首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Promising results from an increasing number of field evaluations of the System of Rice Intensification (SRI) conducted in Asia and Africa indicate that African farmers could increase their rice production while lowering costs of operation and reducing the need for water by utilizing its principles and practices. This system relies not on external inputs to raise productivity but on alternative methods for managing rice plants and the soil and water resources devoted to their cultivation. Farmers in sub-Saharan Africa increasingly have to cope with the impacts of adverse climate effects because water shortages and long dry spells during the cropping season are becoming common, even in lowland rice agroecosystems. SRI management practices create both larger rice root systems that make their plants more resistant to biotic and abiotic stresses and more conducive environments for beneficial soil microflora and fauna to flourish. Better plant growth and development result from promoting plant–soil synergies. Controlled fertilizer management experiments conducted with SRI practices in The Gambia have showed that grain production can be significantly increased without higher application of inorganic fertilizer and with less requirement for water. SRI management practices with fertilizer application at the national recommended dose produced a grain yield of 7.6 t ha−1. Water productivity was greatly increased, with 0.76 g of grain produced per kg total water input, compared to 0.10 g of grain per kg of water when the crop was continuously flooded. Recent hikes in fuel prices and consequent rises in input costs are making domestic rice production less attractive and importation even more attractive. Computation of production costs showed that SRI production, not needing heavy applications of fertilizer, is economically cost-effective. Achieving yield increases through ever-higher fertilizer applications is not economically or environmentally viable. SRI management with recommended fertilizer applications produced a net return of $853 ha−1 compared to $853 ha−1 compared to 37 when using farmers’ present low-productivity practices.  相似文献   

2.
Much of the focus of agricultural improvement efforts in recent decades has been on modifying crops’ genetic potential more than on improving cropping practices and production systems. Certainly, this genocentric approach has made significant contributions to food production in certain parts of the world under the banner of “the Green Revolution.” Yields have been raised substantially through varietal improvements and the increased use of inputs, including energy, agrochemicals, and delivering more water to crops through irrigation technology. In the past two decades, however, gains from this strategy have decelerated, with increasing economic and environmental costs of this input-dependent approach. Accordingly, there is reason to consider what can be accomplished by making optimizing changes in crops’ growing environments both above ground and, especially, below ground. The System of Rice Intensification (SRI) developed in Madagascar has been showing that, by modifying crop, soil, water and nutrient management, it can under most of the circumstances evaluated thus far raise of the productivity of land, water, seeds, capital, and labor used for irrigated rice production. This article summarizes and reflects on the evidence provided in the preceding articles in this special issue. It draws on the scientific evaluations and field experience from Asia, Africa, and Latin America to offer some conclusions about the methodology known as SRI. Since this methodology is still evolving, no final assessment is possible. Much more research and evaluation remain to be done, and there will be further modifications and refinements since making adaptations to local conditions is regarded as intrinsic to the methodology. Further improvements in SRI will come from both researchers and farmers, with the latter considered as partners rather than simply adopters. This is consistent with SRI’s representing a paradigm shift more than a fixed technology. The article identifies a number of areas for additional research that can probably improve factor productivity still further.  相似文献   

3.
The system of rice intensification (SRI) developed in Madagascar has been controversial in part because there have been no large-scale, long-term evaluations of the impact of its alternative methods. This paper summarizes experience with the dissemination of SRI practices across eight provinces in Eastern Indonesia over nine seasons from 2002 to 2006 under a major irrigation project. The Decentralized Irrigation System Improvement Project (DISIMP) was financed by the Japanese Government with project management by a Nippon Koei consultant team. SRI has been introduced in Indonesia via several organizations and in different parts of the country starting in 2000. The evaluation reported here, made by the DISIMP technical assistance team, is based on data from 12,133 on-farm comparison trials that covered a total area of 9,429 ha. Under SRI management, average paddy yield increase was 3.3 t/ha (78%). This was achieved with about 40% reduction in water use, 50% reduction in chemical fertilizer applications, and 20% lower costs of production. The farmers whom DISIMP was assisting to take up SRI were usually cultivating their paddy fields individually within irrigation systems where it was difficult to reduce water applications as recommended for SRI. Accordingly, innovations had to be made in soil and water management to create relatively aerobic soil conditions so that farmers could get the more productive rice phenotypes expected from SRI practice. This article describes the modifications made to adapt SRI concepts, pointing to the value of introducing in-field ditches, which was confirmed through paddy tract surveys. This experience and analysis showed how SRI methods could be utilized within irrigation systems where water management was not (yet) tailored to SRI production practices. Subsequently, modifications in irrigation system management are being made to be more supportive of SRI cultivation.  相似文献   

4.
While plant growth and productivity are known to derive from the interaction between genetic potential (G) and environmental factors (E), efforts to improve rice production have usually proceeded assuming a standard E that is created by conventional rice-growing practices. Genotypes have been assessed for their performance in continuously flooded paddy soils, with optimally dense plant populations, with reliance on inorganic fertilization to raise yields. The System of Rice Intensification (SRI) developed in Madagascar and now becoming accepted in much of Asia proposes that GxE interactions can be made more productive with different management practices: optimally sparse populations, established with very young seedlings carefully transplanted, intermittent flooding of paddies, with active soil aeration and with soil organic matter enhanced as much as possible. This article evaluates the effects of alternative SRI cultural practices on grain yield with particular attention to their impact on the growth and functioning of rice plant roots and on associated nutrient-use efficiencies that could be contributing to the observed higher grain yields. On-station experiments and on-farm surveys were conducted in Madagascar to evaluate SRI practices in comparison with standard cultural methods, considering how rice plants’ expression of their genetic potential was affected by different crop management practices. Controlling for both soil and farmer effects, rice plants cultivated with SRI methods produced average yields more than double those from standard practice (6.26 vs. 2.63 t ha−1). The most evident phenotypic difference was in plant root growth, assessed by root-pulling resistance (RPR), a summary measure of root system development. On average, uprooting single SRI plants required 55.2 kg of force plant−1, while pulling up clumps of three conventionally grown plants required 20.7 kg hill−1, or 6.9 kg plant−1. SRI plants thus offered 8 times more resistance per plant to uprooting. Direct measurements confirmed that SRI methods induced both greater and deeper root growth, which could be contributing to increased nutrient uptake throughout the crop cycle, compared with the shallower rooting and shorter duration of root functioning under continuous flooding. Rice plants grown with SRI methods took up more macronutrients than did the roots of conventionally managed plants, which was reflected in the higher SRI yields. When grain yield was regressed on nutrient uptake to assess nutrient-use efficiency, SRI plants achieved higher grain yield per unit of N taken up, compared to plants grown with conventional methods. The internal efficiency (IE) of SRI plants in utilizing macronutrients was 69.2 for N, 347.2 for P, and 69.7 for K, while the IE in plants conventionally grown was 74.9, 291.1, and 70.4 for these three macronutrients, respectively. Although no significant differences in IE were observed for N and K, the uptake of P was significantly greater, indicating more efficient use of P by SRI plants for grain production. More research needs to be done on such relationships, but this study indicates that productive changes in the structure and functioning of rice plants, particularly their roots, can be induced by alternative management methods.  相似文献   

5.
On-farm trials were conducted to evaluate the potential of the System of Rice Intensification (SRI), a low-input crop management system, to increase rice yields and reduce water consumption on subsistence farms in several regions of Panama and to determine how inherent soil fertility might affect SRI yields and the yield response to SRI management in the first season of SRI management. SRI practices increased yield by 47% on average and showed potential to increase yield by over 90%, while reducing water consumption by as much as 86%. SRI yields were correlated with available soil K and the difference between SRI and the conventional system yields was positively correlated with extractable Ca, Mg and Mn. The results of this study indicate that SRI is a promising rice production system for smallholder farmers in rural Panama farming under Panamanian soil conditions.  相似文献   

6.
There are various avenues for intensifying agricultural production, the most common being increased use of fertilizers, supplemental irrigation of crops, and adoption of high-yielding varieties. These options are rather widely known to farmers around the world, but they have not been widely adopted by smallholders in sub-Saharan Africa. The low adoption rate is related to complex technical and socio-economic issues, such as poor extension services, lack of capital, failure to mobilize the requisite water, or simply, poverty. The System of Rice Intensification (SRI) is in a special category of innovation in that, farmers stand to gain multiple benefits from its use, including the possibility of increasing rice yields substantially, saving water, and getting better grain quality, using differently the assets that they already have. A major impediment for the adoption of SRI in Africa has been lack of knowledge about this intervention, especially for farmers already practicing irrigated agriculture. Farmers generally have good business sense and will adopt technologies or practices once the benefits are proven and the risks are seen as minor. SRI should be attractive for these reasons, but there are various issues to be resolved before large numbers of farmers can adopt the method. This article reports on the steps taken and the technical and socio-economic issues addressed in efforts to introduce SRI and promote it in Kenya, specifically in the Mwea Irrigation Scheme. A diverse set of individuals and institutions in Kenya together embarked on the evaluation and dissemination of SRI methods in this East African country beginning in July 2009. If the new methods can perform in Kenya as in other countries, this will bring much benefit to rice farmers and rice consumers in the region. SRI is coming to Kenya relatively late, as it was the thirty-ninth country from which favorable SRI results have been reported. This means that Kenyans can learn from others’ experience and evaluations, and there is also now more of a supportive institutional framework. The initial results from on-farm SRI trials have been positive, although not conclusive. They have given impetus to Kenyan farmers and institutions to collaborate within a multi-sectoral, multi-level coalition that has provided an informal, multi-faceted platform for the evaluation, adaptation and dissemination of SRI practices. The initiative in Kenya is now gaining more formal status and more resources. This experience is presented to show the kinds of things that have been and can be done to utilize the SRI opportunity for raising land, labor, and water productivity in the rice sector.  相似文献   

7.
Field experiments were conducted in Bhubaneswar, Orissa, India, during the dry season (January–May) in 2008 and 2009 to investigate whether practices of the System of Rice Intensification (SRI), including alternate wetting and drying (AWD) during the vegetative stage of plant growth, could improve rice plants’ morphology and physiology and what would be their impact on resulting crop performance, compared with currently recommended scientific management practices (SMP), including continuous flooding (CF) of paddies. With SRI practices, grain yield was increased by 48% in these trials at the same time, there was an average water saving of 22% compared with inundated SMP rice. Water productivity with AWD-SRI management practices was almost doubled (0.68 g l−1) compared to CF-SMP (0.36 g l−1). Significant improvements were observed in the morphology of SRI plants in terms of root growth, plant/culm height, tiller number per hill, tiller perimeter, leaf size and number, leaf area index (LAI), specific leaf weight (SLW), and open canopy structure. These phenotypic improvements of the AWD-SRI crop were accompanied by physiological changes: greater xylem exudation rate, crop growth rate, mean leaf elongation rate (LER), and higher light interception by the canopy compared to rice plants grown under CF-SMP. SRI plants showed delayed leaf senescence and greater light utilization, and they maintained higher photosynthetic rates during reproductive and grain-filling stages. This was responsible for improvement in yield-contributing characteristics and higher grain yield than from flooded rice with SMP. We conclude that SRI practices with AWD improve rice plants’ morphology, and this benefits physiological processes that result in higher grain yield and water productivity.  相似文献   

8.
A field experiment was conducted in 2005 to investigate the effects of modified rice cultivation methods on: water use efficiency, the uptake of nutrients (N, P and K) by plants, and their distribution within plants and their internal use efficiency. The treatments were modified methods of irrigation, transplanting, weeding, and nutrient management, comparing the System of Rice Intensification (SRI) with standard rice-growing methods including traditional flooding (TF). Results showed that the uptake of N, P, and K by rice plants during their growth stages was greater with SRI management compared to TF, except during the tillering stage. At maturity stage, SRI plants had taken up more nutrients in their different major organs (leaves, stems, and sheaths; panicle axis; and seeds), and they translocated greater amount of nutrients to the grain. Under SRI, the ratio of N, P, and K in seed grain to total plant N, P, and K was 4.97, 2.00, and 3.01% higher, respectively, than with TF. Moreover, under SRI management, internal use efficiency of the three macronutrients (N, P, and K) was increased by 21.89, 19.34, and 16.96%, respectively, compared to rice plants under TF management. These measurements calibrate the crop’s physiological response to differences in cultural practices, including the maintenance of aerobic versus anaerobic environment in the root zones. With SRI, irrigation water applications were reduced by 25.6% compared to TF. Also, total water use efficiency and irrigation water use efficiency was increased with SRI by 54.2 and 90.0%, respectively. Thus, SRI offered significantly greater water saving while at the same time producing more grain yield, in these trials 11.5% more compared to TF.  相似文献   

9.
A field experiment was conducted to investigate the effects of intermittent versus continuous irrigation, together with different degrees of organic fertilization, on the growth and yield of hybrid rice, looking also at the functioning of the rhizosphere as this is a key element affecting crop performance. The crop management practices employed generally followed the recommendations of the System of Rice Intensification (SRI). The aim of the research was to learn how water management and organic fertilization together would affect crop outcomes. Under intermittent water application as recommended with SRI management (aerobic irrigation, AI), grain yield increased by 10.5–11.3%, compared to standard irrigation practice (continuous flooding, CF). The factor that contributed most to higher yield was increased number of grains per panicle. It was seen that under the range of organic fertilization treatments evaluated, intermittent irrigation compared with CF promoted greater dry matter production and higher leaf area index (LAI) during the main growth stages. Also, the combination of intermittent irrigation and organic material applications significantly increased soil redox potential (Eh), compared with CF, and also the numbers of actinomycetes in the rhizosphere soil. Actinomycetes were evaluated in this study as an indicator of aerobic soil biota. It was seen that with intermittent irrigation, the application of organic material improved the functioning of the rhizosphere and increased yield. However, these results based on 2 years of study reflect relatively short-term effects. The effects of longer-term water management and soil fertilization regimes should be also examined, to know whether these effects continue and, if they do, whether they become greater or less.  相似文献   

10.
Even in a country with a large population and rapid population growth, there can be labor shortages in the agricultural sector, because of outmigration of the able-bodied work force. The System of Rice Intensification (SRI) is not necessarily more labor-intensive once the methods have been learned, but the initial labor requirements can be a barrier to adoption, and farmers with large land areas cannot find the labor needed to use these more productive methods. Recognizing this problem, a set of agricultural implements have been designed for mechanizing the operations of SRI, with a view to reducing water requirements as well as labor requirements because the current conditions for agricultural production in the Punjab region of Pakistan include water scarcity and poor water quality as well as labor shortages. This article reports on the process of mechanizing SRI production in Punjab, which has been quite successful so far. Average yield is considerably increased with a 70% reduction in water requirements and a similar reduction in labor needs. The machinery and methods have been further adapted to other crops, being grown on permanent-raised beds, so that SRI with organic fertilization is combined with Conservation Agriculture. This combination is referred to as “paradoxical agriculture” because it enables farmers to achieve higher outputs with reduced inputs.  相似文献   

11.
A field experiment using system of rice intensification (SRI) techniques was conducted in Chiba, Japan during the 2008 rice-growing season (May–September) with eight treatment combinations in a split–split plot design (S–SPD) to observe the potential of SRI methods under the temperate climatic conditions in Japan. Intermittent irrigation with alternate wetting and drying intervals (AWDI) and continuous flooding throughout the cropping season were the two main-plot factors, while the effects of age of seedlings and plant spacing were evaluated as sub and sub–sub plot factors, respectively. The experiment results revealed that the proposed AWDI can save a significant amount of irrigation water (28%) without reduced grain yield (7.4 t/h compared with 7.37 t/h from normal planting with ordinary water management). Water productivity was observed to be significantly higher in all combinations of practices in the intermittent irrigation plots: 1.74 g/l with SRI management and AWDI as compared to 1.23 g/l from normal planting methods with ordinary water management. In addition, the research outcomes showed a role of AWDI in minimizing pest and disease incidence, shortening the rice crop cycle, and also improving plant stand until harvest. Synergistic effects of younger seedlings and wider spacing were seen in tillering ability, panicle length, and number of filled grains that ultimately led to higher productivity with better grain quality. However, comparatively better crop growth and yields when using the same SRI practices with ordinary water management underscore a need for further investigations in defining what constitute optimum wetting and drying intervals considering local soil properties, prevailing climate, and critical watering stages in rice crop management.  相似文献   

12.
To evaluate the performance of new rice establishment methods viz., system of rice intensification (SRI) and integrated crop management (ICM), a field study was conducted during 2008–11 in South Garo Hills, Meghalaya, foot hills of Eastern Himalayas, India. Field demonstrations were undertaken during wet seasons of 2008–11 and socio-economic information in the context of farmer’s realities were obtained during 2010–11 using a well structured questionnaire administered to 134 farmers. The results indicated that the average higher productivity of rice under SRI and ICM demonstration was 209.9 and 185.4 %, respectively, over conventional rice culture (CRC). The SRI and ICM methods of rice cultivation could save seeds (97.56 and 60.98 %), saving water (78.05 and 63.66 %), reduce cost (70.33 %), higher yield etc. compared to CRC. The main reasons for non-adoption of SRI/ICM was related to involvement of more efforts, faith towards traditional practices, ignorance and lack of knowledge on scientific water management. The net-return of $816.69, $706.63 and $51.48/ha was realized under SRI, ICM and CRC, respectively. The co-efficient of multiple determinations (R 2) of the production function was 0.695 in SRI, 0.714 in ICM and 0.734 in CRC which indicated that about 69.5, 71.4 and 73.4 % of the variation in rice productivity under SRI, ICM and CRC, respectively were explained by the independent variable and remaining 30.5, 28.6 and 26.6 %., respectively in SRI, ICM and CRC were as a result of non-inclusion of some explanatory variables as well as other factors outside the farmers control.  相似文献   

13.
Rice is a major staple food in Afghanistan, and its production contributes to the food security for millions of Afghans. However, over the past four decades, increases in rice cultivation in the Amu Darya River Basin in the northeastern part of the country are contributing to head/tail inequities in irrigation water-sharing, both at river basin and at canal levels. Since 2007, the Participatory Management for Irrigation System project has been experimenting with the System of Rice Intensification (SRI) as an alternative to the highly water-consumptive traditional method of rice cultivation by inundation of fields. The aim is to introduce a water-saving method for upstream rice-growing farmers to improve the water access for downstream users. To the extent that such a method improves yield, this gives upstream farmers an incentive to switch to this new method which benefits them and, indirectly, other farmers downstream. In 2009, 42 farmers who are cooperating with the Aga Khan Foundation practiced SRI, facilitated through the project’s participatory technology development (PTD) approach. Their average SRI yield, 9.3 tons ha−1, was considerably higher than that obtained with their traditional rice-growing practices. Those farmers who had 2 years of experience with SRI methods and who greater mastery of the techniques got, on average, 65% higher yield than first-year SRI farmers. More-experienced farmers improved their rice production by 27% in comparison to their previous results in 2008. The PTD approach engages the experienced farmers as resource persons to assist new volunteers, promoting local transfer of knowledge. The primary factor in yield improvement was an increase in the number of grains per panicle (+47%). A 10% increase in the number of tillers per square meter, despite lowered plant population, was the second major factor. Yields appeared to be very responsive to an increased number of mechanical weedings. Challenges still remain to be dealt with on the way toward up-scaling, especially as the security situation remains problematic. However, the PTD approach is facilitating work in the field as is cooperation with government personnel.  相似文献   

14.
A field experiment was conducted during the wet seasons of 2010 and 2011 at New Delhi, India to study the influence of organic, inorganic, and integrated sources of nutrient supply under three methods of rice cultivation on rice yield and water productivity. The experiments were laid out in FRBD with nine treatment combinations. Treatment combinations included three sources of nutrient supply viz., organic, integrated nutrient management, and inorganic nutrition and three rice production systems viz., conventional transplanting, system of rice intensification (SRI) and aerobic rice system. Results indicated that the conventional and SRI showed at par grain and straw yields but their yields were significantly higher than aerobic rice. Grain yield under organic, inorganic and integrated sources of nutrient supply was at par since the base nutrient dose was same. Plant growth parameters like plant height, tillers, and dry matter accumulation at harvest stage were almost same under conventional and SRI but superior than aerobic rice system. Root knot nematode infestation was significantly higher in aerobic rice as compared to SRI and conventional rice. However, organic, inorganic and integrated sources of nutrient supply did not affect nematode infestation. There was significant advantage in term of water productivity under SRI over conventional transplanted (CT) rice and less quantity of water was utilized in SRI for production of each unit of grain. A water saving of 34.5–36.0 % in SRI and 28.9–32.1 % in aerobic rice was recorded as compared to CT rice.  相似文献   

15.
This communication reports on separate research efforts in India and Indonesia to evaluate the effects that modifying methods of plant, soil, water and nutrient management could have on populations of soil organisms, particularly on those that can have beneficial consequences for crop growth and yield. Comparison of these parallel studies (Table 7) draws attention to the impacts that management can have on the soil biota, given that certain organisms are known to have positive implications for plants’ nutrition, health, and productivity. Data from the three studies show SRI management associated with some significant differences in soil microbial populations; higher levels of enzyme activity in SRI plant rhizospheres, indicative of increased N and P availability; and more soil microbial C and N, which would enlarge the nutrient pool for both plants and microbes. The studies reported, although more exploratory than conclusive, show enough similarity to suggest that SRI practices, which make paddy soils more aerobic and enhance soil organic matter, are supportive of enhanced populations of beneficial soil organisms. If this relationship is confirmed by further assessments, it could help researchers and practitioners to improve paddy production in resource-conserving, cost-effective ways. This review was written to encourage more studies to assess these kinds of soil biotic relationships and dynamics.  相似文献   

16.
The system of rice intensification (SRI) reportedly enhances yield with less water requirement. This claim was investigated to determine the effects of alternative cultivation methods and water regimes on crop growth and physiological performance. Treatment combinations compared SRI with the conventional transplanting system (CTS) using standard practices, evaluating both along a continuum from continuous flooding to water applications at 1, 3, 5, or 7 days after disappearance of ponded water (DAD), subjecting plants to differing degrees of water stress while reducing total water expenditure. SRI methods gave significant changes in plants’ phenotype in terms of root growth and tillering, with improved xylem exudation and photosynthetic rates during the grain-filling stage compared to CTS. This resulted in significant increases in panicle length, more grains and more filled grains panicle?1, greater 1,000-grain weight, and higher grain yield under SRI management. Overall, averaged across the five water regimes evaluated, SRI practice produced 49 % higher grain yield with 14 % less water than under CTS; under SRI, water productivity increased by 73 %, from 3.3 to 5.7 kg ha-mm?1. The highest CTS grain yield and water productivity were with the 1-DAD treatment (4.35 t ha?1 and 3.73 kg ha-mm?1); SRI grain yield and water productivity were the greatest at 3-DAD (6.35 t ha?1 and 6.47 kg ha-mm?1).  相似文献   

17.
This paper reviews the constraints and challenges of paddy farming in Taiwan. Based on those evidences, a set of eco-friendly rice farming practices raised by SRI principles are proposed from exploratory SRI trials conducted in Taiwan. The trials show that even with less exact leveling in the SRI field than is ideally provided, the average yield for SRI was higher than for CP; with an aerobic soil situation, the combination of biocontrol agent application and SRI management was seen to give better rice blast control; and the highest paddy yield was obtained from single-seedling transplants from potted nursery trays which protect the young seedlings’ roots from shock or twisting, compared with the planting of more numerous seedlings grown on flat nursery trays by a mechanical rice transplanter. In conclusion, a conceptual framework for eco-friendly paddy farming is formulated to encourage farmers to practice SRI principles. Among the participants in this collaboration, a co-operating group of SRI farmers is organized under investor sponsorship to guarantee the quality and safety of food, integrating an inspection service and food-source traceability from field to market with the production process. It is seen that in Taiwan, SRI principles can be adopted by local farmers without need for additional premiums through eco-friendly collaboration that can raise simultaneously the productivity of land, capital, and irrigation water. In addition, this collaboration can take advantage of increasing consumer demand for safe food with fewer chemicals and for supporting a greater level of biodiversity.  相似文献   

18.
A field study on assessment of crop establishment methods on yield, economics and water productivity of rice cultivars under upland and lowland production ecologies was conducted during wet seasons (June–November) of 2012 and 2013 in Eastern Indo-Gangetic Plains of India. The experiment was laid-out in a split-plot design (SPD) and replicated four times. The main-plot treatments included three crop establishment methods, viz. dry direct-seeded rice (DSR), system of rice intensification (SRI) and puddled transplanted rice (PTR). In sub-plots, five rice cultivars of different groups like aromatic (Improved Pusa Basmati 1 and Pusa Sugandh 5), inbreds (PNR 381 and Pusa 834) and hybrid (Arize 6444) were taken for their evaluations. These two sets of treatments were laid-out simultaneously in two production ecologies, upland and lowland during both years. In general, lowland ecology was found favourable for rice growth and yield and resulted in 13.2% higher grain yield as compared to upland ecology. Rice grown with SRI method produced 19.4 and 7.0% higher grain yield in 2012 and 20.6 and 7.1% higher in 2013, over DSR and PTR. However, PTR yielded 13.1 and 14.5% higher grain over DSR during 2012 and 2013, respectively. On an average, Arize 6444 produced 26.4, 26.9, 28.9 and 54.7% higher grain yield as compared to PS 5, P 834, PNR 381 and IPB1, respectively. Further, the interaction of production ecologies × crop establishment methods revealed that, in upland ecology, SRI recorded significantly higher grain yield as compared to PTR and DSR, but in lowland, grain yield resulting from SRI was similar to the yield obtained with PTR and significantly higher than DSR. The latter two methods (PTR and DSR) yielded alike in lowland ecology in both study years. The production ecologies × crop establishment methods × cultivars interaction on grain yield showed that the growing of Arize 6444 cultivar using SRI method in upland ecology resulted in the higher grain yield (8.87 t/ha). But the cost of production was also highest in SRI followed by PTR and DSR across production ecologies and cultivars. Cultivation of hybrid (Arize 6444) involved higher cost of production than all other cultivars. Irrespective of crop establishment methods and cultivars, gross returns, net returns and B:C ratio were significantly higher in lowland compared to upland ecology. Owing to higher grain yield, SRI method fetched significantly higher gross returns and net returns over PTR and DSR. Average increase in net return with Arize 6444 was 68.8, 41.0, 37.7 and 33.1% over IPB 1, PNR 381, P 834 and PS 5, respectively. There was a saving of 30.7% water in SRI and 19.9% in DSR over PTR under upland ecology. Similarly in lowland ecology, water saving of 30.2% was observed in SRI and 21.2% in DSR over PTR. Due to higher yield and saving on water, SRI returned significantly higher total water productivity (TWP) (5.9 kg/ha-mm) as compared to DSR (3.5 kg/ha-mm) and PTR (3.6 kg/ha-mm) under upland ecology. In lowland ecology, also SRI (6.2 kg/ha-mm) resulted in higher TWP as compared to other two methods. However, DSR gave significantly higher TWP as compared to PTR. Among cultivars, hybrid Arize 6444 recorded the highest TWP in both upland and lowland production ecologies across crop establishment methods. Hence, growing of hybrid Arize 6444 with SRI method can enhance rice productivity and water-use efficiency in lowland and upland production ecologies of Eastern Indo-Gangetic Plains and in other similar regions.  相似文献   

19.
System of rice intensification (SRI) has been disseminated in many countries because of its high yield, although the mechanism of yield increase has yet to be fully understood. The aims of this study were to clarify the actual water management of a skilled SRI farmer in irrigated paddy field of Indonesia and to examine the effect of intermittent water management on rice growth and yield. Yield and yield components were compared in the field experiments in the farmer’s fields under intermittent (SRI) or flooded (FL) irrigation for 4 years from 2013 to 2016. The daily mean water depth of SRI plots during 0–40 days after transplanting showed very shallow (ca. 2 cm) or little lower than soil surface and continued to be lower than soil surface during reproductive stage when panicles were formed. The yield of SRI significantly exceeded that of FL for 4 years by 13% (P?=?0.0004), so did the panicle numbers per area (P?=?0.036). The yield increase in SRI was associated with the increased number of panicles, which should have resulted from enhanced tiller development under shallow water level during the vegetative stage. The increased number of panicles was, however, counteracted by the reduced number of spikelets per panicle and resulted in nonsignificant increase in the spikelet density, defined as number of spikelets per unit area of crop. This dampening change in spikelet number per panicle could have been caused by limited supply of either nitrogen or carbohydrate during the panicle development stage under the intermittent water supply. A greater yield increase by SRI could be expected by improving nutrient or water management during the reproductive stage.  相似文献   

20.
A field study was conducted at Al-Mishkhab Rice Research Station (MRRS) during the summer season 2009 to evaluate irrigation water use efficiency (IWUE) using Anbar 33 variety with the System of Rice Intensification compared to traditional methods. During the growth phase, the number of leaves, stems, and roots, and the average plant height were measured every 15 days for the two sets of methods. At maturity, the depth and length of plant roots was assessed, along with leaf area index (LAI) of the flag leaf and plant height. The amount of irrigation water applied was measured by water meter for both methods. SRI principles for plant age, spacing, etc., were implemented in the SRI plots. The results indicated more vigorous growth of roots under SRI methods, reaching 13,004 cm plant−1 compared with non-SRI results of 4,722 cm plant−1. There was 42% increase in grain yield when SRI methods were used. These had water use efficiency (WUE) of 0.291 kg m−2 compared with WUE of 0.108 kg m−2 for non-SRI cultivation, almost a threefold difference. SRI practices reduced the need for irrigation water by 38.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号