中要慎用这些抗生素。  相似文献   

3.
Abstract

AIMS: To assess the occurrence of, and characterise, extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase (AmpC)-producing Enterobacteriaceae isolated by veterinary diagnostic laboratories from infection sites in companion animals in New Zealand.

METHODS: Selected Enterobacteriaceae isolates were submitted by seven New Zealand veterinary diagnostic laboratories. They were isolated from infection sites in companion animals between June 2012 and June 2013, and were resistant to amoxicillin-clavulanic acid, fluoroquinolones, or any combination of two or more antimicrobials. Based on disk diffusion test results, the isolates were phenotypically categorised according to production of ESBL and AmpC. Genes for ESBL and AmpC production were amplified by PCR and sequenced. Escherichia coli isolates were also typed by multilocus sequence typing.

RESULTS: A total of 115 isolates matching the inclusion criteria were obtained from the participating laboratories, of which 74 (64%) originated from dogs and 29 (25%) from cats. Seven bacterial species were identified, of which E. coli was the most common (87/115, 76%). Of the 115 isolates, 10 (9%) expressed the ESBL phenotype, 43 (37%) the AmpC phenotype, and seven (6%) both ESBL and AmpC phenotypes. Of the 60 ESBL and AmpC-producing isolates, 36 (60%) were E. coli. Amongst these isolates, 27/60 (45%) were classified as multidrug resistant, compared with 15/55 (27%) non-ESBL or AmpC-producing isolates (p<0.01). Ninety five isolates were resistant to amoxicillin-clavulanic acid and 58 (61%) of these were ESBL or AmpC-producing. The predominant ESBL genes were blaCTX-M-14 and blaCTX-M-15, and the dominant plasmid-encoded AmpC gene was blaCMY-2. Thirty-eight E. coli multilocus sequence types (ST) were identified, and the most prevalent were ST12 (12/89, 13%), ST131 (6/89, 7%) and ST648 (6/89, 7%). ESBL and AmpC-producing isolates accounted for 35/1,082 (3.2%) of the Enterobacteriaceae isolated by one laboratory network over the study period.

CONCLUSIONS AND CLINICAL RELEVANCE: ESBL and AmpC-producing Enterobacteriaceae were associated with clinical infections in companion animals in New Zealand, and were often multidrug resistant. In this study, these organisms accounted for <5% of all Enterobacteriaceae isolated from infection sites by one laboratory network, but their prevalence among isolates resistant to amoxicillin-clavulanic acid was 61%. Therefore routine secondary testing for ESBL and AmpC production by Enterobacteriaceae that are resistant to amoxicillin-clavulanic acid in primary testing could improve the accuracy of definitive antimicrobial therapy in companion animals in New Zealand.  相似文献   

4.
1. Bacterial resistance to β-lactam antibiotics has risen dramatically in Escherichia coli from food animals. In a previous study, 29 randomly selected chicken products, collected in Portugal, were analysed for the presence of extended-spectrum β-lactamases (ESBLs)-producing E. coli; and during this study the genetic characterisation of ESBLs genes was investigated.

2. The presence of genes encoding TEM, OXA, SHV, and CTX-M type beta-lactamases was studied by PCR followed by sequencing. Additionally, other mechanisms of antimicrobial resistance, phylogenetic groups and the presence of virulence determinants were evaluated among the isolates.

3. β-lactamases genes were identified as follows: bla CTX-M-14 (n?=?4), bla CTX-M-1 (n?=?2), bla CTX-M-9 (n?=?4) and bla TEM-52 (n?=?13). Mutations at positions ?42, ?18, ?1, and +58 of ampC promoter region were identified in 4 non-ESBL-producing isolates. The tet(A) or tet(B) genes were identified in all tetracycline-resistant isolates; the aadA gene detected in 8 of 10 streptomycin-resistant isolates; the aac(3)-II gene in all gentamicin-resistant isolates; the cmlA gene in the chloramphenicol-resistant isolate; and sul1 and/or sul2 and/or sul3 genes were found in all trimethoprim-sulfamethoxazole-resistant isolates. The intI1 gene was detected in 8 trimethoprim-sulfamethoxazole-resistant isolates and the intI2 gene in 4 isolates; one gene cassette arrangements were identified among class 1 integrons (dfrA1?+?aadA1) and among the class 2 integrons (dfrA1?+?sat2?+?aadA1). Among cefotaxime-resistant isolates, 16 belonged to A or B1 phylogenetic groups, while 11 isolates were classified into the D or B2 phylogroups. At least one virulence-associated gene (aer, fimA, or papC) was detected in 74·1% of the cefotaxime-resistant isolates.

4. Because ESBLs-producing bacteria are resistant to a broad range of β-lactams, infections caused by these organisms complicate therapy and limit treatment options.  相似文献   

5.
A total of 318 Escherichia coli isolates obtained from different food-producing animals affected with colibacillosis between 2001 and 2006 were subjected to phylogenetic analysis: 72 bovine isolates, 89 poultry isolates and 157 porcine isolates. Overall, the phylogenetic group A was predominant in isolates from cattle (36/72, 50%) and pigs (101/157, 64.3%) whereas groups A (44/89, 49.4%) and D (40/89, 44.9%) were predominant in isolates from poultry. In addition, group B2 was not found among diseased food-producing animals except for a poultry isolate. Thus, the phylogenetic group distribution of E. coli from diseased animals was different by animal species. Among the 318 isolates, cefazolin resistance (minimum inhibitory concentrations: ≥32 μg/ml) was found in six bovine isolates, 29 poultry isolates and three porcine isolates. Of them, 11 isolates (nine from poultry and two from cattle) produced extended spectrum β-lactamase (ESBL). The two bovine isolates produced blaCTX-M-2, while the nine poultry isolates produced blaCTX-M-25 (4), blaSHV-2 (3), blaCTX-M-15 (1) and blaCTX-M-2 (1). Thus, our results showed that several types of ESBL were identified and three types of β-lactamase (SHV-2, CTX-M-25 and CTX-M-15) were observed for the first time in E. coli from diseased animals in Japan.  相似文献   

6.
Multidrug resistant Salmonella Kentucky strains have been isolated from turkeys in Poland since 2009. Multiple mutations within chromosomal genes gyrA and parC were responsible for high-level ciprofloxacin resistance. One of the isolates was extended spectrum β-lactamase- (ESBL) positive: the strain 1643/2010 carried a conjugative 167,779 bps plasmid of IncA/C family. The sequence analysis revealed that it carried a blaCTX-M-25 gene and an integron with another β-lactamase encoding gene—blaOXA-21. This is the first known report of a CTX-M-25 encoding gene both in Poland and in Salmonella Kentucky world-wide, as well as in the IncA/C plasmid. Analysis of the integron showed a novel arrangement of gene cassettes—aacA4, aacC-A1 and blaOXA-21 where the latter might result from an intergeneric gene transfer. The study confirmed Salmonella Kentucky population isolated in Poland belongs to global epidemics of high level fluoroquinolone resistant clone ST198 that can carry rare β-lactamase genes.  相似文献   

7.
Seventy-six faecal samples were obtained from broilers at slaughterhouse level in Portugal. Samples were inoculated on cefotaxime-supplemented Levine agar plates. Cefotaxime-resistant Escherichia coli isolates were recovered from 32 samples (42.1%), obtaining a total of 34 E. coli isolates (one or two isolates per sample). Susceptibility to 16 antibiotics was studied by disk diffusion method, and 85% of the isolates presented a phenotype of multi-resistance that included antimicrobial agents of at least four different families. Extended-spectrum-beta-lactamases (ESBL) of the TEM and CTX-M groups were detected in 31 ESBL-positive E. coli isolates. Twenty-six isolates harboured the blaTEM-52 gene and two of them also harboured blaTEM-1b. The blaCTX-M-14 gene was identified in three isolates (in association with blaTEM-1b in one of them), and blaCTX-M-32 was demonstrated in two additional isolates. Three of the 34 cefotaxime-resistant isolates (9%) did not produce ESBLs, and two of them presented mutations at positions −42 (C → T), −18 (G → A), −1 (C → T), and +58(C → T) of the promoter/attenuator region of ampC gene. tet(A) and/or tet(B) genes were detected in all 34 tetracycline-resistant isolates, aadA in all 26 streptomycin-resistant isolates; cmlA in 3 of 6 chloramphenicol-resistant isolates, and aac(3)-II or aac(3)-I + aac(3)-IV genes in all 4 gentamicin-resistant isolates. Different combinations of sul1, sul2 and sul3 genes were demonstrated among the 22 trimethoprim–sulfamethoxazole-resistant isolates. Amino acid changes in GyrA and ParC proteins were identified in all 18 ciprofloxacin-resistant isolates. The results of this study indicate that the intestinal tract of healthy poultry is a reservoir of ESBL-positive E. coli isolates.  相似文献   

8.
The aim of the study was to compare the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli bovine isolates on a conventional dairy cattle farm with high consumption of parenteral and intramammary cephalosporins (farm A) and on an organic dairy farm with no cephalosporin use (farm B). ESBL-producing E. coli were isolated from rectal swabs and milk filters by selective cultivation on MacConkey agar with cefotaxime (2mg/l). ESBL genes were identified by polymerase chain reaction (PCR) and sequencing, and the genetic diversity of the isolates was determined by XbaI pulsed field gel electrophoresis (PFGE). Conjugative transfer, incompatibility group, and restriction fragment length polymorphism (RFLP) profiles of the ESBL-carrying plasmids were studied. Higher prevalence (39%, n(rectal samples in cows)=309) of CTX-M-1-producing E. coli isolates was found on farm A compared to farm B (<1%, n(rectal samples in cows)=154; 0%, n(rectal samples in calves)=46). Using PFGE, the isolates from farm A were divided into nine pulsotypes. In all ESBL-positive isolates, the bla(CTX-M-1) gene was carried on 40 kb IncN conjugative plasmids of three related HincII restriction profiles. Horizontal gene transfer through transmission of IncN plasmids harboring bla(CTX-M-1) as well as clonal dissemination of a particular clone seems to be involved in dissemination of CTX-M-1-producing E. coli isolates in cows on the farm using cephalosporins in treating bacterial infections. The study demonstrates a possible role of cephalosporin use in the widespread occurrence of CTX-M-1-producing E. coli on the conventional dairy cattle farm compared to the organic farm.  相似文献   

9.
Waste milk samples from 103 farms in England and Wales were examined for the presence of β-lactam antibiotics and ESBL-producing Enterobacteriaceae. Approximately 10 months after the initial sampling, further waste milk, environmental and faecal samples from farms shown to be positive for CTX-M Escherichia coli were investigated further. Isolates with an ESBL phenotype were tested by PCR for the presence of blaCTX-M, blaOXA, blaSHV and blaTEM genes. Isolates positive for blaCTX-M were sequenced to determine CTX-M type. Representative isolates were further examined by PFGE, plasmid replicon typing and serotyping. Of particular interest, 21.4% of waste milk samples contained residues of the cephalosporin cefquinome, which was significantly associated with CTX-M bacteria. Such bacteria occurred in 5.8% of the waste milk samples (including 3.9% CTX-M E. coli). CTX-M types identified were 1, 14, 14b and 15, but none of the E. coli were serotype O25, the serotype of the human pandemic strain.  相似文献   

10.
In order to estimate the prevalence of AmpC‐ and ESBL β‐lactamase‐producing Enterobacteriaceae in the faecal flora of a healthy domestic canine population, faecal samples were obtained from healthy dogs receiving routine parasitology screening at the Ohio State University Veterinary Medical Center, between January 2013 and April 2013. Samples were screened for the presence of AmpC and ESBL β‐lactamase phenotypes, and the clinically important genotypes, blaCMY and blaCTX‐M, were confirmed via conventional PCR. Minimum inhibitory concentrations were determined for isolates and plasmids were characterized. Two hundred and twelve canine faecal samples were screened, of which 30 harboured isolates carrying the AmpC blaCMY, representing 14.2% of the population (95% CI: 9.4–18.9%). Nine samples harboured isolates that carried the ESBL blaCTX‐M, representing 4.2% of the population (95% CI: 1.5–7.0%). Isolates containing blaCMY harboured multiple plasmid replicon types, while isolates containing blaCTX‐M harboured few plasmid replicon types. Our results suggest that domestic dogs may serve as a reservoir for extended‐spectrum cephalosporin resistance genes for other domestic animal populations as well as for their human companions. This represents a potential veterinary and public health risk that warrants further investigation and continued surveillance to ascertain the nature and extent of the risk. The high level of diversity of plasmid content among isolates harbouring blaCMY suggests broader dissemination relative to blaCTX‐M isolates.  相似文献   

11.
ESBL/AmpC‐producing Escherichia coli is increasingly isolated from humans and animals worldwide. The occurrence of ESBL/AmpC‐producing E. coli was studied in food‐producing animals in Finland, a country with a low and controlled use of antimicrobials in meat production chain. A total of 648 cattle, 531 pig, 495 broiler and 35 turkey faecal samples were collected from four Finnish slaughterhouses to determine the presence of extended‐spectrum β‐lactamase (ESBL/AmpC)‐producing E. coli. In addition, 260 broiler and 15 turkey samples were screened for carbapenemase‐producing E. coli. Susceptibility to different class of cephalosporins and meropenem was determined with disc diffusion tests according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Determination of ESBL/AmpC production was performed with a combination disc diffusion test according to the recommendations of the European Food Safety Authority (EFSA). Plasmidic blaESBL/AmpC genes were characterized by polymerase chain reaction and sequencing. A collection of isolates producing AmpC enzyme but not carrying plasmidic blaAmpC was analysed by PCR and sequencing for possible chromosomal ampC promoter area mutations. Altogether ESBL/AmpC‐producing E. coli was recovered from five cattle (0.8%), eight pig (1.5%) and 40 broiler samples (8.1%). No ESBL/AmpC‐producing E. coli was found in turkey samples. Carbapenem resistance was not detected. Altogether ESBL/AmpC‐producing E. coli was found on 4 (2.0%), 3 (4.5%) and 14 (25%) cattle, pig and broiler farms, respectively. From cattle samples 3 (27%) blaCTX‐M‐1 and from broiler samples 13 (33%) blaCTX‐M‐1 and 22 (55%) blaCMY‐2 gene‐carrying isolates were detected. In pigs, no plasmidic blaESBL/AmpC gene‐carrying isolates were found. In all analysed isolates, the same mutations in the promoter region of chromosomal ampC were detected. The results showed low occurrence of ESBL/AmpC‐producing E. coli in Finnish food‐producing animals. In pigs, plasmidic blaESBL/AmpC‐carrying E. coli was not detected at all.  相似文献   

12.
Antibiotic resistance and ESBL constitute a risk to human and animal health. Birds residing close to humans could mirror the spectrum of human associated antibiotic resistance. Household pigeons were screened in Bangladesh to shed light on human associated, as well as, environmental antibiotic resistance. Escherichia coli from pigeons (n = 150) were tested against 11 antibiotics. 89% E. coli isolates were resistant to one or more critically important human antibiotics like ampicillin, cefadroxil, mecillinam, ciprofloxacin, gentamicin and tigecycline. No carbapenamase-producers were detected and the lower ESBL prevalence (5%) in pigeons. ESBL-producing E. coli isolates had blaCTX-M-15 genes. Pigeons shared some bacterial clones and had bird associated sequence types like E. coli ST1408. Fecal carriage of bacteria resistance of critically important human antibiotics, together with examples of shared genotypes among pigeons, indicate the human-birds and bird to bird transmissions are important in the epidemiology of antibiotic resistance.  相似文献   

13.
The dissemination of Enterobacteriaceae expressing resistance to extended‐spectrum cephalosporins, which are therapeutically used in both human and veterinary medicine, is of critical concern. The normal commensal flora of food animals may serve as an important reservoir for the zoonotic food‐borne transmission of Enterobacteriaceae harbouring β‐lactam resistance. We hypothesized that the predominant AmpC and ESBL genes reported in US livestock and fresh retail meat products, blaCMY‐2 and blaCTX‐M, would also be predominant in human enteric flora. We recovered enteric flora from a convenience sample of patients included in a large tertiary medical centre's Clostridium difficile surveillance programme to screen for and estimate the frequency of carriage of AmpC and ESBL resistance genes. In‐ and outpatient diarrhoeic submissions (n = 692) received for C. difficile testing at the medical centre's clinical diagnostic laboratory from July to December, 2013, were included. Aliquoted to a transport swab, each submission was inoculated to MacConkey broth with cefotaxime, incubated at 37°C and then inoculated to MacConkey agars supplemented with cefoxitin and cefepime to select for the AmpC and ESBL phenotypes, with blaCMY and blaCTX‐M genotypes confirmed by PCR and sequencing. From the 692 diarrhoeic submissions, our selective culture yielded 184 isolates (26.6%) with reduced susceptibility to cefotaxime. Of these, 46 (6.7%) samples harboured commensal isolates carrying the AmpC blaCMY. Another 21 (3.0%) samples produced isolates harbouring the ESBL blaCTX‐M: 19 carrying CTX‐M‐15 and 2 with CTX‐M‐27. Our results indicate that β‐lactam resistance genes likely acquired through zoonotic food‐borne transmission are present in the enteric flora of this hospital‐associated population at lower levels than reported in livestock and fresh food products.  相似文献   

14.
A cross-sectional study on five organized pig farms was conducted to assess the faecal carriage of ESBL and blaNDM carbapenemase-producing E. coli in piglets and pig farmworkers. Faecal samples from piglets (n = 155) and pig farmworkers (n = 21) were processed for isolation and characterization of E. coli. A total of 124 E. coli isolates from piglets and 21 E. coli isolates pig farmworkers were recovered and screening for ESBL production showed that 44.4 % (55/124) of the isolates from piglets and 42.9 % (9/21) of the isolates from farmworkers were ESBL positive. The ESBL positive isolates from piglets and farmworkers harbored blaCTX-M and also co-harbored other beta-lactams, sulphonamide, quinolone and tetracycline resistance genes. Diarrhoeic (50%, 49/98) and crossbred piglets (52.7%, 39/74) harbored a significantly higher number of ESBL producing isolates than non-diarrhoeic (23.1 %, 6/26) and purebred piglets (32%, 16/50) (p < 0.05). Piglets and pig farmworkers harbored nine and two carbapenem-resistant isolates, respectively. Interestingly, two isolates from piglets and one isolate from farmworkers harbored the blaNDM gene. The blaNDM positive E. coli isolated from piglets and farmworkers of the same farm revealed similar antibacterial resistance patterns, resistant genes, sequence (ST-167) and plasmid type (IncX3). In India, carbapenems are not used in food animal treatment, hence carbapenem resistant E. coli in piglets possibly originated from the human contact or common environment and is of public health importance.  相似文献   

15.

This study investigated the occurrence of antimicrobial-resistant Escherichia coli in dairy calves in southern Vietnam. Fecal samples were taken directly from the rectum of 84 calves from 41 smallholder dairy farms, when newborn and at 14 days of age for isolation of E. coli. Escherichia coli strains were isolated from 144 of the 168 fecal samples tested. Of the 144 E. coli isolates, 40% were found to be susceptible to all 12 antimicrobial drugs tested and 53% of the E. coli isolates were resistant to at least three antimicrobials. Calves were colonized with antimicrobial-resistant E. coli already on the day of birth. Resistance to tetracycline was most common, followed by resistance to sulfamethoxazole, ampicillin, trimethoprim, and ciprofloxacin. Four isolates carried a gene encoding for extended-spectrum cephalosporinases (ESC), and these genes belonged to blaCTX-M group 1 (2 isolates), blaCTX-M group 9 (1 isolate), and blaCMY-2 (1 isolate). Thirty-three isolates had a plasmid-mediated quinolone resistance (PMQR) phenotype, and 30 of these carried the qnrS gene. These results are of importance for management routines of dairy cattle to prevent the spread of antimicrobial resistance.

  相似文献   

16.
In the last few years, antimicrobial resistant (AMR) Escherichia coli have been detected in newborn chickens suggesting their vertical transmission from breeding birds to their offspring. However, little is known about the presence of AMR E. coli in the reproductive organs of broiler breeders. The aim of this study was to investigate the presence of E. coli in the ovaries of healthy broiler breeders and to study their antimicrobial resistance. Samples from broiler breeders (n = 80) collected from 80 different broiler breeder flocks were included in this study. Antibiotic susceptibility testing was performed using disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. Minimal inhibitory concentrations (MICs) of five antimicrobial agents were determined by Etest. PCR and sequencing were used to detect the blaESBL genes. E. coli were detected in the ovaries of thirty seven out of 80 (46.25%) sampled flocks. High levels of resistance to various first-line antimicrobial agents were recorded in E. coli isolates. This study showed that 89.18% of E. coli isolates were multidrug resistant (MDR). Furthermore, MDR extended-spectrum β-lactamases (ESBL)-producing E. coli were detected in the ovaries of four different broiler breeder flocks. Molecular characterization revealed that three isolates harboured blaCTX-M-1 gene and one isolate expressed blaSHV-12 gene. In addition, one blaCTX-M-1 -producing E. coli co-harboured the blaTEM-1 gene. These findings would contribute to a better epidemiological understanding of MDR E. coli for improve existing preventive strategies in order to reduce the dissemination of antimicrobial resistance in the broiler production system.  相似文献   

17.
Thirty-five Escherichia coli isolates obtained from the liver, spleen and intestines of 180 frugivorous and insectivorous bats were investigated for antimicrobial resistance phenotypes/genotypes, prevalence of Extended-Spectrum beta-lactamase (ESBL) production, virulence gene detection and molecular typing. Eight (22.9 %) of the isolates were multidrug resistant (MDR). Two isolates were cefotaxime-resistant, ESBL-producers and harbored the blaCTX-M-15 gene; they belonged to ST10184-D and ST2178-B1 lineages. tet(A) gene was detected in all tetracycline-resistant isolates while int1 (n = 8) and blaTEM (n = 7) genes were also found. Thirty-three of the E. coli isolates were assigned to seven phylogenetic groups, with B1 (45.7 %) being predominant. Three isolates were enteropathogenic E. coli (EPEC) pathovars, containing the eae gene (with the variants gamma and iota), and lacking stx1/stx2 genes. Bats in Nigeria are possible reservoirs of potentially pathogenic MDR E. coli isolates which may be important in the ecology of antimicrobial resistance at the human-livestock-wildlife-environment interfaces. The study reinforces the importance of including wildlife in national antimicrobial resistance monitoring programmes.  相似文献   

18.
1. The objective was to evaluate the occurrence of cultivable components of the Bacteroides fragilis group in faeces of broiler chickens and their antimicrobial susceptibility patterns.

2. Faecal samples of 36?×?45-d-old Cobb broilers of both sexes from 15 different flocks on one farm were diluted 10-fold and plated on to Bacteroides-bile-esculin agar for colony count and isolation. Identification was by molecular methods and antimicrobial susceptibility in the agar dilution assay.

3. A total of 236 isolates was recovered from a mean population of 3·32?×?107 colony-forming units/g of faeces. B. fragilis was shown to be the predominant Bacteroides species (45·3%), followed by B. distasonis (35·6%), B. vulgatus (8·9%), B. ovatus (2·5%) and B. stercoris (1·3%).

4. Among 204 bacterial isolates tested, high resistance to ampicillin (98·5%), norfloxacin (95·1%) and tetracycline (88·2%) were observed. High (89·7%) multi-drug resistance was observed to 3–7 of the tested drugs.

5. Components of the B. fragilis group were sub-dominant in broiler faecal microbiota, with a different species pattern compared with human and high antimicrobial multi-drug resistance.  相似文献   

19.
20.
This study investigated the potential spread of CTX-M-14 Escherichia coli from a known ESBL E. coli positive farm and risk factors for the presence of CTX-M E. coli on dairy farms. Between November 2009 and March 2010, 65 farms in North West England and North Wales were visited and animals sampled for E. coli producing CTX-M ESBLs. Seventeen of these were known to have received animals from a known ESBL E. coli positive 'index' farm since 2005 (linked farms). The prevalence of CTX-M E. coli in the population of linked farms was 58.8% (10/17; CI(95%) 32.9-81.6%) and in the randomly selected control population was 35.4% (17/48; CI(95%) 22.2-50.5%). There was no significant (p>0.05) linkage for the detection of any CTX-M E. coli or specifically a CTX-M-14 E. coli to the index farm. Group 1 (CTX-M-15, CTX-M-55, CTX-M-1, CTX-M-32), group 2 (CTX-M-2) and group 9 (CTX-M-14, CTX-M-14B, CTX-M-27) CTX-M E. coli were identified on the study farms. Molecular analysis revealed that three plasmids from linked farms had similar sizes (95kbp), replicon type (IncK) and backbone genes as that from the index farm. Logistic regression analysis revealed that farms that had used a 3rd or 4th generation cephalosporin (ceftiofur, cefoperazone and cefquinome) in livestock in the last 12months were nearly 4times more likely to have ESBL E. coli present (p=0.037; OR=3.93). There was no significant association between presence of CTX-M E. coli and the use of any 1st or 2nd generation cephalosporins. Several other risk factors for the presence of CTX-M E. coli were identified, such as storage of slurry in a pit, operating an open herd policy and infrequent cleaning of calf feeding equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号