首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Varieties of Italian, perennial and Italian × perennial ryegrasses, tall fescue and cocksfoot were used to determine the effects of soil moisture on grass growth. Weather conditions were monitored and herbage accumulation, leaf extension rate, leaf appearance rate and tillering were recorded under natural (control), covered and irrigated treatments.
Water deficit reduced crop growth rate in the spring and drought was the major factor influencing crop growth rates in all varieties during the summer. The ryegrasses appeared most sensitive to drought, and particularly poor recovery growth was exhibited by the Italian ryegrass RvP and the hybrid ryegrass Snowdon.
Leaf extension rate and leaf appearance rate were both reduced by increasing soil water deficit. Herbage accumulation was increased by irrigation when potential soil water deficits were greater than 100 mm. When water deficits were large, irrigation increased leaf extension more than leaf appearance or tiller number. Increasing moisture deficit had a greater effect upon tiller number than on leaf extension.  相似文献   

2.
Appropriate benchmarks for water productivity (WP), defined here as the amount of grain yield produced per unit of water supply, are needed to help identify and diagnose inefficiencies in crop production and water management in irrigated systems. Such analysis is lacking for maize in the Western U.S. Corn Belt where irrigated production represents 58% of total maize output. The objective of this paper was to quantify WP and identify opportunities to increase it in irrigated maize systems of central Nebraska. In the present study, a benchmark for maize WP was (i) developed from relationships between simulated yield and seasonal water supply (stored soil water and sowing-to-maturity rainfall plus irrigation) documented in a previous study; (ii) validated against actual data from crops grown with good management over a wide range of environments and water supply regimes (n = 123); and (iii) used to evaluate WP of farmer's fields in central Nebraska using a 3-y database (2005–2007) that included field-specific values for yield and applied irrigation (n = 777). The database was also used to quantify applied irrigation, irrigation water-use efficiency (IWUE; amount of yield produced per unit of applied irrigation), and the impact of agronomic practices on both parameters. Opportunities to improve irrigation management were evaluated using a maize simulation model in combination with actual weather records and detailed data on soil properties and crop management collected from a subset of fields (n = 123). The linear function derived from the relationship between simulated grain yield and seasonal water supply, namely the mean WP function (slope = 19.3 kg ha−1 mm−1; x-intercept = 100 mm), proved to be a robust benchmark for maize WP when compared with actual yield and water supply data. Average farmer's WP in central Nebraska was ∼73% of the WP derived from the slope of the mean WP function. A substantial number of fields (55% of total) had water supply in excess of that required to achieve yield potential (900 mm). Pivot irrigation (instead of surface irrigation) and conservation tillage in fields under soybean–maize rotation had the greatest IWUE and yield. Applied irrigation was 41 and 20% less under pivot and conservation tillage than under surface irrigation and conventional tillage, respectively. Simulation analysis showed that up to 32% of the annual water volume allocated to irrigated maize in the region could be saved with little yield penalty, by switching current surface systems to pivot, improving irrigation schedules to be more synchronous with crop water requirements and, as a fine-tune option, adopting limited irrigation.  相似文献   

3.
4.
Summary

This paper reports the results on safflower crops grown in a nine-year study, conducted on a 8 ha site, to determine the feasibility of using drainage water for irrigation in a 2-year cotton/1-year safflow-er rotation system. The cotton crops were irrigated with waters of 400, 1,500, 3,000, 4,500, 6,000, and 9,000 ppm total dissolved salts, and safflower was grown only with a preplant irrigation with nonsaline water. The use of drainage water for crop irrigation may be a means of decreasing its volume. Even though safflower was never irrigated with saline drainage water directly, the residual effect of using saline water for cotton irrigation adversely impacted safflower growth and development. Safflower seed yields were reduced in plots previously irrigated with waters of 4,500 ppm or higher salinity and even more severe effects on crop growth were seen as the numbers of years of irrigation with the saline water increased. After irrigating six cotton crops, the safflower seed yield in plots irrigated with 9,000 ppm waters was reduced to only 14% of the control. The safflower oil content and quality were not affected. Impacts on plant density, shoot height, shoot biomass, and leaf ionic content also are discussed.  相似文献   

5.
通过对常规垄灌溉、固定隔沟灌溉和交替隔沟灌溉的试验对比,交替隔沟灌溉水量仅为常规沟灌的1/2,有一半左右的地表面处于相对干燥状态,水分渗入率较大,提高了土壤对灌溉水和自然降雨的储存与利用,有利于对有限的水资源进行合理分配和充分利用。运用交替隔沟灌溉技术能提高作物对垄两侧土壤中养料、水分等的利用效率,作物根系进行干湿交替锻炼后,刺激根系生长,提高根系活力,一定程度增强植株抵御干旱的能力,更利于作物健康生长,交替隔沟灌溉是具有较强实用性的大田节水灌溉方法。  相似文献   

6.
《Journal of Crop Improvement》2013,27(1-2):353-386
SUMMARY

Salinity in soil and water is irrevocably associated with irrigated agriculture throughout the world and as a result requires that salt management becomes an integral part of the production system. With careful water management, it is possible to sustain irrigated agriculture in areas with saline soil and saline groundwater with and without subsurface drainage. The results from two field projects conducted in an area with saline soils and saline groundwater demonstrated the type of irrigation systems and management needed to sustain production of moderately salt tolerant and tolerant crops. During the first study at Murrieta farms, yields of cotton and sugar beet were maintained using both saline and non-saline water for irrigation when pre-plant irrigation and rainfall were adequate to maintain soil salinity at a tolerable level. Wheat production was reduced in areas that used saline water for irrigation. Use of saline water containing toxic elements such as boron for irrigation poses a threat to the sustainability of the system. The second study evaluated the management of furrow and subsurface drip irrigation in the presence of shallow saline groundwater. Careful management of the furrow system during pre-plant irrigation and the first irrigation of the growing season was required to prevent waterlogging. It was possible to manage the subsurface drip system to induce significant crop water use from shallow groundwater. Rainfall and pre-plant irrigation were adequate at this site to manage soil salinity.  相似文献   

7.
This study quantifies the effects of paddy irrigation water on groundwater recharge. A numerical model of groundwater flow was conducted using MODFLOW in a 600 ha study site in an alluvial plain along the Chikugo River, located in southwestern Japan. To specify the surface boundary condition, data on the land use condition stored in the GIS database were transferred into a numerical model of groundwater flow. The simulated results were consistent with the observed yearly changes of groundwater level. Thus, it was appropriate to use the model to simulate the effects of paddy irrigation on groundwater. To quantify these effects, the groundwater level was simulated during the irrigation period when all farmlands in the study site were ponded. In this situation, the groundwater level was 0.5 to 1.0 m higher, the ground water storage 20% larger, and the return flow of the groundwater to the river 50% larger than in the present land use condition.  相似文献   

8.
Sodic soils are characterized by high exchangeable sodium on exchange sites, soil pH greater than 8.5, relatively low electrical conductivity, low infiltration rate and dispersed clay. These characteristics restrict the capacity of soil to absorb water, resulting in poor infiltration. Evidently, these soils require application of irrigation water at shorter intervals for crop production. Thus, irrigation strategy for sodic soils differs from that of normal soils. An experiment to determine the suitable irrigation strategy along with methods of application namely: surface (farmer’s practice), sprinkler (double nozzle impact sprinkler), and low-energy water application device (LEWA) were initiated in the year 2012 for rice crop. Irrigation depths of 6 cm in case of surface method and 4 cm in case of sprinkler and LEWA methods were applied at each irrigation event. The irrigation events for rice were scheduled at 2-DAD (days after the disappearance of the ponded water), 3-DAD, and 4-DAD through surface method, and at daily, 1- and 2-day intervals (after initial ponding disappeared) by sprinkler and LEWA methods. Sprinkler and LEWA methods resulted in highest rice yield of 4.4 t ha?1 in irrigated plots at the 2-day interval which was at par with the highest yielding surface-irrigated plot scheduled at 2-DAD. At the same time, irrigation strategy of 2-day interval through sprinkler and LEWA methods registered water saving to the extent of 30–40% over 2-DAD under surface irrigation method. Results revealed that there could be substantial saving of water and energy (electricity and diesel) through the use of sprinkling devices for irrigating rice under sodic soil environments.  相似文献   

9.
A distributed hydro-environmental model is developed that achieves detailed analysis of the movement of water at a field-plot-scale resolution in a mesoscale watershed including lowland areas where, especially for agricultures, it is an essential need to get rid of redundant groundwater by drainage facilities such as rivers, canals and/or underdrains. For this, the problem geometry is meshed with unstructured cells of triangular shape. Profile of a column cell is zoned into two: surface zone and groundwater zone in which water movement is represented by combined tank and soil moisture sub-models, and well-defined two-dimensional unconfined shallow groundwater flow sub-model, respectively. The top-two sub-models serve to evaluate evapotranspiration, infiltration, soil water content, lateral surface water flow, and vertical percolation. The vertical percolation so evaluated is given as longitudinal recharge to the bottom sub-model for computing groundwater flow. Surface water–groundwater interactions through beds and stream-banks of perennial and ephemeral canals are considered by treating the canal courses as internal boundaries in the groundwater flow model. The finite volume method (FVM) that allows of unstructured mesh and produces conservative solutions is employed for groundwater flow computation. The model developed is applied to an actual watershed which includes a low-lying paddy area to quantify the hydrological impact of land-use management practices over a period of 29 years in which the farmland consolidation project was implemented and part of the paddy fields were converted to upland crop fields and housing lands. From the results obtained, it is concluded that the model presently developed lends itself to water—as well as land-use management practices.  相似文献   

10.
《Plant Production Science》2013,16(3):184-189
Abstract

Cassava (Manihot esculenta Crantz) can produce a high crop yield even in an environment with irregular rains. This is mainly attributed to its abilities to maintain leaf area under drought conditions and rapidly regrow after rain. In this study, we investigated the mechanism of leaf maintenance under water deficits through measurement of photosynthetic rate and water potential changes in leaves. The cassava plants were grown in pots and exposed to water deficits, and the diurnal changes in water potentials, rates of photosynthesis and transpiration and stomatal conductance were measured. The relationship between leaf water potential (ψW) and photosynthetic rate with decreasing soil water, and osmotic adjustment were also investigated. With respect to water supply in leaves, the movement of water in plants was measured using stem heat balance. Under water deficits, photosynthesis occurred only in the early morning. The water loss was reduced by stomatal closure in the mid-day. This was attributed to the complete closure of the stornata during the decrease in ψW to a range between –1.0 and –1.4 MPa. Furthermore, the firm stomatal closure is caused by the consistency of osmotic potential under decreases in soil water, i.e., to a lack of osmotic adjustment. Water stored in the pith parenchyma of stem flowed into leaves in the morning. From these results, we conclude that cassava can consistently maintain an adequate water level in leaves via water storage and the sensitivity of stornata to water deficits, thereby avoiding leaf dehydration.  相似文献   

11.
Increasing water scarcity has necessitated the development of irrigated rice systems that require less water than the traditional flooded rice. The cultivation of aerobic rice is an effort to save water in response to growing worldwide water scarcity with the pressure to reduce water use and increase water productivity. An accurate estimation of different water balance components at the aerobic rice fields is essential to achieve effective use of limited water supplies. Some field water balance components, such as percolation, capillary rise and evapotranspiration, can not be easily measured; therefore a soil water balance model is required to develop and to test water management strategies. This paper presents results of a study to quantify time varying water balance under a critical soil water tension based irrigation criteria for the cultivation of non-ponded “aerobic rice” fields along the lower parts of the Yellow River. Based on the analysis and integration of existing field information on the hydrologic processes in an aerobic rice field, this paper outlines the general components of the water balance using a conceptual model approach. The time varying water balance is then analyzed using the feedback relations among the hydrologic processes in a commercial dynamic modeling environment, Vensim. The model simulates various water balance components such as actual evapotranspiration, deep percolation, surface runoff, and capillary rise in the aerobic rice field on a daily basis. The model parameters are validated with the observed experimental field data from the Huibei Irrigation Experiment Station, Kaifeng, China. The validated model is used to analyze irrigation application soil water tension trigger under wet, dry and average climate conditions using daily time steps. The scenario analysis show that to conserve scarce water resources during the average climate years the irrigation scheduling criteria can be set as −30 kPa average root zone soil water tension; whereas it can be set at −70 kPa during the dry years, however, the associated yields may reduce. Compared with the flooded lowland rice and other upland crops, with these two alternatives irrigation event triggers, aerobic rice cultivation can lead to significant water savings.  相似文献   

12.
Summary

Use of saline drainage water for crop irrigation was evaluated as a means of decreasing its volume. Results of a nine-year crop rotation (cotton-cotton-safflower, × 3) in which only the cotton was irrigated with drainage water of 400, 1,500, 3,000, 4,500, 6,000, and 9,000 ppm total dissolved salts are presented. The different salinity levels of irrigation waters were achieved by mixing nonsaline canal water (400 ppm) and saline drainage water. Cotton lint yields were not affected by increased salinity level of the irrigation water for the first two years. Detrimental effects became evident in the third cotton crop with increasing severity in later years. In the fifth year of cotton (seventh year of the study), lint yields were adversely affected by waters of salinity greater than 3,000 ppm. However, fiber quality remained unaffected at all levels of irrigation water salinity. The reductions in lint yield appeared to be a function of time and the salinity level of applied water. Shoot height and biomass were reduced by the irrigation water salinity before lint yields. Stand establishment appeared to be the most sensitive to salinity and was perhaps the main reason for yield reduction. Increase in irrigation water salinity increased Na+ content of leaf blades and petioles and decreased K+/Na+ ratio of leaf blades and petioles. The study showed that irrigation waters of up to 3,000 ppm salinity may be used for four years without any yield reductions, as long as some leaching occurs through preplant irrigations with low salinity water. Data on crop growth and development and ionic content collected over the nine year period are presented.  相似文献   

13.
《Field Crops Research》1987,16(3):231-241
Chickpeas (Cicer arietinum L., cv H-355) were subjected to four irrigation treatments after crop establishment: (i) unirrigated (D); (ii) irrigated until flower initiation [85 days from sowing (DAS)] and unirrigated thereafter (WD); (iii) unirrigated until active seed setting (129 DAS) and irrigated thereafter (DW); (iv) irrigated throughout (W). Several plant processes were measured on clear days betweem 85 and 144 DAS. The unirrigated plants had lower leaf water potentials, canopy evapotranspiration rates (ET), canopy photosynthetic rates (PN), plant dry weight and grain yield compared to the irrigated plants, but increased canopy-air temperature differences (TcTa). Cessation of irrigation at flowering induced a rapid decrease in canopy photosynthesis and reduced the grain yield by 33% due to a decrease in the number of pods set. Irrigation from 129 DAS resulted in some recovery of grain yield resulting from the development of a small number of late pods with small seeds. Among yield components, water stress primarily affected the number of pods per plant and had little effect on the grain number per pod. Grain yield was linearly related to pod number, leaf water potential, and mean PN.  相似文献   

14.
《Field Crops Research》1998,57(3):309-318
Available soil water is the principal factor that limits the yield potential of wheat (Triticum aestivum L.) and its response to nitrogen (N) under Mediterranean climatic conditions. We examined wheat yield, N fertilizer uptake, and water use for two seasons (1991/1992 and 1992/1993) with total seasonal rainfall of 323 and 275 mm, respectively. In addition to natural rainfall, supplemental irrigation at various rates (1/3, 2/3 and full irrigation) was also considered in assessing these parameters and their interactive effects. Grain yield and dry matter accumulation and N uptake varied between years, mainly due to rainfall and sowing date. Yields were increased by irrigation and N fertilization, with a greater response to N in 1991/1992 and to irrigation in the relatively drier 1992/1993 season. Most fertilizer N was taken up from tillering to anthesis; then it either stabilized or slightly declined, while soil N contributed further to plant N uptake. Compared to rain-fed conditions, more soil and fertilizer N was utilized by the irrigated crop, particularly in 1992/1993. In both years, grain N represented 60% of N accumulated at anthesis under rain-fed conditions, compared to 80% under irrigation. Fertilization and irrigation increased water-use efficiency, particularly under drier conditions. Thus, supplemental irrigation, applied at a sensitive growth stage, would be a valuable management practice for improving yield, water-use efficiency and crop N uptake under the dry conditions of a Mediterranean climate. Given the potential of both irrigation and N to increase output in dry areas, the amounts of both inputs are dictated by rainfall in any one year.  相似文献   

15.
Potatoes grown for processing in irrigated regions of the Pacific North-west sometimes develop undesirably high concentrations of reducing sugars in tuber stem ends due to hot weather and water stress during tuber development. Such tubers usually produce french fries with dark stem ends or sugar ends. In order to better quantify the relationship between water stress and stem-end sugar levels for Russet Burbank, single episodes of transitory water stress were established by delaying irrigations until soil water potentials ranging from -32 to -107 kPa were reached during early tuber bulking. To determine when the increase in reducing sugars occurred, tubers were sampled before transitory stress, at maximum stress, after stress was relieved with sprinkler irrigation, and post harvest. Reducing sugar concentrations did not increase in tuber stem ends until two weeks or longer after the plant water stress was relieved. Increased reducing sugar concentrations were positively associated with decreased soil water potential (drier soil). Tubers were sliced and fried at harvest and six weeks post-harvest. Decreasing soil water potential (drier soil) was associated with progressively darker fry colors at harvest and post harvest. Significant darkening in the average stem-end fry color light reflectance of tubers at harvest as observed at -80 kPa in 1988 and -69 kPa in 1989. The effect of imposed water stress on tuber stem-end reducing sugar concentrations was most pronounced post harvest.  相似文献   

16.
《Field Crops Research》2005,91(2-3):231-249
Drought is the most important limitation to sugar beet (Beta vulgaris L.) production in the UK and other areas dependent on usually insufficient summer rainfall. As increased irrigation is not a viable answer to the problem, an economically and environmentally desirable solution is new varieties with decreased sensitivity to water deficits. However, there is little genotypic information on drought tolerance in sugar beet, and breeders are not equipped to make these selections. The objectives of this study were to assess the degree of genotypic diversity for drought-related morpho-physiological traits and to measure the strength of association between these traits and indicators of crop performance. 46 sugar beet genotypes with diverse genetic backgrounds were tested in three field experiments from 1999 to 2001. Drought was imposed by covering plots with large polythene tunnels, allowing the crop to grow solely on stored soil moisture. Agronomic characters and drought tolerance indices are described in a companion paper [Ober et al., Assessing the genetic resources to improve drought tolerance in sugar beet. Agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crops Res., in press]. In this report, we show that there were significant genotypic differences for stomatal conductance, succulence index, specific leaf weight, and osmotic adjustment, but not for photosynthetic rate, relative water content or total water use. Patterns of water use within the soil profile differed between genotypes; some extracted more water from deep soil layers. The maintenance of green foliage cover during drought was positively correlated with drought tolerance index, which was negatively correlated with succulence index and scores for wilting and leaf senescence. Droughted sugar yield was positively correlated with soil water extraction and negatively correlated with relative leaf expansion rate measured in late summer. Under irrigated conditions, there was high positive correlation between transpiration rate and sugar yield. Genotype × trait biplots showed superior genotypes with relatively greater expression of combinations of favourable traits. The results suggest that succulence index and wilting score could be used to cull inferior plants in early stages of breeding programs, and green foliage cover and patterns of water use could help identify superior genotypes in elite germplasm. These data should enable tools to be developed for indirect selection of genotypes suited to drought-prone environments.  相似文献   

17.
Summary Diurnal changes in net photosynthetic rate were measured in a furrow-irrigated potato crop and in a riverbed crop where the water table was always maintained at 20–28 cm from the soil surface. In the irrigated crop, the photosynthetic rate during mid-afternoon was about half the peak rate observed at noon. This reduction was accompanied by a near tripling of stomatal resistance, a 45% reduction in transpiration, and a 5-fold increase in the difference between leaf and air temperatures. No such changes were observed in the riverbed crop where the photosynthetic rate remained nearly constant at about 0.9 mg m−2 s−1 between 9 a.m. and 4 p.m. Tuber yield in the riverbed crop was about 30% higher than in the irrigated crop.  相似文献   

18.
《Plant Production Science》2013,16(4):403-414
Abstract

Plants growing on soil with insufficient moisture need deep and dense roots to avoid water stress. In crop plants, the production of dry matter during ripening of grains is critically important for grain yield. We postulated that shoot growth would be suppressed but root growth would continue under an insufficient soil moisture condition before heading, while shoot growth would be more vigorous than root growth under a sufficient soil moisture condition. We anticipated that the plants growing under an insufficient soil moisture condition before heading would produce more dry matter and grain under an insufficient soil moisture condition during ripening. In order to examine our hypotheses and to determine the fundamental conditions for improving grain yield and efficient use of irrigated water under limited irrigation, we grew wheat plants (Triticum aestivum L., cv. Ayahikari) in pots (30 cm in diameter, 150 cm in height) with insufficient soil moisture (PD-D pots) or sufficient soil moisture (PW-D pots) for six weeks before heading followed by full irrigation, and then insufficient soil moisture condition during ripening. The growth of shoots was suppressed significantly but that of roots was not before heading in PD-D plants, with a higher resultant ratio of root to shoot than in PW-D plants. The former retained a high leaf water potential and, therefore, were able to produce more dry matter and grain during soil moisture depletion during ripening as compared with the latter plants. We also obtained similar results with field-grown plants.  相似文献   

19.
Sugarcane crops are managed over 8 million hectares in Brazil and future extensions might occur on less favorable lands where irrigation would be necessary to increase and stabilize yields. Root growth was studied by sequential soil coring under rainfed and irrigated conditions for one cultivar widely planted in Brazil. Root length densities (RLD) were measured 34, 49, 125, 179, 241 and 322 days after planting (DAP) down to a depth of 1 m. At the harvest (332 DAP), root intersects (a proxy for RLD) were counted on two vertical trench walls in each water supply regime, down to a depth of 6.0 m. The highest RLD in deep layers (below a depth of 0.6 m) were observed in the rainfed crop from 125 DAP onwards. By contrast, the highest RLD in the upper layers during dry periods were found in the irrigated crop. The maximum depth reached by roots at the harvest was little affected by irrigation: 4.70 m and 4.25 m in the rainfed and irrigated crop, respectively. About 50% of root intersects were observed below the depth of 1 m in the two water supply regimes. This pattern suggested a strong genetic control of root growth in deep soil layers. The total amount of root intersects 332 DAP was 49% higher in the rainfed crop than in the irrigated crop, and root distribution was more homogeneous. Mean root front velocity was about 0.5 cm day−1 the first 4 months after planting and increased thereafter up to the end of the harvest (1.86 cm day−1 and 1.75 cm day−1 on average in the rainfed and the irrigated crops, respectively). Our study pointed out the necessity to take into account the development of sugarcane roots in deep soil layers to improve our understanding of net primary production control by water availability.  相似文献   

20.
为明确旱地小麦最佳补充灌溉时期和灌溉量,2001~2002年在大田试验条件下对陇中黄土高原丘陵沟壑区春小麦关键需水时期和严重干旱时段不同灌溉量下的产量和水分利用状况进行了研究。结果表明,无论在干旱年份(2002年)还是平水年份(2001年),关键生长期(拔节~抽穗期)补灌比严重干旱时段补灌产量平均提高了2.4%,最高8.07%,水分利用效率(WUE)平均提高8.18%,最高20.69%;产量和土壤耗水量随灌溉量的增加而增加,且处理间差异显著;不同年份WUE随补灌量的变化趋势不同,干旱年份WUE随补灌量的增加变化幅度小于平水年;小麦产量因子随补灌量增加而增加,关键生长期补灌同时促进穗的发育和籽粒灌浆,而严重干旱时段补灌对籽粒灌浆有显著影响。由于关键生长期补灌对生殖生长和产量因子的建成有明显的促进作用,同时促进了“源”的建成和“库”容增加,因此产量和WUE较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号