首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was designed to examine the effects of the proportion of concentrate in the diet on the secretion of growth hormone (GH), insulin and insulin‐like growth factor‐I (IGF‐I) secretion and the GH‐releasing hormone (GHRH)‐induced GH response in adult sheep fed once daily. Dietary treatments were roughage and concentrate at ratios of 100:0 (0% concentrate diet), 60:40 (40% concentrate diet), and 20:80 (80% concentrate diet) on a dry matter basis. Mean plasma concentrations of GH before daily feeding (10.00–14.00 hours) were 11.4 ± 0.4, 10.1 ± 0.5 and 7.5 ± 0.3 ng/mL on the 0, 40 and 80% concentrate diet treatments, respectively. A significant decrease in plasma GH concentration was observed after daily feeding of any of the dietary treatments and these decreased levels were maintained for 8 h (0%), 12 h (40%) and 12 h (80%), respectively (P < 0.05). Plasma IGF‐I concentrations were significantly decreased 8–12 h and 4–16 h after the end of feeding compared with the prefeeding level in the 40 and 80% concentrate diet treatments, respectively (P < 0.05). GHRH injection brought an abrupt increase in the plasma GH concentrations, reaching a peak 10 min after each injection, but, after the meal, the peak plasma GH values for animals fed 40% (P < 0.05) and 80% (P < 0.01) concentrate diet were lower than that for roughage fed animals. The concentrate content of a diet affects the anterior pituitary function of sheep resulting in reduced baseline concentrations of GH and prolonged GH reduction after feeding once daily.  相似文献   

2.
Growth hormone (GH) is essential for postnatal somatic growth, maintenance of lean tissue at maturity in domestic animals and milk production in cows. This review focuses on neuroregulation of GH secretion in domestic animals. Two hormones principally regulate the secretion of GH: growth hormone-releasing hormone (GHRH) stimulates, while somatostatin (SS) inhibits the secretion of GH. A long-standing hypothesis proposes that alternate secretion of GHRH and SS regulate episodic secretion of GH. However, measurement of GHRH and SS in hypophysial-portal blood of unanesthetized sheep and swine shows that episodic secretion of GHRH and SS do not account for all episodes of GH secreted. Furthermore, the activity of GHRH and SS neurons decreases after steers have eaten a meal offered for a 2-h period each day (meal-feeding) and this corresponds with reduced secretion of GH. Together, these data suggest that other factors also regulate the secretion of GH. Several neurotransmitters have been implicated in this regard. Thyrotropin-releasing hormone, serotonin and gamma-aminobutyric acid stimulate the secretion of GH at somatotropes. Growth hormone releasing peptide-6 overcomes feeding-induced refractoriness of somatotropes to GHRH and stimulates the secretion of GHRH. Norepinephrine reduces the activity of SS neurons and stimulates the secretion of GHRH via alpha(2)-adrenergic receptors. N-methyl-D,L-aspartate and leptin stimulate the secretion of GHRH, while neuropeptide Y stimulates the secretion of GHRH and SS. Activation of muscarinic receptors decreases the secretion of SS. Dopamine stimulates the secretion of SS via D1 receptors and inhibits the secretion of GH from somatotropes via D2 receptors. Thus, many neuroendocrine factors regulate the secretion of GH in livestock via altering secretion of GHRH and/or SS, communicating between GHRH and SS neurons, or acting independently at somatotropes to coordinate the secretion of GH.  相似文献   

3.
This study investigated whether ghrelin, a potent releaser of growth hormone (GH) secretion, is a valuable tool in the diagnosis of canine pituitary dwarfism. The effect of intravenous administration of ghrelin on the release of GH and other adenohypophyseal hormones was investigated in German shepherd dogs with congenital combined pituitary hormone deficiency and in healthy Beagles. Analysis of the maximal increment (i.e. difference between pre- and maximal post-ghrelin plasma hormone concentration) indicated that the GH response was significantly lower in the dwarf dogs compared with the healthy dogs. In none of the pituitary dwarfs, the ghrelin-induced plasma GH concentration exceeded 5 microg/l at any time. However, this was also true for 3 healthy dogs. In all dogs, ghrelin administration did not affect the plasma concentrations of ACTH, cortisol, TSH, LH and PRL . Thus, while a ghrelin-induced plasma GH concentration above 5 microg/l excludes GH deficiency, false-negative results may occur.  相似文献   

4.
Ghrelin in domestic animals: distribution in stomach and its possible role   总被引:12,自引:0,他引:12  
Ghrelin, a novel growth-hormone-releasing acylated peptide, was recently isolated from rat and human stomachs. In rat, peripheral or central administration of ghrelin stimulates the secretion of growth hormone (GH) from the pituitary gland. Recent work suggests that ghrelin plays an important role in energy homeostasis, body weight, and food intake. We examined the distribution of cells immunoreactive to ghrelin in the stomachs of domestic animals and rats, using a polyclonal antibody for the N-terminal fragment of rat ghrelin [1-11]. We measured the plasma levels of ghrelin before and after feeding in cows, and GH levels after central administration of ghrelin in Shiba goats, to elucidate the possible role of ghrelin. Immunostained cells were widely distributed from the neck to the base of the oxyntic gland in all animals. The plasma ghrelin concentration in cows decreased significantly 1 h after feeding, and then recovered to pre-feeding levels. Administration of ghrelin into the third ventricle in Shiba goats dramatically increased the plasma GH concentration dose-dependently. These results suggest that ghrelin plays an important role in GH secretion and feeding regulation in domestic animals.  相似文献   

5.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

6.
Ghrelin is a gut peptide which participates in growth regulation through its somatotropic, lipogenic and orexigenic effects. Synergism of ghrelin and growth hormone-releasing hormone (GHRH) on growth hormone (GH) secretion has been reported in humans and rats, but not in domestic animals in vivo. In this study, effects of a combination of ghrelin and GHRH on plasma GH and other metabolic parameters, and changes in plasma active and total ghrelin levels were studied in Holstein bull calves before and after weaning. Six calves were intravenously injected with vehicle (0.1% BSA-saline), ghrelin (1 microg/kg BW), GHRH (0.25 microg/kg BW) or a combination of ghrelin plus GHRH at the age of 5 weeks and 10 weeks (weaning at 6 weeks of age). Ghrelin stimulated GH release with similar potency as GHRH and their combined administration synergistically stimulated GH release in preweaning calves. After weaning, GH responses to ghrelin and GHRH became greater compared with the values of preweaning calves, but a synergistic effect of ghrelin and GHRH was not observed. The GH areas under the concentration curves for 2h post-injection were greater in weaned than in preweaning calves (P<0.05) if ghrelin or GHRH were injected alone, but were similar if ghrelin and GHRH were injected together. Basal plasma active and total ghrelin levels did not change around weaning, but transiently increased after ghrelin injection. Basal plasma insulin, glucose and non-esterified fatty acid levels were reduced after weaning, but no changes by treatments were observed. In conclusion, ghrelin and GHRH synergistically stimulated GH release in preweaning calves, but this effect was lost after weaning.  相似文献   

7.
Infectious disease processes cause physiological adaptations in animals to reorder nutrient partitioning and other functions to support host survival. Endocrine, immune and nervous systems largely mediate this process. Using endotoxin injection as a model for catabolic disease processes (such as bacterial septicemia), we have focused our attention on regulation of growth hormone (GH) and luteinizing hormone (LH) secretion in sheep. Endotoxin produces an increase in plasma GH and a decrease in plasma LH concentrations. This pattern can be reproduced, in part, by administration of various cytokines. Antagonists to both interleukin-1 (IL-1) and tumor necrosis factor (TNF) given intravenously (IV) prevented the endotoxin-stimulated increase in GH. Since endotoxin will directly stimulate GH and LH release from cultured pituitary cells, the data suggest a pituitary site of action of the endotoxin to regulate GH. Studies with portal vein cannulated sheep indicated that gonadotropin releasing hormone was inhibited by endotoxin, suggesting a central site of action of endotoxin to regulate LH. However, other studies suggest that endotoxin may also regulate LH secretion at the pituitary. Thus, IL-1 and TNF regulate GH release from the pituitary gland while endotoxin induces a central inhibition of LH release.  相似文献   

8.
The aim of the present study was to clarify the effect of photoperiod on secretory patterns of growth hormone (GH) in male goats. Adult male goats were kept at 20°C with an 8‐h or 16‐h light photoperiod, and secretory patterns of GH secretion were compared. In addition, plasma profiles of prolactin (PRL), insulin‐like growth factor‐I (IGF‐I) and testosterone (T) were also examined to characterize GH secretion. GH was secreted in a pulsatile manner. There was no significant difference in pulse frequency between the 8‐h and 16‐h photoperiods. However, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH releasing hormone was greater in the 16‐h than 8‐h photoperiod (P < 0.05). Plasma PRL and IGF‐I levels were higher in the 16‐h than 8‐h photoperiod (P < 0.05). In contrast, plasma T levels were lower in the 16‐h photoperiod (P < 0.05). These results show that a long light photoperiod enhances the secretion of GH as well as PRL and IGF‐I, but reduces plasma T concentrations in male goats.  相似文献   

9.
10.
The effects of intravenous (IV) and intracerebroventricular (ICV) administration of either bovine growth hormone releasing hormone (GRF) or thyrotrophin releasing hormone (TRH) on plasma growth hormone (GH) and glucose levels have been examined in sheep. Intravenous GRF 1-29NH2 at 3 and 30 micrograms stimulated an increase in GH levels in a dose-dependent fashion; administration of GRF into a lateral cerebral ventricle, however, produced a smaller GH response which was similar at these two doses. Evaluation of somatostatin levels in petrosal sinus blood (which collects pituitary effluent blood) showed that ICV administration of GRF stimulated a release of somatostatin into the blood. Furthermore, concurrent administration of GRF and a potent anti-somatostatin serum ICV resulted in a much enhanced release of GH which was similar to that obtained with a comparable dose of GRF given IV. TRH (as another putative GH-secretagogue) was also administered both IV and ICV. When given IV, 200 micrograms (but not 100 micrograms) TRH produced an elevation in GH levels. By contrast, when 5 micrograms TRH was given ICV there was a decrease in circulating GH levels, but no change in plasma somatostatin concentrations. These results indicate that the smaller GH response to ICV- compared with IV-administered GRF is due to the release of somatostatin within the brain. In addition, it would seem that TRH is not a physiological GH-secretagogue in sheep.  相似文献   

11.
Short-term patterns of growth hormone (GH) secretion and factors affecting it were studied in mares and stallions. In Exp. 1, hourly blood samples were collected from three mares and three stallions in summer and winter. Although GH concentrations varied in a pulsatile manner in all horses, there was no effect of sex or season (P greater than .1) on plasma GH concentrations and no indication of a diurnal pattern of GH secretion. In Exp. 2, 10-min blood samples were drawn for 8 h from 12 mares; after 6 h, porcine GH-releasing hormone (GHRH) was administered i.v. at 0, 45, 90, or 180 micrograms/mare (three mares per dose). Pulsatile secretion of GH occurred in all mares and averaged 2.4 +/- .3 peaks/6 h; amplitudes were variable and ranged from 2.6 to 74.4 ng/mL. Eight of nine mares responded within 20 min to GHRH injection, but there was no difference (P greater than .1) among the three doses tested. In Exp. 3, plasma GH concentrations in stallions increased (P less than .05) 8- to 10-fold after 5 min of acute physical exercise or exposure to an estrual mare. Restraint via a twitch (5 min) and epinephrine administration (3 mg i.v.) also increased (P less than .05) plasma GH concentrations by approximately fourfold. In Exp. 4 and 5, administration of either .4, 2, or 10 mg of thyrotropin-releasing hormone (TRH) or 100 or 500 mg of sulpiride (a dopamine receptor antagonist) increased (P less than .01) plasma prolactin concentrations but had no effect (P greater than .1) on GH concentrations during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Growth hormone (GH) has diverse actions in many tissues, including the follicle. This paper summarizes three experiments that examined the effects of GH and insulin-like growth factor (IGF)-I on the ovary. Ewes given oGH and pregnant mane serum gonadotrophin were compared with control and pregnant mane serum gonadotrophin-treated ewes. Ewes, with synchronized cycles, were given varying doses of pregnant mane serum gonadotrophin and/or oGH to determine if oGH is able to augment ovulation rate (Experiment 1). Experiments 2 and 3 used the ovarian autotransplant model. Ewes were infused via the ovarian artery with oGH (Experiment 2) or insulin-like growth factor I (IGF-I) (Experiment 3). Both were administered for 12 hr on Day 10. In Experiment 2, ewes were given intravenous gonadotropin releasing hormone (150 ng i.v.) at -2.5 and 10.5 hr relative to infusion. Ovarian and jugular venous blood was collected every 15 min from -30 to 150 min relative to gonadotropin releasing hormone. In Experiment 3, luteolysis was induced at the end of infusion. Ovarian and jugular venous blood was collected every 3 hr from before and until 84 hr after the infusion. Estradiol and androstenedione were assayed in ovarian venous plasma and GH in jugular venous plasma. In Experiment 1, treatment with oGH increased the jugular venous concentration of GH. However, in Experiment 2 treatment with oGH via the ovarian artery did not increase jugular venous GH but did increase ovarian venous GH. Treatment with oGH had no effect on ovulation rate (Experiment 1) or the secretion of androstenedione and estradiol (Experiment 2). Infusion of IGF-I (Experiment 3) increased the secretion of estradiol during the follicular phase. These data show that short-term treatment of sheep with GH had no in vivo effects on the follicle and that IGF-I was a potent stimulator of follicular steroidogenesis in vivo.  相似文献   

13.
Background: A recent study of dogs with induced primary hypothyroidism (PH) demonstrated that thyroid hormone deficiency leads to loss of thyrotropin (TSH) hypersecretion, hypersomatotropism, hypoprolactinemia, and pituitary enlargement with large vacuolated "thyroid deficiency" cells that double-stained for growth hormone (GH) and TSH, indicative of transdifferentiation of somatotropes to thyrosomatropes.
Hypothesis: Similar functional changes in adenohypophyseal function occur in dogs with spontaneous PH as do in dogs with induced PH, but not in dogs with nonthyroidal illness (NTI).
Animals: Fourteen dogs with spontaneous PH and 13 dogs with NTI.
Methods: Adenohypophyseal function was investigated by combined intravenous administration of 4 hypophysiotropic releasing hormones (4RH test), followed by measurement of plasma concentrations of ACTH, GH, luteinizing hormone (LH), prolactin (PRL), and TSH. In the PH dogs this test was repeated after 4 and 12 weeks of thyroxine treatment.
Results: In 6 PH dogs, the basal TSH concentration was within the reference range. In the PH dogs, the TSH concentrations did not increase with the 4RH test. However, TSH concentrations increased significantly in the NTI dogs. Basal and stimulated GH and PRL concentrations indicated reversible hypersomatotropism and hyperprolactinemia in the PH dogs, but not in the NTI dogs. Basal and stimulated LH and ACTH concentrations did not differ between groups.
Conclusions and Clinical Importance: Dogs with spontaneous PH hypersecrete GH but have little or no TSH hypersecretion. Development of hyperprolactinemia (and possible galactorrhea) in dogs with PH seems to occur only in sexually intact bitches. In this group of dogs with NTI, basal and stimulated plasma adenohypophyseal hormone concentrations were not altered.  相似文献   

14.
The objective of this study was to determine the effect of a subtherapeutic level of chlortetracycline (CTC) fed to growing beef steers under conditions of limited and adequate dietary protein on plasma concentrations of GH, thyroid-stimulating hormone (TSH), and thyroid hormones before and after an injection of thyrotropin-releasing hormone (TRH) + GHRH. Young beef steers (n = 32; average BW = 285 kg) were assigned to a 2x2 factorial arrangement of treatments of either a 10 or 13% crude protein diet (70% concentrate, 15% wheat straw, and 15% cottonseed hulls) and either a corn meal carrier or carrier + 350 mg of CTC daily top dressed on the diet. Steers were fed ad libitum amounts of diet for 56 d, and a jugular catheter was then placed in each steer in four groups (two steers from each treatment combination per group) during four consecutive days (one group per day). Each steer was injected via the jugular catheter with 1.0 microg/kg BW TRH + .1 microg/kg BW GHRH in 10 mL of saline at 0800. Blood samples were collected at -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 120, 240, and 360 min after releasing hormone injection. Plasma samples were analyzed for GH, TSH, thyroxine (T4), and triiodothyronine (T3). After 84 d on trial, the steers were slaughtered and the pituitary and samples of liver were collected and analyzed for 5'-deiodinase activity. Feeding CTC attenuated the GH response to releasing hormone challenge by 26% for both area under the response curve (P<.03) and peak response (P<.10). Likewise, CTC attenuated the TSH response to releasing hormone challenge for area under the response curve by 16% (P<.10) and peak response by 33% (P<.02), and attenuated the T4 response for area under the curve by 12% (P<.08) and peak response by 14% (P<.04). Type II deiodinase activity in the pituitary was 36% less (P<.02) in CTC-fed steers than in steers not fed CTC. The results of this study are interpreted to suggest that feeding subtherapeutic levels of CTC to young growing beef cattle attenuates the release of GH and TSH in response to pituitary releasing hormones, suggesting a mechanism by which CTC may influence tissue deposition in cattle.  相似文献   

15.
垂体分泌的生长激素 (GH)是调节整个机体生长代谢的一种多功能激素。关于GH分泌调节的研究一直是营养学界研究的热点。最近在生长激素促释放素 (growthhormonesecretagogues,GHSs)对GH分泌调节的研究过程中发现的活性肽ghrelin对GH、胃酸的分泌 ,采食量的调节等方面起重要作用 ,本文将综述有关ghrelin的最新研究进展  相似文献   

16.
Both spontaneous hypercortisolism and chronic glucocorticoid treatment are associated with osteoporosis and low circulating concentrations of 1,25-dihydroxy-vitamin D in humans. Pituitary-dependent hypercortisolism (PDH) is a common disorder in dogs, but little is known about the vitamin D status of affected dogs. Pituitary-dependent hypercortisolism in dogs can be treated effectively by hypophysectomy and subsequent hormone supplementation. Because hormone supplementation does not include GH, dogs that have undergone hypophysectomy have low circulating concentrations of GH and IGF-1, which may result in low plasma 1,25-dihydroxy-vitamin D concentrations and consequently increased parathyroid hormone secretion. The aim of this study was to determine whether dogs with PDH need vitamin D supplementation before and/or after hypophysectomy. To this end, we measured plasma concentrations of GH, IGF-1, parathyroid hormone, calcium, phosphate, and vitamin D metabolites in 12 dogs with PDH before and 8 wk after hypophysectomy and in 12 control dogs. Although plasma GH concentrations were lower in dogs with PDH than in control dogs both before and after hypophysectomy, the vitamin D status was similar. In conclusion, there is no need for vitamin D supplementation in dogs with PDH, either before or after hypophysectomy.  相似文献   

17.
The effects of somatostatin immunoneutralization on growth rate, growth hormone (GH) secretion and circulating insulin-like growth factor I (IGF-I) concentrations were investigated in chickens through the use of passive and active immunization techniques. Intravenous bolus injection of goat-antisomatostatin stimulated a significant (P less than .05) increase in plasma GH levels for one hour post-injection in four and six week old male broiler chickens. The GH response to an intravenous bolus injection of hGRF44NH2 was similar in the antisomatostatin treated chicks and normal goat serum treated controls. Despite the presence of circulating somatostatin antisera after 28 hours, plasma GH levels were not different between control and antisomatostatin-treated chicks at that time. Continuous administration of somatostatin antisera by Alzet pump over a two-week period resulted in significant (P less than .05) elevations in plasma GH levels at one week post-implantation and in circulating IGF-I concentrations after two weeks of administration. Chicks which developed antibodies against somatostatin following active immunization exhibited a 7.1% increase in growth rate which was associated with a significant decrease in abdominal fat. However, neither GH nor IGF-I concentrations were elevated in the chicks which developed somatostatin antibodies. Thus, the benefits gained from somatostatin immunoneutralization may be exerted through mechanisms other than GH.  相似文献   

18.
To investigate the effects of high and low somatostatinergic tone on GH-releasing peptide-2 (GHRP-2) and GH-releasing hormone (GHRH)-induced growth hormone (GH) secretion in swine, we examined GHRP-2- and GHRH-induced GH secretion after pretreatment with atropine or pyridostigmine. Pretreatment of swine with atropine (80 µg/kg bodyweight (BW), intravenous (i.v.)) 15 min before i.v. administration of saline, GHRP-2 (30 µg/kg BW), GHRH (1 µg/kg BW) or a combination of GHRP-2 and GHRH, reduced plasma GH area under the curve ( P  < 0.05), completely blocked GH response to GHRH, and attenuated GH response to GHRP-2 and GHRH combined ( P  < 0.05), without affecting GH response to GHRP-2 only. A synergistic effect of GHRP-2 and GHRH was not observed. In contrast, pretreatment of swine with pyridostigmine (100 µg/kg BW, i.v.), under the same pretreatment conditions as above, increased plasma GH concentration ( P  < 0.01), augmented GH response to GHRP-2 ( P  < 0.05), and GHRP-2 and GHRH combined ( P  < 0.05), but did not affect GH response to GHRH. These results suggest that the cholinergic muscarinic agents atropine and pyridostigmine modulate the GH response to GHRP-2 and GHRH, and that GHRP-2 acts antagonistically on the inhibitory effect of somatostatin in swine.  相似文献   

19.
Ghrelin and growth hormone (GH) play a key role in regulating energy balance, metabolic hormone secretion and food intake. Ghrelin and GH responses to dietary compositions have not yet been fully clarified, although there may be significant relationships between dietary compositions and ghrelin and GH responses. In the present study, therefore, we assessed whether dietary compositions influence postprandial plasma ghrelin and GH levels in wethers. Four wethers were respectively fed concentrate (C) or timothy hay (R) for 14 days. The levels of total digestive nutrients (TDN) and crude protein (CP) were adjusted to be at the same level. The basal ghrelin in both groups was rapidly and significantly decreased after feeding. Although the decline of ghrelin levels in C was greater and shorter than that in R, no significant difference was observed in the area under the curve (AUC) or in the incremental area. The plasma GH levels were also rapidly and significantly decreased after feeding in both groups and a significant difference was observed between the two groups for AUC of GH. Interestingly, the circadian changes in the plasma ghrelin levels were close to those in the GH levels in C, but this was not the case in R. These data suggest that dietary compositions influence postprandial plasma ghrelin and GH levels, and that these differences may be caused by several factors, including nutrients and ruminal fermentation.  相似文献   

20.
Serotonin stimulates secretion of growth hormone (GH) in cattle, but the mechanism is unknown. In rats, thyrotropin-releasing hormone (TRH) mediates serotonin-induced secretion of GH. We hypothesized that the same is true in cattle. Cattle were fed for 2h daily to synchronize secretion of GH, such that concentrations of GH were high before and low after feeding. Our first objective was to determine whether or not feeding suppresses serotonin receptor agonist (quipazine) induced secretion of GH. Holstein steers were injected with quipazine (0.2 mg/kg BW) either 1 h before or 1 h after feeding. Quipazine-induced secretion of GH which did not differ in magnitude before and after feeding. If TRH mediates serotonin-induced secretion of GH, then magnitude of TRH-induced secretion of GH should not be different before and after feeding (our second objective). Sixteen meal-fed Holstein steers were injected with 0.3 microg TRH/kg BW either 1 h before or 1 h after feeding. Indeed, magnitude of TRH-induced secretion of GH before and after feeding was not different. Our third objective was to inhibit endogenous TRH with 3,5,3'-triiodothyronine (T(3)) and examine basal, GH-releasing hormone (GHRH)-, TRH- and quipazine-induced secretion of GH. Sixteen Holstein steers were injected daily with either T(3) (3 or 6 microg/kg BW) or vehicle for 20 days and then challenged sequentially with vehicle or GHRH, TRH, or quipazine. T(3) did not affect basal, GHRH- or TRH-induced secretion of GH, but reduced basal secretion of thyroxine. T(3) reduced but did not completely block quipazine-induced secretion of GH. In conclusion, TRH mediates, in part, serotonin-induced secretion of GH in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号