首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
太阳能地下热交换在日光温室的应用   总被引:2,自引:0,他引:2  
太阳能地下热交换可将日光温室内上部多余的热量通过风机导入地下管道,从而达到降低白天室内高温,增加地温,诳间将贮存的热量放出,提高气温的目的。此技术在农业高科技示范区的日光温室中有广阔的应用前景。  相似文献   

2.
日光温室墙体上强制通风对室内温度和湿度的影响   总被引:1,自引:1,他引:0  
为了增强日光温室的环境调控能力,在日光温室后墙墙体上(1.5 m高度)设置风机(550 W)进行强制通风,测定不同通风方式(顶部通风、底部通风、顶部通风+底部通风、全封闭状态)下温度和湿度的变化。结果表明,春夏季后墙设置风机强制通风,能有效降低室内温度,改善相对湿度和CO_2供给,与自然通风(温室顶部+底部通风)相配合,可以使温室内温度降低7~8℃,且不同部位效果不同,即前部和后部的温度从40℃降低到31℃,中部位置的温度从40℃降到35℃,相对湿度从29%提高到36%;在全封闭状态下,强制通风使温室内前部、中部温度降低4~5℃,相对湿度从80%降低到70%;秋季在底部通风状态下,强制通风能使温室内的温度降低3℃左右,相对湿度变化较小;在顶部通风状态下,强制通风不仅没有降低室内温度,反而使温室内温度略有升高,前部位置温度从31℃提高到37℃,中部和后部位置温度从31℃分别提高到35,32℃,相对湿度从44%提高到51%,这是由于顶部通风面积偏小,难以将热量散出。  相似文献   

3.
许康  张劲军  陈俊 《油气储运》2008,27(2):16-17,42
通过对热油管道工作特性的研究,发现在加热站加热量恒定时热油管道存在临界输量,当输量小于临界输量时,管道运行将进入不稳定工作区。对恒定加热量管道临界输量的影响因素进行了分析,指出总传热系数降低、加热量的增大和加热站上游来油进站温度升高都将使恒定加热量管道临界输量降低。  相似文献   

4.
太阳能空气集放热系统在温室中的热性能研究   总被引:1,自引:0,他引:1  
【目的】设计一种太阳能空气集放热系统并在温室中进行实际测试,以此探究该系统的热性能表现,分析其各项性能参数,为后续改进优化太阳能空气集放热系统及其在温室中的应用提供依据。【方法】在太阳能平板集热器的基础上,通过给集热器加装用于基质升温的散热管道来进行太阳能空气集放热系统的设计,该系统以太阳能为热源,白天集热器收集太阳热能并实现对空气的加热,同时在管道风机的作用下通过空气循环将热空气输送到散热管道中释放热量,以此实现系统的集热和放热,从而提升基质温度。将日光温室用聚苯板分隔,以采用了太阳能空气集放热系统的隔间作为试验区域,以不采取任何措施的隔间作为对照区域,通过测定温室环境温度、集热器内部空气温度、散热管道温度、太阳辐射强度、空气流速和基质温度,分析空气流速、环境温度、太阳辐射强度对系统瞬时集热量和集热效率的影响,并分析集热器和散热管道从进气口到出气口各部位的温度变化,最后对该系统的整体热性能以及与温室对照区域基质的温度差异进行分析和比较。【结果】通过实测,空气流速为2.0 m/s时,太阳能空气集放热系统的集热效率和瞬时集热量最高,分别为67.7%和494.4 W/m2,在此流速下,集热器内空气温度平均提升27 ℃,散热管道进气口到出气口平均温差为16.2 ℃;系统集热效率还受环境温度和太阳辐射强度的影响,其随着二者的增加逐渐提高;系统运行期间,系统集热量为6.0~9.3 MJ/m2,放热量为4.7~6.8 MJ/m2,能量利用效率为73%~78.2%;典型晴天条件下,温室试验区域基质温度始终高于对照区域,平均高2.7 ℃。【结论】太阳能空气集放热系统性能表现优异,具有较高的集热效率和放热性能,同时具有较高的能量利用效率,适合在温室中进行推广应用。  相似文献   

5.
空气热交换系统在温室环境控制中的应用   总被引:2,自引:0,他引:2  
直接通风将温室中积聚的热量(冷量)排到室外,处理进入的新风总热负荷损失巨大。温室系统中安装热交换系统通过能量回收芯体良好的热传递和交换特性,在双向置换通风的过程中截留温室排风中低品位的能量并加以循环利用,可以很好地解决冬季温室通风和温度保护的矛盾,减少棚室由于环境密闭造成的植物病害,提高温室系统控制水平,从而达到降低温室系统能耗和节能减排的目的。实验数据表明冬季配有热交换系统的温室可以延缓太阳辐射减少后的温度衰减速度,夜间保温效果好,温室的日平均温度提高1.5℃。  相似文献   

6.
杨春鹏 《河北农业》2014,(10):23-24
日光温室是我国北方地区独有的一种温室类型,是指前坡面夜间用保温被覆盖,北、东、西三面围墙的单坡面塑料温室,脊高2米以上,是一种在室内不加热的温室,充分利用白天吸收热量,晚上释放热量的功能,即使在最寒冷的季节,其热量来源主要依靠太阳辐射来维持室内一定的温度水平,以满足蔬菜作物生长需要的一类保护地设施。为使日光温室能赢得理想效益,本文提醒菜农兴建日光温室时需注意如下事项。  相似文献   

7.
为研究以农作物秸秆为墙体材料的日光温室(以下称秸秆块墙体日光温室)的保温蓄热性能,以秸秆块墙体日光温室为研究对象,以空心砖墙体日光温室为对照,监测了两种墙体材料温室中空气、墙体、土壤和温室各界面温度变化,分析了两种墙体材料日光温室的保温蓄热性能。结果表明:秸秆块墙体在晴天和阴天时均具有很好的保温性能,空心砖墙体晴天夜间时散失的热量是秸秆块墙体的1.5倍,阴天夜间时散失的热量是秸秆块墙体的1.3倍;秸秆块和空心砖墙体日光温室阴天时室内最低气温分别为5.4 ℃和5.8 ℃,晴天时室内最低气温为6.0 ℃和7.4 ℃;秸秆块墙体温室中40 cm以上土壤平均温度(14.00±2.61)℃高于空心砖墙体温室(13.55±1.73)℃。温室结构中各界面表面温度主要受太阳辐射强度的影响,秸秆块墙体温室中10 cm以上土壤层和空气的蓄热量比空心砖墙体温室中的大,秸秆块墙体的蓄热量比空心砖墙体的蓄热量小。  相似文献   

8.
<正>温室的室内遮阳保温幕既具有白天降低室内光照强度、降低空气温度的作用,还具有夜间降低室内加温空间、增强温室保温能力的功能,因此,不论是南方地区还是北方地区建造温室,室内遮阳保温幕几乎成为了温室设备的基本配置。但如何安装才能使室内遮阳保温幕的遮  相似文献   

9.
基于主动蓄热循环系统的温室性能试验研究   总被引:1,自引:0,他引:1  
为了提高冬季夜间温室温度,提出将温室白天得到的热量储存到后墙墙体中,采用风机实现蓄热放热过程,风机所需电量可由光伏系统提供。基于北京的天气,2种情况下均安装地面面积为272 m~2的温室,以保持温室维持在较高的温度下。试验结果表明,主动蓄热系统所产生的温室平均气温在10. 9~14. 8℃之间,平均值为12. 09℃。参考温室中的气温在3. 4~10℃之间,平均值为6. 5℃。室外温度比室内温度低约16. 3℃。电力供暖和天然气供暖系统供暖成本比主动蓄热系统分别高267. 8%和53. 6%,煤炭供暖成本比主动蓄热系统低28. 2%。主动蓄热系统采暖能够作为化石能源供暖的替代技术。  相似文献   

10.
<正>一、温度管理1.结果前期管理。此期外界温度尚高,温室内的温度管理也相对容易。白天室内温度升到28℃后开始通风,控制在35℃以下;夜间加强保温,使温度保持在20℃左右。此期如遇阴雨天气,室内温度偏低时,应进行人工增温,防止温度过低。2.结果中期管理。此期正处于一年中最寒冷的时期,温室内的温度偏低,大部分时间不能满足辣椒高产栽培的需求。因此,管理中应以保温防寒为主,白天温度升到30℃后开始通风,但通风时间不宜太长,应尽量保持较长时间的高温,增加温室内的热量积蓄;夜间温度应保持在  相似文献   

11.
正为了探究表冷器-风机集放热系统的放热性能,在内蒙古赤峰市益康农业专业合作社的某大跨度外保温塑料大棚里进行了测试。集放热系统的放热模式表冷器-风机集放热系统的放热过程是:夜间(指从保温被关闭至次日保温被开启之间的时段),当室内气温低于10℃且低于水温4℃时,启动系统,蓄热水池中温度相对较高的水通过供水管路进入表冷器-风机,与在风机作用下从进风口进入的、温度较低的空气进行强制  相似文献   

12.
日光温室的温度环境   总被引:2,自引:0,他引:2  
1、空气温度日光温室内气温的时空变化有如下特点:(1)室内气温的日变化室内气温的日变化取决于外界气温的变化。图1是在晴天下测得的室内外气温日变化,由图可知两者的变化是一致的,在温室密闭的条件下,白天的增温效应远比夜间明显,且变化幅度大;夜间由于室外覆盖草苫,室内气温下降缓慢。天气条件不同,室内温度的变化也不相同。室内气温的变化受外界气象条件所左右。晴天时即使室外气温偏低,室内仍可保持较高温度,增温效果明显;阴雪天时,即使室外气温不低,白天室内气温上不去,夜间虽降温不多,终因白天蓄积热量少使温度水平低下。例如在北京地…  相似文献   

13.
玻璃连栋温室正压通风降温系统的设计与试验   总被引:1,自引:1,他引:0  
针对我国大型玻璃连栋温室夏季降温难度大、温度分布不均匀的问题,引入荷兰半封闭温室环境控制理念,采用正压通风降温技术,以湿帘蒸发降温提供冷源,对管道风机、送风管等关键机构进行分析计算和设计,建立连栋温室正压通风降温系统,并进行适应性生产试验。试验依托河北南和设施农业产业集群项目,以采用湿帘-风机负压降温系统的温室为对照,对采用正压通风降温系统的温室,进行降温效果对比试验。试验结果表明:1)送风管各侧孔出风风速基本一致,送风均匀性高;2)采用正压通风降温系统的温室室内温度平均高于对照温室3.7℃,极端高温时可高出6.8℃。在河北南和地区,传统湿帘-风机负压通风降温系统的降温效果优于创新设计的正压通风降温系统,正压通风降温系统的实现方式还需改进,在我国的适用性有待进一步研究。  相似文献   

14.
3、夏季机械通风与降温 3.1设计原理 湿帘风机系统一般由排风机、湿帘箱、循环供水装置和控制器等部分组成。排风机将吸收了太阳辐射热而提高了温度的空气排出温室,带走辐射热,使温室内处于一定的负压状态。由于室外气压高于室内气压,室外的空气便可透过湿帘表面进入室内。……  相似文献   

15.
为实现日光温室、智能温室无人管理下的智能通风控温,设计1种温度差动式日光温室通风系统。该系统采用闭环智能控制,首先用户根据不同季节、不同作物设定不同的上下限温度值;其次系统采集用户设定值、室内作物生长环境温度和室外环境温度,最后通过3个指标之间的差动运算控制日光温室通风口的大小。调试结果表明,温度差动式日光温室通风系统可以将温度准确地控制在设定值范围,上下浮动误差不超过1℃,夜间温度提高2~5℃。研究表明系统能较好地控制日光温室内温度,减少温度因通风口开合而引起的骤升骤降,而且能改善恶劣天气突袭的影响,精准控制温室温度,同时优化日落时风口的关闭,有利于夜间温室内部的保温,保证作物早熟、增产。  相似文献   

16.
[目的]提高冬季夜间日光温室的土壤温度,研制内置式太阳能加温装置.[方法]利用蛇形太阳能空气集热器集热结合土壤蓄热的方式,在乌鲁木齐南郊水西沟村德力森蔬菜园8号温室进行了提升地温试验.[结果]当环境温度为-3~- 10℃时,该装置可以使温室土壤10 ~ 20 cm深处的温度平均升高1.5~3℃.[结论]内置式太阳能加温装置能有效提高冬季夜间温室地温,满足作物生长的需要.  相似文献   

17.
日光温室二维及三维模拟对温度模拟结果的影响   总被引:3,自引:0,他引:3  
数值模拟在温室环境研究中应用日趋广泛,正确选择温室模拟模型对模拟结果的准确性非常重要。本研究以温室夜间各表面的温度为边界条件,采用CFD软件对12m跨度温室温度环境进行二维及三维空间的稳态模拟求解。结果表明温室中间横剖面温度在三维模拟及二维模拟中空间变化趋势相同且与测试结果相近:在温室前部及温室后上部模拟值与测试值的绝对误差在5%以内,在温室中部尤其是近土壤表面误差偏大。由温室中间及距山墙1m远两个横剖面的1m高温度线分布对比结果可见,温室长度大于其跨度两倍以上时,山墙对室内中部温度环境的影响不明显,模拟温室中部横剖面的温度用二维模型可行。  相似文献   

18.
文章以维持温室最冷月夜间温度12℃以上为目标,研究比较了太阳能加热系统和传统加热系统对温室温度的调节原理和调节效果.太阳能加热系统的热交换器为光管散热器,分为两组,分别悬挂在空中和埋设在地下,用于温室的空气加温和地面的蓄热加温.白天,悬挂在空中的热交换器吸收温室多余能量,通过埋在地下的热交换器将其储存在地下;夜间,储存在地下的热能通过热交换器重新释放出来加热温室空气.传统加热系统的热源为一台15kW的锅炉.实验结果表明:太阳能加热系统在12月至次年1月的最冷几天中供热量不能满足温室作物的需求,但在其它时间,相比传统加热系统更有利于温室环境的调节.因为这种加热系统不仅可用于夜间加热,而且还能避免白天温室内过高温度影响植物生长.这套太阳能加热系统每年能为温室提供360kWh/m2的热量,可节省大量的化石燃料.如果突尼斯国内1400公顷温室全部采用这种加热系统,每年可节约化石燃料5×109kWh.  相似文献   

19.
生态日光温室是1种集太阳能辅助加温、燃池辅助加温、雨水回收利用、沼气综合利用等多位一体的新型现代化温室。研究的生态日光温室以合理的日光温室结构为主体,利用太阳能集热器加热水,并在地下散热水管中循环散热直接对温室内土壤进行加热,以达到降低耗能量、提高温室内温度的目的。根据日光温室的结构和传热特点,利用稳态传热理论和室内热量收支平衡原理,对温室的热量平衡进行建模计算,通过计算机编程解算平衡方程,分析太阳能辅助加温系统对日光温室内温度的影响;经连续试验,应用面积为20m2集热器可提高室内温度1.68℃。试验结果表明,太阳能辅助加温系统具有明显增加室温的效果。  相似文献   

20.
基于变论域模糊理论的温室番茄智能控温策略   总被引:1,自引:0,他引:1  
为了对北方温室番茄种植进行精准的温度控制,根据番茄各生长时期的温度特性,运用温度积温理论以及变论域模糊控制理论提出了符合北方温室番茄种植的智能温度控制策略。利用温度积温法对温度阈值进行计算使其可以适应外界环境的动态变化,通过变论域模糊控制理论解决传统模糊控制方式因结构参数相对固定而不适用于高精度控制的难题,提升了稳定性以及系统的响应时间,降低了控制误差。仿真实验表明,该温度控制策略相比PID控制,在响应时间及超调量方面有54.17%和75%的提升;相比传统模糊控制,在响应时间及超调量方面有35.29%和55.56%的提升。温室实验表明,与原有控制策略相比,在日间与夜间控制方面,使用该控制策略的室内平均温度均更接近于期望温度值,同时节约近10%的能量消耗,有效提高能源利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号