首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
采用实验室规模的亚硝化-厌氧氨氧化联合工艺,研究其对高含氮、低C/N废水的处理能力.结果表明,亚硝化反应器的水力停留时间控制在1.0d时,亚硝化活性比较稳定,进水氨氮浓度对其影响不大.进水氨氮浓度在400~600 mg/L时,出水亚硝酸氮浓度都在260~280 mg/L,可以通过控制进水氨氮浓度调节出水亚硝酸氮/氨氮的比率.亚硝化反应器出水的亚硝酸氮/氨氮的比率对厌氧氨氧化脱氮率有重要的作用.当进水氨氮浓度为480 mg/L时,出水中亚硝酸氮/氨氮的比率为1.2左右,进入厌氧氨氧化反应器的氮物质去除率达到  相似文献   

2.
低碳氮比工业废水生物除氮试验研究   总被引:1,自引:0,他引:1  
研究了低溶解氧(DO)浓度条件下,生物脱氮工艺处理低碳氮比工业废水过程中的亚硝酸盐的变化规律。结果表明:在低溶解氧浓度条件下,该工艺能有效去除氨氮,同时能够实现长期稳定的亚硝酸盐富集。在工艺稳定运行阶段,DO=1.0 mg/L时,好氧池亚硝化率平均可达80%以上,氨氮去除率大于90%。  相似文献   

3.
余存和 《安徽农业科学》2011,39(21):12818-12820
研究生物脱氮工艺在处理低碳氮比工业废水时,低溶解氧(DO)条件下亚硝酸盐积累的情况。试验结果表明,系统在DO为1.0mg/L条件下有效去除氨氮的同时,能够实现稳定持久的亚硝酸盐积累,平均亚硝化率达到82.1%,系统氨氮去除率超过95%。  相似文献   

4.
亚硝酸盐氮和氨氮是养殖水体恶化的主要成分。从对虾养殖水体中,分离筛选出2株分别对亚硝酸盐氮和氨氮具有较高降解能力的耐盐芽孢杆菌菌株T905和T301。在模拟淡水和海水条件下,当亚硝酸盐氮和氨氮初始浓度分别为44 mg/L和20 mg/L时,3 d后菌株T905对亚硝酸盐氮降解率分别达到72.10%和92.10%,T301对氨氮降解率分别达到55.18%和52.00%。根据形态学特征和生理生化试验结果,鉴定2株菌为枯草芽孢杆菌。  相似文献   

5.
常温下UASB反应器厌氧氨氧化生物脱氮试验   总被引:1,自引:0,他引:1  
[目的]研究常温下厌氧氨氧化反应器的脱氮效果。[方法]以人工配水为进水,接种某城市污水处理厂氧化沟活性污泥,在常温(22~29℃)下进行了一套容积为3.2 L的UASB反应器厌氧氨氧化生物脱氮试验。[结果]反应器在运行75 d后,氨氮和亚硝酸盐氮的平均去除率分别达93.5%和86.1%,去除的氨氮、去除的亚硝酸盐氮和生成的硝酸盐氮比例为1.00∶1.30∶0.31,成功实现厌氧氨氧化途径生物脱氮。反应器停运近3个月后,在常温(17~25℃)再次启动时,只需16 d反应器就可以恢复高效厌氧氨氧化生物脱氮,氨氮和亚硝酸盐氮的平均去除率分别达96.6%和90.1%。[结论]常温下可以实现厌氧氨氧化反应器的启动,并且可以实现高效脱氮。  相似文献   

6.
反硝化技术对模拟养殖池塘修复的研究   总被引:3,自引:0,他引:3  
浙江奉化市池塘的底泥经过反复培养、驯化.从中筛选、分离出反硝化细菌,在模拟实验条件下,研究其对不同浓度的硝酸盐氮和亚硝酸盐氮的去除情况,讨论反硝化菌种的生长情况.结果表明,在初始浓度为1、25、50 mg·L-1的硝酸盐氮和亚硝酸盐氮模拟池塘中,随着实验的进行,对污染物的去除效果逐渐提高.其中在1 mg·L-1的浓度组中,3 d内硝酸盐氮和亚硝酸盐氮去除率就分别达到了95.8%和90.2%;在25 mg·L-1的浓度组中,第6 d硝酸盐氮和亚硝酸盐的去除率分别为93.8%和87.8%;在50 mg·L-1的浓度组中,第6 d硝酸盐氮和亚硝酸盐的去除率分别为89.7%和78.7%.此外,反硝化菌对硝酸盐氮的去除效果略优于亚硝酸盐氮,而且硝酸盐氮和亚硝酸盐氮的浓度越低,对其去除效果越好,达到稳定状态的时间越短.在模拟池塘中,菌种的生长情况与硝酸盐氮和亚硝酸盐氮的浓度呈负相关,即污染物的浓度越高反硝化菌的生长情况越差.对反硝化菌的生态影响因子研究表明,其反硝化最适宜的pH值为6~7,温度为25~35℃;而且在同一pH值和温度条件下,硝酸盐氮和亚硝酸盐氮浓度越低,反硝化菌对其去除效果越好.  相似文献   

7.
从生物脱氮工艺的反硝化段活性污泥中分离到7株反硝化菌,考察了其脱氮能力后优选出代表菌株FH2,该菌在400 mg/L NO3--N浓度下,对NO-3-N的去除率为100%,且脱氮过程中亚硝酸盐基本无积累,表现出了很强的脱氮能力,可作为生物强化法处理高浓度氨氮废水的菌源。通过对该优势功能菌株进行形态观察、生理生化试验及16S r DNA的序列测定和同源性分析,结果表明该菌株为蜡状芽孢杆菌(Bacillus cereus)。该菌反硝化能力强,且具有芽孢微生物的特点,以该菌做为菌源进行生物强化反硝化脱氮研究有很好的应用前景。  相似文献   

8.
对常规工艺砂滤池去除巢湖源水氨氮能力进行试验,结果表明:如果滤池前停止加氯等消毒措施,石英砂滤料可以滋生大量微生物降解源水中的氨氮,在滤池进水氨氮浓度为0.1~2.5 mg/L时平均去除率为67%,进水浓度大于0.5 mg/L时,氨氮的去除率在70%以上,进水氨氮浓度在2.0 mg/L左右时去除率达80%以上,而在进水浓度小于0.5 mg/L时,氨氮去除效果下降,平均去除率为46%。当滤后水中亚硝酸盐氮浓度较高时,加氯可以与亚硝酸盐氮起氯化反应,有效降低亚硝酸盐氮浓度,去除率达90%以上。  相似文献   

9.
杨琳 《安徽农业科学》2014,(25):8863-8865,8872
采用自制三维电极生物膜反应器进行脱氮试验,研究了电极生物膜法全自养条件下处理氨氮废水的脱氮性能。在进水不含有机碳源,电流强度为30 mA,电流密度为0.012 mA/cm2的条件下,当进水氨氮负荷为100 mgN/(L·d)时,氨氮转化能力为64mgN/(L·d),总氮去除能力为50 mgN/(L·d),达到该试验最大脱除能力。在运行周期24 h范围内,电极生物膜反应器前2 h受电化学间接氧化作用影响显著,2 h之后因阳极区的产气量大降低溶液中Cl-浓度,使得电化学作用影响减弱,主导作用由电化学转化为受底物抑制的复杂的生物作用。电极生物膜法在电化学和生物硝化-反硝化共同作用下具有良好的脱氮能力。  相似文献   

10.
通过测定牙鲆Paralichthys olivaceus养殖循环水中总氨氮、亚硝酸态氮和硝酸态氮的含量,了解以塑料环、火山石和牡蛎壳为载体的3种硝化滤器生物膜的熟化情况;调节循环水流量,使硝化滤器水力停留时间分别为5、15、20、30、60min,比较氨氮去除率,得到实验条件下3种载体硝化滤器的最佳水力停留时间,并在此条件下,投加NH4Cl,使循环养殖水中总氨氮浓度分别为1、3、5mgCL,测定水中总氨氮随时间的变化,研究氨氮去除动力学规律,计算硝化滤器的去除效率。结果表明:附着于3种载体上生物膜的熟化时间约为25d;塑料环上异养菌和硝化菌数量均为最高,氧化还原反应最活跃,火山石次之,牡蛎壳最低;3种载体硝化滤器的最佳水力停留时间为20~30min。氨氮负载为1mg/L时,12h内氨氮去除为0级反应;氨氮负载分别为3mg/L和5mg/L条件下,24h内氨氮去除为0级反应。氨氮负载越大,氨氮去除速率就越大。在氨氮负载为1、3、5mg/L时,5种载体的氨氮去除效率分别为17.5l~16.39、36.39~33.04、58.96—53.25g/(m^3·d)。  相似文献   

11.
为探索高效的近岸海水污染处理及生态修复方法,采用硝酸氧化法对黏胶基碳素纤维(Carbon fiber,CF)进行氧化改性,并利用改性后的黏胶基CF处理近岸模拟污染海水,研究了改性CF对海水中亚硝酸盐、总氨态氮等污染物的吸附情况,考察了黏胶基CF氧化改性时间等因素对吸附处理效果的影响,确定了改性黏胶基CF处理近岸污染海水的优化工艺条件。结果表明:黏胶基CF氧化改性时间、CF投加量、亚硝酸盐初始浓度、总氨态氮初始浓度、吸附时间、海况、p H等因素对CF的吸附性能均有不同程度的影响,当反应条件相同时CF的吸附性能较稳定;CF对亚硝酸盐的吸附效果较好,对总氨态氮的吸附效果次之;通过正交试验确定黏胶基CF材料修复模拟近岸海水的优化条件,即在吸附时间为3 h、海况为3级、投加量为0.01 g、亚硝酸盐初始浓度为4 mg/L、总氨态氮初始浓度为60 mg/L、改性时间为1.5 h、p H为8的条件下,CF对亚硝酸盐的去除率为84.56%,对总氨态氮的去除率为45.63%。本研究结果为CF在近岸海洋环境修复中的应用奠定了基础。  相似文献   

12.
从4个草鱼池塘中分离和定性筛选获得29株能够产生氨氮和亚硝酸盐氮的菌株。通过对编号为C95的菌株进行菌落形态学观察和16S rDNA序列分析,表明该菌株为革兰氏阴性杆状菌,与寡养单胞菌属(Stenotrophomonas sp.)的同源性达98%。采用单因素多水平试验对菌株的产氨氮和产亚硝酸盐氮特性进行研究发现:(1)氮源、碳源、温度和摇床转速都能显著影响菌株的生长及产生氨氮和亚硝酸盐氮的含量,但pH(5~9)对其无显著影响(P>0.05);(2)该菌株生长及产生氨氮和亚硝酸盐氮最适宜的培养基以及培养条件为:LB、pH 5~9、25℃、150 r.min-1。由C95作为指示菌株筛选得到SC01、SC07两株(2/33)去除氨氮和亚硝酸盐氮效果较好的菌株。因此,C95可作为筛选具有降氨氮和亚硝酸盐氮功能的有益菌的指示菌株。  相似文献   

13.
[目的]研究枯草芽孢杆菌、植物乳杆菌及二者等比例混合剂的应用对中华鳖养殖池塘水质及总异养细菌数量的影响.[方法]在试验池塘分别施用1 mg/L枯草芽孢杆菌、1 mg/L植物乳杆菌,枯草芽孢杆菌(0.5 mg/L)和植物乳杆菌(0.5 mg/L)的混合剂,研究其对中华鳖养殖池塘水体的亚硝酸盐含量、氨氮含量、溶解氧含量、pH及总异养细菌数量的影响.[结果]施用这些有益微生物对养殖水体的溶解氧及pH没有明显影响.混合剂对养殖水体的氨氮及亚硝酸盐的去除效果最为明显,氨氮及亚硝酸盐含量分别降低42.37%和45.56%.其次为枯草芽孢杆菌和植物乳杆菌,可使水体中的氨氮及亚硝酸盐含量分别降低34.60%、31.63%和14.54%、15.59%.混合剂、植物乳杆菌、枯草芽孢杆菌添加组和对照组的总异养细菌数量分别为3.02×105、3.09×105、3.13 × 105、3.45 × 105 cfu/ml,各试验组无显著差异(P<0.05).[结论]使用混合剂不仅能有效地改良水质,而且水体总异养细菌数量最少.  相似文献   

14.
高太忠  张昊 《安徽农业科学》2012,(36):17589-17592
通过室内土柱淋滤试验,揭示氨氮、硝酸盐氮、亚硝酸盐氮在潮土和地下水中的迁移转化规律,并确定迁移数学模型.结果表明:在施氮周期内,淋出液氨氮浓度最高为15.86 mg/L,最低为0.09 mg/L,平均为2.02 mg/L,超标10.1倍;亚硝酸盐氮浓度最高为37.456mg/L,最低为0.002 mg/L,平均为4.854 mg/L,超标242.7倍;硝酸盐氮浓度最高为16.35 mg/L,最低为2.12 mg/L,平均为6.51 mg/L,未超标.当潮土中硝化作用强时,硝酸盐和亚硝酸盐氮浓度升高,氨氮浓度降低.当反硝化作用增强时,硝酸盐氮浓度降低,氨氮浓度升高.地下水中主要的污染物质为氨氮和亚硝酸盐氮(硝酸盐氮低于Ⅲ类标准).氮在河北平原潮土和地下水中的迁移过程可以用所建模型进行定量预测.  相似文献   

15.
高太忠  付海燕 《安徽农业科学》2013,41(15):6667-6670
[目的]为了揭示氨氮、亚硝酸盐氮、硝酸盐氮在褐土和地下水中的迁移转化。[方法]以河北平原的褐土为主要的研究对象,通过室内土柱的淋滤实验,建立数学模型,预测其迁移规律。[结果]在施氮周期内,氨氮浓度最高为15.86 mg/L,最低为0.09 mg/L,平均为2.02 mg/L,超标10.1倍;亚硝酸盐氮最高浓度为37.456 mg/L,最低浓度为0.002 mg/L,平均浓度为4.854 mg/L,超标242.7倍;硝酸盐氮浓度最高为16.35 mg/L,最低浓度为2.12 mg/L,平均浓度为6.51 mg/L的未超标,占标率为32.57%。[结论]在浅层地下水中,硝酸盐氮和氨氮是污染地下水的主要2种氮素存在形态。在深层地下水中,氮素主要存在形态为硝酸盐氮。所建数学模型可以定量地预测氮在包气带和地下水中的迁移规律。  相似文献   

16.
碱度及Do对亚硝化反应的影响   总被引:1,自引:0,他引:1  
张赛军  颜智勇  郑垒 《安徽农业科学》2010,38(24):13340-13342,13349
[目的】研究碱度和DO浓度对亚硝酸盐积累及半硝化的影响。[方法】采用自制的立方形SBR反应器,反应器温度控制在28~33℃,进水氨氮浓度控制在80~110mg/L,研究碱度和DO2个因素对亚硝酸盐积累的影响。[结果]水体中适当的碱度有益于亚硝酸盐的形成。低DO有利于亚硝酸盐的积累,但不利于氨氮的转化。当DO〈0.5mg/L时,氨氮去除率不高,仅50%左右,适合于半硝化反应,但亚硝酸盐积累率很高,最高可达99%;当DO〉1.5mg/L时,亚硝酸盐的积累率逐渐降低;DO在0.5~1.5mg/L时,氨氮的去除率和亚硝酸盐积累率都很高,适合于进行亚硝化反应。[结论]在温度为28~33℃和进水氨氮浓度一定的情况下,控制碱度和DO能使亚硝酸盐在反应器内得到很好的积累。  相似文献   

17.
2005年6月至2006年4月,对三峡水库万州大周库湾投饵式网箱养鱼基地的水质和底泥进行了调查与分析.结果表明:万州大周投饵式网箱养殖对水温、DO、透明度、pH及电导率的影响都不显著.网箱养殖区水温、DO略低于网箱上游和网箱下游.氨氮、硝酸盐、亚硝酸盐、总氮、总磷及正磷酸盐的含量趋势为网箱区最高,其次网箱下游,网箱上游最低,ANOVA分析结果显示差异不显著(p0.05).无机氮的主要形态以硝态氮为主,其次是氨氮,亚硝态氮最少.以总氮和总磷作为氮、磷阈值来分析,网箱上游水质已达到富营养化水平,按地表水环境质量标准(GB3838-2002)评价,网箱上游为Ⅲ类、劣Ⅲ类水质,网箱区为劣Ⅳ类,网箱下游为Ⅳ类水,网箱养殖加重了该水域水质的富营养化.网箱养殖使底泥中氮、磷、硫化物、有机质大量富集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号