首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The chemical composition, main physicochemical properties and thermal stability of oil extracted from Acacia senegal seeds were evaluated. The oil, moisture and the ash contents of the seeds were 9.80%, 6.92% and 3.82%, respectively. Physicochemical properties of the oil were iodine value, 106.56 g/100 g of oil; saponification value, 190.23 mg KOH/g of oil; refractive index (25 °C), 1.471; unsaponifiable matter, 0.93%; acidity, 6.41% and peroxide value, 5.43 meq. O2/kg of oil. The main fatty acids in the oil were oleic acid (43.62%) followed by linoleic acid (30.66%) and palmitic acid (11.04%). The triacylglycerols (TAGs) with equivalent carbon number ECN 44 (34.90%) were dominant, followed by TAGs ECN 46 (28.19%), TAGs ECN 42 (16.48%) and TAGs ECN 48 (11.23%). The thermal stability analysed in a normal oxidizing atmosphere showed that the oil decomposition began at 268.6 °C and ended at 618.5 °C, with two stages of decomposition at 401.5 °C and 576.3 °C. According to these results, A. senegal seed oil has physicochemical properties, fatty acids composition and thermal characteristics that may become interesting for specific applications in several segments of food and non-food industries.  相似文献   

2.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil from hemp (Cannabis sativa L.) seeds. For ground seeds, the supercritical extraction was carried out at temperatures of 40, 60 and 80 °C and pressures of 300 and 400 bar. Different solvent-ratios were applied. Supercritical CO2 extractions were compared with a conventional technique, n-hexane in Soxhlet. The extraction yields, fatty acid composition of the oil and oxidation stability were determined. The seed samples used in this work contained 81% PUFAs, of which 59.6% was linoleic acid (ω-6), 3.4% γ-linolenic (ω-3), and 18% α-linolenic (ω-6). The highest oil yield from seeds was 22%, corresponding to 72% recovery, at 300 bar and 40 °C and at 400 bar and 80 °C. The highest oxidation stability corresponding to 2.16 mM Eq Vit E was obtained at 300 bar and 80 °C.  相似文献   

3.
The physicochemical characteristics, fatty acid and triacylglycerol compositions, DSC profile and UV/vis spectrum of oil extracted from Albizia julibrissin seeds were determined in this study. The oil content and the moisture of the seeds were 10.50% and 1.56%. The free fatty acid, the peroxide value, the p-anisidine value, the saponification value, the iodine value were 2.54%, 6.61 mequiv. O2/kg of oil, 1.98, 190.63 (mg KOH/g) and 111.33 (g/100 g of oil), respectively. The specific extinction coefficients K232, K268 were 7.55 and 0.96, respectively. Linoleic acid (C18:2, 58.58%), palmitic acid (C16, 13.86%) and oleic acid (C18:1, 10.47%) were the dominant fatty acids in the A. julibrissin seed oil. LLL (36.87%), OLL (21.62%), PLL (16.69%) and PLO + SLL (8.59%) were the abundant triacylglycerol representing > 83% of the seed oil (L: linoleic, O: oleic, P: palmitic, S: stearic). The DSC melting curves reveal that: melting point = −14.70° C and melting enthalpy = 54.34 J/g. A. julibrissin seed oil showed some absorbance in the UV-B and UV-C ranges. The results of the present analytical study show that A. julibrissin is a promising oilseed crop, which can be used for making soap, hair shampoo and UV protectors. Furthermore, the high level of unsaturated fatty acids makes it desirable in terms of nutrition.  相似文献   

4.
In the framework of the E.U. project Fair CT 96-1913 “Environmental studies on sweet and fibre sorghum, sustainable crops for biomass and energy”, a research has been carried out with the aim to study the water and nitrogen balance and determine the critical N dilution curve of sweet sorghum cv. Keller. A field experiment was performed, where three irrigation treatments (I0 = dry control, I50 = 50% ETm restoration, I100 = 100% ETm restoration) and four nitrogen fertilization levels (N0 = no nitrogen control, N60 = 60 kg ha−1, N120 = 120 kg ha−1; N180 = 180 kg ha−1) were studied. The final yield was significantly affected by the amount of water distributed but not by the nitrogen level. The treatments watered up to crop establishment (I0) produced, in the average, 7.5 t ha−1 of dry matter, against 21.1 and 27.1 t ha−1 of I50 and I100, respectively. The crop determined a great reduction in nitrate concentration of soil water, irrespective of nitrogen supplied. The variation between N output and input (Δ) was negative in N0, N60 and N120 and positive in N180. The critical value of nitrogen uptake change in relation to the water availability. The amount of nitrogen supplied did not determine significant differences upon WUE. The crop seems to have a great potentiality in Mediterranean environment in terms of yield production.  相似文献   

5.
Miscanthus × giganteus bark was subjected to mild fractionation with peroxyformic acid by a two stage process. A factorial experimental design was used to study and quantify the effect of the variables (formic acid concentration (80-90%), hydrogen peroxide concentration (0.2-0.4%), temperature of the first stage (60-80 °C), and treatment time of the second stage (60-120 min)) on the main parameters of fractionation: pulp yield, remaining lignin and total polysaccharides in pulp. The dependence of lignin precipitation rate on hydrogen peroxide concentration in liquor was also studied. Hydrogen peroxide concentrations inferior to 0.5% seems to be suitable to recover high percentages of lignin. The isolated lignin was analysed by 2D-HSQC, 13C- and 31P NMR spectroscopy, FTIR spectroscopy, size-exclusion chromatography and chemical analysis. The most important chemical modifications taken place in the lignin during the fractionation were identified: β-O-4′ cleavage and hydrolysis of LC-bond structures. The C9-formula was also determined: C9H6.81O2.90(OCH3)0.68(COOH)0.07(OHPh)0.38(OHAl)0.33.  相似文献   

6.
The water-use characteristics of sesame (Sesamum indicum L.) were studied in the field under furrow irrigation. Irrigation water quantities were based on pan evaporation (Epan) from a screened class-A pan. Treatments consisted of three irrigation intervals (I1: 7 days; I2: 14 days, I3: 21 days), and four pan coefficients (Kcp 1: 0.60; Kcp 2: 0.80, Kcp 3: 1.00 and Kcp 4: 1.20). Average irrigation values for each treatment varied from 467 to 857 mm in 2003 and 398 to 654 mm in 2004. The highest seasonal evapotranspiration was obtained from the I3Kcp 4 treatment in 2004 (1019 mm); the lowest value was observed in the I1Kcp 1 treatment in the same year (598.0 mm). Data collected in 2003 and 2004 showed that the amount of irrigation water applied significantly the affected seed yield. However, the effects of irrigation interval on yield were not significant. On average, the Kcp 3 treatment gave the highest seed yield (1.915 t ha−1), whereas Kcp 1 treatment gave the lowest (1.538 t ha−1). Seasonal yield response factors (ky) were 1.01 and 0.54 in 2003 and 2004, respectively. ET/Epan ratios for each treatment varied from 0.3 to 1.3 in 2003 and from 0.1 to 1.1 in 2004. In conclusion, the Kcp 3 plant-pan coefficient is recommended for sesame grown under field conditions in order to maximise yield.  相似文献   

7.
In this study, Nigella sativa L. oil was extracted using supercritical carbon dioxide with full factorial design to determine the best extraction condition (pressure, temperature and dynamic extraction time) for obtaining an extract with high yield, antioxidant activity and thymoquinone (TQ) quantity. The maximum thymoquinone content in the highest overall yield was achieved through SC-CO2 extraction condition of 150 bar, 40 °C, 120 min with the value of 4.09 mg/ml. The highest SC-CO2 extraction yield was 23.20% which obtained through extraction condition of 350 bar, 60 °C and 120 min. The extraction conducted at 350 bar, 50 °C, 60 min showed the lowest IC50 value (highest antioxidant activity) of 2.59 mg/ml using DPPH radical scavenging activity method. Fatty acid composition of the extracted oil with highest radical scavenging activity was obtained by gas chromatographic analysis.  相似文献   

8.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%.  相似文献   

9.
The concept of thermal modification has evolved from a challenging research program to commercial reality in several European countries in recent years. The aim of this study is to determine the change of various physical properties (oven-dry density, air-dry density, weight loss, swelling and anti-swelling efficiency (ASE)), compression strength parallel to grain, colour difference (ΔE), glossiness and surface roughness of narrow-leaved ash (Fraxinus angustifolia Vahl.) and chestnut (Castanea sativa Mill.) woods after heat treatment under different temperatures and durations. For this study two different temperatures (160 °C and 180 °C) and two different durations (2 h and 4 h) were considered. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Four main roughness parameters which are mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. The properties studied were significantly different (p = 0.05) at two temperatures and two durations of heat treatment. Based on the findings of this study, the results showed that oven-dry density, air-dry density, swelling, compression strength parallel to grain and surface roughness decreases with increasing heat treatment temperature and time.  相似文献   

10.
In Argentina, delayed sowing causes a decrease in seed yield and in radiation use efficiency (RUE) of peanut crops (Arachis hypogaea L.), but it is not known if RUE reduction is mainly due to reduced temperature during late reproductive stages or to a sink limitation promoted by decreased seed number in these conditions. We analyzed seed yield determination and RUE dynamics of two cultivars (Florman and ASEM) in four irrigated field experiments (Expn) grown at three sites and five contrasting sowing dates (between 17 October and 21 December) in three growing seasons. An additional field experiment was performed with widely spaced plants (i.e. with no interference among them) to evaluate the effect of peg removal on RUE and leaf carbon exchange rate (CER). Seasonal dynamics of mean air temperature and irradiance, biomass production (total and pods), and intercepted photosynthetically active radiation (IPAR) were followed. Seed yield and seed yield components (pod number, seeds per pod, seed number and seed weight) were determined at final harvest. Crop growth rate (CGR) and pod growth rate (PGR) were computed for growth phases of interest. RUE values for crops sown until 14 November were 1.89–1.98 g MJ−1 IPAR, within the usual range. RUE decreased significantly for cv. Florman in the late sowing of Exp1 (29 November) and for both cultivars in Exp3 (21 December sowing). Across experiments, seed yield (4.5-fold variation relative to minimum) was strongly associated (r2 = 0.87, P < 0.0001) with variations in seed number (3.5-fold variation relative to minimum), and to a lesser extent (r2 ≤ 0.54, P ≤ 0.001) to variations in seed weight (1.9-fold variation relative to minimum). Seed number was positively related (P < 0.01) to CGR (r2 = 0.66) and to PGR (r2 = 0.72) during the R3–R6.5 phase (seed number determination window), while crop growth during the grain-filling phase (i.e. between R6.5 and final harvest) was positively associated with grain number (r2 = 0.80, P < 0.001). No association was found between RUE and mean air temperature, neither for the whole cycle nor for the phase between R6.5 and final harvest, which showed the largest temperature variation (16.4–22.4 °C) across experiments. Use of mean minimum temperature records (range between 13.8 and 18.5 °C) did no improve the relationship. However, grain-filling phase RUE showed a positive (r2 = 0.69, P = 0.003) linear response to seed number across experiments. This apparent sink limitation of source activity was consistent with the reduced RUE (from 2.73 to 1.42 g MJ−1 IPAR) and reduced leaf CER at high irradiance (from ca. 30 to 15 μmol m−2 s−1) for plants subjected to 75% peg removal.  相似文献   

11.
Rice starch suspensions of 10% dry matter (DM) were treated by heat (0.1 MPa at 20–85 °C) or pressure/heat combinations (100–600 MPa at 20, 40 and 50 °C) for 15 min to investigate their gelatinization and rheological characteristics. The maximum swelling index of about 12 g water per gram of DM was obtained by thermal treatment at 85 °C, meanwhile, that of 7.0 g was observed by 600-MPa pressurization at 50 °C. The higher temperatures or pressures resulted in the higher degrees of gelatinization. Furthermore, treatments of 0.1 MPa at 85 °C, 500 MPa at 50 °C and 600 MPa at various temperatures caused complete gelatinization of rice starch. The consistency index (K) and storage modulus (G′) dramatically increased from 70 °C or 400 MPa. The G′ values were higher in pressure-treated samples than those in thermal-treated samples. Therefore, an application of pressure/heat combinations as a processing method to improve the quality of rice starch products would be possible.  相似文献   

12.
The after-ripening response has been well documented in many plant species but studies of this topic are lacking in many new oilseed crops such as Physaria. In a factorial experiment, we tested the effect of different after-ripening periods and germination conditions on freshly harvested seeds of seven Physaria species, Physaria argyraea, Physaria fendleri, Physaria gracilis, Physaria rectipes, Physaria recurvata, Physaria sessilis, and Physaria thamnophila. The seeds were stored for 4 and 12 weeks over two saturated salt solutions (LiCl and MgCl2) to equilibrate seed moisture at three storage temperatures (5, 25, and 35 °C). We likewise tested a dormancy-breaking protocol on these species by using conditions previously recommended for use in genebanks for P. fendleri. The germination tests were conducted with light (1052 lux) and gibberellic acid (GA3) (100 ppm) and without them. Results suggested that conditions previously set for P. fendleri are also adequate for P. gracilis, P. recurvata, and P. sessilis, but may still be not optimal for the perennial species, P. argyraea, P. thamnophila, and P. rectipes. Overall, higher germination percentages were obtained with light and GA3 treatments. In all species, we observed slight differences between total germination results after 4 weeks and 12 weeks of storage, with higher values evident only in P. fendleri, P. recurvata, and P. thamnophila after their fresh seeds were subjected to 12 weeks of after-ripening at warm temperatures.  相似文献   

13.
Flowering time plasticity is a commonly occurring adaptive characteristic of fodder crops, including legumes, in arid and semiarid environments of the Mediterranean regions. Time of flowering is mainly influenced by genotype, temperature and photoperiod. Field experiments were carried out at Foggia (southern Italy) during successive growing seasons (from 8 to 16 growing cycles according to species) to study the relation among air temperature, photoperiod and duration of the morphological development of flowering in eight forage legume species: sulla (Hedysarum coronarium L.), sainfoin (Onobrychis viciifolia Scop.), pea (Pisum sativun L.), berseem clover (Trifolium alexandrinum L.), Persian clover (Trifolium resupinatum L.), faba bean (Vicia faba L.), common vetch (Vicia sativa L.) and hairy vetch (Vicia villosa Roth). Time to reach 10% flowering (EF) and 100% flowering (FF) were recorded. Rate of progress to flowering, defined as the inverse of time from sowing to EF and FF, was related to mean daily temperature, or to both mean daily temperature and mean photoperiod. Using the linear equations, the thermal time requirements (Tt) and the base temperature (Tb) expressed as heat units were determined by the x-intercept method for both EF and FF stages. Evaluation of flowering time was also based on days after planting (DAP), day of year (DOY) and on a photothermal index (PTI). For all species, a significant negative correlation (P ≥ 0.01) was found between planting date (PD) and DAP whereas PTI showed a significant negative relationship (P ≥ 0.05) only for faba bean, pea, berseem clover and common vetch. In sainfoin, sulla and berseem clover, the rate of progress to flowering was affected significantly (P ≥ 0.05) by both mean temperature and photoperiod. The Tt requirements to reach the EF and the FF stage ranged from 871 to 1665 °C day and from 1043 to 1616 °C day, respectively, for the studied species. Both phenological stages considered depended upon accumulated thermal time above a species-specific base temperature. Furthermore, in all legumes the onset of flowering only occurred when dual thresholds of a minimum Tt and a minimum photoperiod were reached, which were specific to each species.  相似文献   

14.
Isolated and purified endosperm cell walls (CW), used in this study, were derived from a Canadian malting barley variety, AC Metcalfe, grown in three different environments in Canada in 2003, and varying in grain protein and β-glucan contents, as well as in grain hardness. The CW were initially extracted with water at 45 °C and subsequently digested with barley malt crude enzyme extract resulting in two fractions designated CW-WE45 and CW-MD, respectively. The remaining non-digested cell wall material (CWND) was further fractionated by sequential extraction with water at 95 °C (CWND-WE95), saturated barium hydroxide (CWND-BaE), and 1 N sodium hydroxide (CWND-NaE) at 25 °C. Composition and molecular structure analyses were carried out for all fractions including the remaining cell wall residue (CWRES). Extraction of CW with water followed by digestion with malt crude enzyme extract solubilized the majority of β-glucans (∼55–70%) and glucomannans (∼60–80%) but only a small portion of arabinoxylans (∼20–30%) present in the intact CW. The CW-WE45 and CWND-WE95 fractions consisted mostly of β-glucans exhibiting high average molecular weights (Mw) (2–3 × 106), whereas the CWND-BaE consisted mainly of arabinoxylans with Mw about 1–1.5 × 106. The CWND-NaE contained almost equal amounts of β-glucans and arabinoxylans and a small amount of glucomannans, whereas the CWRES contained approximately equal proportions of β-glucans, arabinoxylans and glucomannans. β-Glucans in CWND-WE95, CWND-NaE, and CWRES exhibited a higher ratio of 3-O-β-d-cellobiosyl-d-glucose to 3-O-β-d-cellotriosyl-d-glucose (DP3/DP4) compared to β-glucans in CW-WE45 and CW-MD. β-Glucans in CWND-NaE showed the highest level of long cellulosic oligosaccharides with DP ≥ 5, whereas those in the CWRES had the highest DP3/DP4 ratio. The CW-MD was fractionated by ultrafiltration into high (CW-MDHMW) and low-molecular weight (CW-MDLMW) sub-fractions, with weight-average Mw of ∼150–350 × 103 and <10 × 103, respectively, as confirmed by size-exclusion chromatography. The monosaccharide composition of the sub-fractions indicated a more extended enzymic degradation of β-glucans and glucomannans than arabinoxylans. Some differences in composition and molecular structure of the cell wall constituents among the three barley samples were related to their solubility and enzymic digestibility.  相似文献   

15.
A new series of petroselinic (Coriandrum sativum L.) based estolide 2-ethylhexyl (2-EH) esters were synthesized, as the capping material varied in length and in degrees of unsaturation, in a perchloric acid catalyzed one-pot process with the esterification process incorporated into an in situ second step to provide the coriander estolide 2-EH ester. The kinematic viscosities ranged from 53 to 75 cSt at 40 °C and 9.1 to 14.6 cSt at 100 °C with a viscosity index (VI) ranging from 151 to 165. The caprylic (C8) capped coriander estolide 2-EH ester had the lowest low-temperature properties (pour point = −33 °C and cloud point = −33 °C), while the coco-coriander estolide 2-EH ester produced an estolide with modest low-temperature properties (pour point = −24 °C and cloud point = −25 °C). The coco-coriander estolide 2-EH ester was explored for the ability to resist oxidative degradation with the use of an biodegradable additive package added in 1.5%, 3.5%, or 7.0% units based on weight. The oxidative stability increased as the amount of stability package increased (rotating pressurized vessel oxidation test (RPVOT) times 65-273 min). Along with expected good biodegradability, these coriander estolide 2-EH esters had acceptable properties that should provide a specialty niche in the U.S. as a biobased lubricant.  相似文献   

16.
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 °C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (Tm). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. Tm depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties.  相似文献   

17.
Jatropha curcas oil (JCO) has a high content of free fatty acids and has been used extensively as a feedstock in biodiesel production. In the present study, the transesterification reaction of JCO to Jatropha curcas methyl ester (biodiesel) was performed in a continuous pulsed loop reactor under atmospheric conditions. The JCO was pre-treated prior to the reaction to reduce the free fatty acid content to below 1% (w/w). The operating parameters of the loop reactor were optimised based on the conversion of the JCO to Jatropha curcas biodiesel and included reaction temperature, molar ratio of oil to MeOH, reaction time and oscillation frequency. The findings show that the highest reaction conversion of 99.7% (w/w) was achieved using KOH catalyst and 98.8% conversion was obtained using NaOCH3 catalyst. The optimal operating conditions were a molar ratio of 6:1, an oscillation frequency of 6 Hz, temperature of 60 °C, feedstock FFA content of 0.5% (w/w) and only 10 min of reaction time. As a commercial commodity, the physical properties of biodiesel were analysed, and they compared well with the characteristics of fossil-based diesel fuel.  相似文献   

18.
Potassium phosphite (Phi) was evaluated for its in vitro activity against Penicillium expansum and for its potential long-term efficacy against postharvest blue mold infections on apple fruit. Phi amended to malt extract agar medium at 2 and 4 mg/ml completely inhibited mycelial growth and conidial germination, respectively. Conidia of P. expansum suspended for 3 min in a solution of 2 mg/ml Phi at 20 °C or heated to 50 °C germinated at 53 and 0%, respectively. Disease incidence of P. expansum on Elstar apples wounded and inoculated with a thiabendazole-resistant isolate was reduced significantly (P = 0.01) following a curative treatment with Phi at 2 mg/ml. When applied on freshly harvested unwounded Elstar apples, Phi (2 mg/ml) reduced blue mold incidence about three-fold compared to the control and was found to be as effective as thiabendazole against natural blue mold infections after six months of storage at 2 °C. Our results suggest that potassium phosphite has a potential to be part of the general management program implemented for the control of postharvest blue mold infections on pome fruits.  相似文献   

19.
More rapid progress in breeding peanut for reduced aflatoxin contamination should be achievable with a better understanding of the inheritance of, aflatoxin trait and physiological traits that are associated with reduced contamination. The objectives of this study were to estimate the heritability of aflatoxin traits and genotypic (rG) and phenotypic (rP) correlations between drought resistance traits and aflatoxin traits in peanut. One hundred-forty peanut lines in the F4:6 and F4:7 generations were generated from four crosses, and tested under well-watered and terminal drought conditions. Field experiments were conducted under the dry seasons 2006/2007 and 2007/2008. Data were recorded for biomass (BIO), pod yield (PY), drought tolerance traits [harvest index (HI), drought tolerance index (DTI) of BIO and PY, specific leaf area (SLA), and SPAD chlorophyll meter reading (SCMR)], and aflatoxin traits [seed infection and aflatoxin contamination]. Heritabilities of A. flavus infection and aflatoxin contamination in this study were low to moderate. The heritabilities for seed infection and aflatoxin contamination ranged from 0.48 to 0.58 and 0.24 to 0.68, respectively. Significant correlations between aflatoxin traits and DTI (PY), DTI (BIO), HI, biomass and pod yield under terminal drought conditions were found (rP = −0.25** to 0.32**, rG = −0.57** to 0.53**). Strong correlations between SLA and SCMR with A. flavus infection and aflatoxin contamination were also found. Positive correlations between SLA at 80, 90, and 100 DAP and aflatoxin traits were significant (rP = 0.13** to 0.46**, rG = 0.26** to 0.81**). SCMR was negatively correlated with aflatoxin traits (rP = −0.10** to −0.40**, rG = −0.11** to −0.66**). These results indicated that physiological-based selection approaches using SLA and SCMR might be effective for improving aflatoxin resistance in peanut.  相似文献   

20.
An ionic liquid (IL)-water mixture employed to treat lignocellulosic biomass is promising. The addition of water decreases viscosity and process cost so as to improve the IL practical application. In this work, effects of temperature (50-170 °C), water content (0-80 wt%), treating duration (0.5-4 h) and pressure (0.1-3.2 MPa) on treating legume straw process using a 1-butyl-3-methylimidazolium chloride ([C4mim]Cl)-water mixture were experimentally investigated. Legume straw was found to be partially dissolved, and the dissolved substances can be flocculated by adding the coagulating agent—water (equal to volume of the solution). For this process at 0.1 MPa, the maximum 29.1 wt% legume straw is dissolved in the [C4mim]Cl-water mixture with water content of 20 wt% at 150 °C during 2 h, which is much higher than 9.8 wt% using pure [C4mim]Cl. A hemicellulose-free lignin-rich material (64.0 wt% lignin and 35.3 wt% cellulose) is obtained by adding the water. Even for 0.5 h, 22.3 wt% of legume straw is dissolved in the case of water content of 20 wt%, 150 °C and 0.1 MPa. High pressure favors the dissolution of legume straw but lignin content in the residue has no obvious change. The addition of proper amount of water facilitates the dissolution of legume straw and a relative rapid dissolving rate can be achieved in a [C4mim]Cl-water mixture. There are great differences in chemical and physical properties between legume straw and the obtained samples (residue and floc) due to the dissolution and reconstitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号