首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To describe shiga-toxigenic Escherichia coil O157:H7 (STEC O157:H7) fecal shedding prevalence, seasonal fecal shedding patterns, and site-specific prevalence from the oral cavity, skin, and feces of dairy cattle. DESIGN: Cross-sectional study. ANIMALS: Adult dairy cattle from 13 herds in Louisiana. PROCEDURE: Samples were cultured for STEC O157 by use of sensitive and specific techniques, including selective broth enrichment, immunomagnetic separation, monoclonal antibody-based O:H enzyme immunoassay serotyping, and polymerase chain reaction virulence gene characterization. Point estimates and 95% confidence intervals were calculated for fecal shedding prevalence as well as site-specific prevalence from the oral cavity, skin, and feces. Logistic regression was used to assess seasonal variation and differences at various stages of lactation with respect to fecal shedding of STEC O157 in cattle sampled longitudinally. RESULTS: Summer prevalence in herds in = 13) was 38.5%, with a cow-level prevalence of 6.5%. Among positive herds, prevalence ranged from 3% to 34.6%. Samples from 3 of 5 herds sampled quarterly over 1 year yielded positive results for STEC O157. In herds with STEC O157, an increase in cow-level prevalence was detected during spring (13.3%) and summer (10.5%), compared with values for fall and winter. Site-specific prevalences of STEC O157:H7 from oral cavity, skin, and fecal samples were 0%, 0.7%, and 25.2%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicated that STEC O157:H7 was commonly isolated from dairy cows in Louisiana, seasonally shed, and isolated from the skin surface but not the oral cavity of cows.  相似文献   

2.
The study objectives were to determine the prevalence and serotypes of non-O157 Shiga toxin-producing Escherichia coli (STEC) in pens of feedlot cattle and on corresponding beef carcasses. We collected 25 fecal samples from 84 pens in 21 Alberta feedlots and 40 carcass swabs from each preslaughter pen for analysis by culture and polymerase chain reaction (PCR). Non-O157 STEC were recovered from feces from 12 (14%) of the 84 pens and 12 (57%) of the 21 feedlots by examination of 1 E. coli isolate positive for 4-methylumbelliferyl-beta-beta-glucuronide per sample. Twelve non-O157 serotypes were detected, but 7 of the 15 STEC isolates lacked the accessory virulence genes eae and hlyA. Although 115 (7%) of the carcass broths were PCR-positive, no STEC isolates were recovered from the 1650 carcasses sampled. Our data indicate that multiple non-O157 STEC serotypes may be present in cattle feces, yet are unlikely to be recovered from the corresponding beef carcasses when 20 colonies per sample from PCR-positive broth cultures are analyzed.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) are a public health concern. Bacterial culture techniques commonly used to detect E. coli O157:H7 will not detect other STEC serotypes. Feces from cattle and other animals are a source of O157:H7 and other pathogenic serotypes of STEC. The objective of this study was to estimate the pen-level prevalence of Shiga toxins and selected STEC serotypes in pre-slaughter feedlot cattle. Composite fecal samples were cultured and a polymerase chain reaction (PCR) was used to detect genes for Shiga toxins (stx1 and stx2) and genes for O157:H7, O111:H8, and O26:H11 serotypes. Evidence of Shiga toxins was found in 23 pens (92%), O157:H7 in 2 (8%), O111:H8 in 5 (20%), and O26:H11 in 20 (80%) of the 25 pens investigated. Although pen-level prevalence estimates for Shiga toxins and non-O157 serotypes seem high relative to O157:H7, further effort is required to determine the human health significance of non-O157 serotypes of STEC in feedlot cattle.  相似文献   

4.
Meat samples and fecal specimens from adult cattle were collected in Changchun, China and were examined for presence of Shiga toxin-producing Escherichia coli (STEC) serogroup O157. STEC O157 strains were isolated from 2 (5%) of 40 beef, 1 (3.3%) of 30 pork, and 3 (1.7%) of 176 adult cattle fecal samples. The strains belonged to phage types (PT) 4, 8, or 47. Two beef strains and a strain previously isolated from a patient in Shandong, China, were PT-4 and showed a similar PFGE pattern, suggesting the possibility of food-borne transmission. It is suggested that cattle are a reservoir of STEC O157:H7 and meat products are contaminated by this pathogen in Changchun, China as well as in other countries.  相似文献   

5.
In order to evaluate the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains, 197 fecal samples of healthy cattle from 10 dairy farms, four beef farms and one slaughterhouse at Rio de Janeiro State, Brazil, were examined for Shiga toxin (Stx) gene sequences by polymerase chain reaction (PCR). For presumptive isolation of O157:H7 E. coli, the Cefixime-potassium tellurite-sorbitol MacConkey Agar (CT-SMAC) was used. A high occurrence (71%) of Stx was detected, and was more frequently found among dairy cattle (82% vs. 53% in beef cattle), in which no differences were observed regarding the age of the animals. Dot blot hybridization with stx1 and stx2 probes revealed that the predominant STEC type was one that had the genes for both stx1 and stx2 in dairy cattle and one that had only the stx1 gene for beef cattle. Three (1.5%) O157:H7 E. coli strains were isolated from one beef and two dairy animals by the use of CT-SMAC. To our knowledge, this is the first report of O157:H7 isolation in Brazil. A PCR-based STEC detection protocol led to the isolation of STEC in 12 of 16 randomly selected PCR-positive stool samples. A total of 15 STEC strains belonging to 11 serotypes were isolated, and most of them (60%) had both stx1 and stx2 gene sequences. Cytotoxicity assays with HeLa and Vero cells revealed that all strains except two of serotype O157:H7 expressed Stx. The data point to the high prevalence of STEC in our environment and suggest the need for good control strategies for the prevention of contamination of animal products.  相似文献   

6.
Rectal content grab samples were collected from 2436 beef cattle reared on 406 beef farms in Japan between November 2007 and March 2008. STEC strains O157 and O26 were isolated from 110 (27.1%) and 7 (1.7%) farms, respectively. Farms that tested positive for STEC O157 were located in 35 out of all 47 Japanese prefectures. This indicates that STEC O157 strains are widespread on beef farms nationwide. Of the 2436 tested beef cattle, 218 (8.9%) and 10 (0.4%) had STEC strains O157 and O26 in the rectal content, respectively. The most common Shiga toxin genes detected in the isolated STEC O157 strains were: stx(2c) alone (32.1%), stx(2)/stx(2c) (27.2%), and stx(1)/stx(2) (21.8%). Almost all of the STEC O157 and STEC O26 strains expressed Shiga toxins (Stx). Most of the STEC O157 and STEC O26 strains possessed eaeA and EHEC-hlyA. These results strongly suggest that STEC strains O157 and O26 from beef cattle would be pathogenic to humans. Therefore, it is important to reduce STEC strains O157 and O26 in beef cattle in order to prevent foodborne disease caused by STEC. The presence of dogs and/or cats on a farm was significantly (P=0.02) associated with the prevalence of STEC O157. More research is needed to clarify the role of dogs and cats.  相似文献   

7.
A feedlot trial was conducted to assess the efficacy of an Escherichia coli O157:H7 vaccine in reducing fecal shedding of E. coli O157:H7 in 218 pens of feedlot cattle in 9 feedlots in Alberta and Saskatchewan. Pens of cattle were vaccinated once at arrival processing and again at reimplanting with either the E. coli O157:H7 vaccine or a placebo. The E. coli O157:H7 vaccine included 50 microg of type III secreted proteins. Fecal samples were collected from 30 fresh manure patties within each feedlot pen at arrival processing, revaccination at reimplanting, and within 2 wk of slaughter. The mean pen prevalence of E. coli O157:H7 in feces was 5.0%; ranging in pens from 0% to 90%, and varying significantly (P < 0.001) among feedlots. There was no significant association (P > 0.20) between vaccination and pen prevalence of fecal E. coli O157:H7 following initial vaccination, at reimplanting, or prior to slaughter.  相似文献   

8.
OBJECTIVE: To evaluate the effectiveness of various sampling techniques for determining antimicrobial resistance patterns in Escherichia coli isolated from feces of feedlot cattle. SAMPLE POPULATION: Fecal samples obtained from 328 beef steers and 6 feedlot pens in which the cattle resided. PROCEDURE: Single fecal samples were collected from the rectum of each steer and from floors of pens in which the cattle resided. Fecal material from each single sample was combined into pools containing 5 and 10 samples. Five isolates of Escherichia coli from each single sample and each pooled sample were tested for susceptibility to 17 antimicrobials. RESULTS: Patterns of antimicrobial resistance for fecal samples obtained from the rectum of cattle did not differ from fecal samples obtained from pen floors. Resistance patterns from pooled samples differed from patterns observed for single fecal samples. Little pen-to-pen variation in resistance prevalence was observed. Clustering of resistance phenotypes within samples was detected. CONCLUSIONS AND CLINICAL RELEVANCE: Studies of antimicrobial resistance in feedlot cattle can rely on fecal samples obtained from pen floors, thus avoiding the cost and effort of obtaining fecal samples from the rectum of cattle. Pooled fecal samples yielded resistance patterns that were consistent with those of single fecal samples when the prevalence of resistance to an antimicrobial was > 2%. Pooling may be a practical altemative when investigating patterns of resistance that are not rare. Apparent clustering of resistance phenotypes within samples argues for examining fewer isolates per fecal sample and more fecal samples per pen.  相似文献   

9.
A study was conducted in 2 feedlots in southern Alberta to identify environmental sources and management factors associated with the prevalence and transmission of Escherichia coli O157:H7. Escherichia coli O157:H7 was isolated in preslaughter pens of cattle from feces (0.8%), feedbunks (1.7%), water troughs (12%), and incoming water supplies (4.5%), but not from fresh total mixed rations. Fresh total mixed rations did not support the growth of E. coli O157:H7 and E. coli from bovine feces following experimental inoculation. Within a feedlot, the feces, water troughs, and feedbunks shared a few indistinguishable subtypes of E. coli O157:H7. A few subtypes were repeatedly isolated in the same feedlot, and the 2 feedlots shared a few indistinguishable subtypes. The prevalence of E. coli O157:H7 in water troughs of preslaughter cattle in 1 feedlot was associated with season, maximum climatic temperatures the week before sampling; total precipitation the week before sampling, and coliform and E. coli counts in the water trough.  相似文献   

10.
To investigate the frequency of Shiga toxin-producing Escherichia coli (STEC) infected calves at a breeding farm and cattle at a slaughterhouse in Tohoku area of Japan, the polymerase chain reaction (PCR) was used for detection of genes for Shiga toxin(s). The fecal samples from a total of 204 calves and 306 cattle were examined. The prevalence rates in calves less than 2 months of age, cattle 2-8 months of age, and adults greater than 1 year of age were 39.4, 78.9, and 40.8%, respectively. Detection frequency of STEC in the fecal specimens from calves aged 0-8 months was not different among the breeds of cattle (Holstein: H, Japanese black cattle: B, and F1: HxB). On the other hand, for calves over 12 months of age, the frequency of STEC in Japanese black cattle and F1 were significantly higher than in Holstein cattle. Serogroups of STEC usually identified in human cases of food poisoning (O157, O26, and O111) were not frequently found in the feces of the cattle.  相似文献   

11.
Fecal samples collected from cattle at processing during a 1-year period were tested for verotoxins (VT1, VT2), Escherichia coli O157:H7, and Salmonella. Verotoxins were detected in 42.6% (95% CI, 39.8% to 45.4%), E. coli O157:H7 in 7.5% (95% CI, 6.1% to 9.1%), and Salmonella in 0.08% (95% CI, 0.004% to 0.5%) of the fecal samples. In yearling cattle, the median within-lot prevalence (percentage of positive samples within a lot) was 40% (range, 0% to 100%) for verotoxins and 0% for E. coli O157:H7 (range, 0% to 100%) and Salmonella (range, 0% to 17%). One or more fecal samples were positive for verotoxins in 80.4% (95% CI, 72.8% to 86.4%) of the lots of yearling cattle, whereas E. coli O157:H7 were detected in 33.6% (95% CI, 26.0% to 42.0%) of the lots. In cull cows, the median within-lot prevalence was 50% (range, 0% to 100%) for verotoxins and 0% (range, 0% to 100%) for E. coli O157:H7 and Salmonella (range, 0% to 0%). Verotoxins were detected in one or more fecal samples from 78.0% (95% CI, 70.4% to 84.2%) of the lots of cull cows, whereas E. coli O157:H7 were detected in only 6.0% (95% CI, 3.0% to 11.4%) of the lots of cull cows. The prevalence of verotoxins in fecal samples was lower in yearling cattle than in cull cows, whereas the prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle than in cull cows. The prevalence of E. coli O157:H7 in fecal samples was highest in the summer months. Rumen fill, body condition score, sex, type of cattle (dairy, beef), and distance travelled to the plant were not associated with the fecal prevalence of verotoxins or E. coli O157:H7. The prevalence of verotoxins in fecal samples of cull cows was associated with the source of the cattle. It was highest in cows from the auction market (52%) and farm/ranch (47%) and lowest in cows from the feedlot (31%). In rumen samples, the prevalence of verotoxins was 6.4% (95% CI, 4.2% to 9.4%), and it was 0.8% (95% CI, 0.2% to 2.3%) for E. coli O157:H7, and 0.3% (95% CI, 0.007% to 1.5%) for Salmonella.  相似文献   

12.
Food safety risks due to Escherichia coli O157:H7 may be affected by variability in prevalence in or on live cattle at slaughter. Our objectives were to assess the prevalence and risk factors associated with E. coli O157:H7 in feedlot pens immediately prior to slaughter, and assess relationships among methods of monitoring the E. coli O157:H7 status of pre-harvest pens. We studied 84 pens containing a total of nearly 27,000 head of cattle in commercial feedlots in Alberta during 2003 and 2004. Sampling devices (ROPES) prepared from manila ropes were used to detect high prevalence pens. Forty of 84 pens (48%) were classified ROPES-positive. Within pens, fecal prevalence ranged between 0% to 80% (median = 20%) and the hide prevalence ranged between 0% and 30% (median = 0%). Pens that were ROPES-positive had a higher median prevalence for feces (40%) and for hides (3.8%) than those that were ROPES-negative (13.3% and 0%, respectively). The prevalence of E. coli O157:H7 in pens immediately prior to slaughter was found to be quite high or very low even within feedlots and seasons. Factors such as sampling month, temperature, precipitation, pen floor conditions, and water tank cleanliness were associated with E. coli O157:H7 outcome measures, although associated factors were not completely consistent among years and outcome measures. Fecal and hide prevalence are considered primary pre-harvest indicators of potential carcass contamination, but other methods such as ROPES that are associated with these outcomes may provide logistic advantages to efficiently classify pens of cattle as high or low risk to food safety.  相似文献   

13.
Shiga toxin-producing Escherichia coli (STEC), particularly O157, are major food borne pathogens. Non-O157 STEC, particularly O26, O45, O103, O111, O121, and O145, have also been recognized as a major public health concern. Unlike O157, detection procedures for non-O157 have not been fully developed. Our objective was to develop a multiplex PCR to distinguish O157 and the 'top six' non-O157 serogroups (O26, O45, O103, O111, O121, and O145) and evaluate the applicability of the multiplex PCR to detect the seven serogroups of E. coli in cattle feces. Published sequences of O-specific antigen coding genes, rfbE (O157) and wzx and wbqE-F (non-O157), were analyzed to design serogroup-specific primers. The specificity of amplifications was confirmed with 138 known STEC strains and the reaction yielded the expected amplicons for each serogroup. In feces spiked with pooled 7 STEC strains, the sensitivity of the detection was 4.1 × 10(5)CFU/g before enrichment and 2.3 × 10(2) after 6h enrichment in E. coli broth. Additionally, 216 fecal samples from cattle were collected and tested by multiplex PCR and cultural methods. The multiplex PCR revealed a high prevalence of all seven serogroups (178 [O26], 108 [O45], 149 [O103], 30 [O111], 103 [O121], 5 [O145], and 160 [O157]) of 216 samples in fecal samples. Cultural procedures identified 33.1% (53/160) and 35.5% (11/31) of PCR-positive samples for E. coli O157 and non-O157 serogroups, respectively. Samples that were culture-positive were all positive by the multiplex PCR. The multiplex PCR can be used to identify serogroups of putative STEC isolates.  相似文献   

14.
The aims of the study were to determine the prevalence of enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) and other Shiga toxin-producing E. coli (STEC) in feces of white veal calves in an operation in Ontario, to evaluate exposure of the calves to EHEC O157, and to investigate the milk replacer diet and antimicrobial resistance as factors that might influence the prevalence of EHEC O157. Feces from three cohorts of 20-21 calves were collected weekly for 20 weeks and processed for isolation of EHEC O157:H7 and detection of STEC by an ELISA. Exposure to EHEC O157 was also investigated by measuring IgG and IgM antibodies to the O157 lipopolysaccharide (O157 Ab) in sera by ELISA. The prevalences of EHEC O157 were 0.17% of 1151 fecal samples and 3.2% of 62 calves, and for STEC were 68% of 1005 fecal samples and 100% of 62 calves. Seroconversion to active IgG and IgM O157 Ab responses in some calves was not associated with isolation of EHEC O157. The milk replacer contained low levels of antibodies to EHEC antigens and without antimicrobial drugs, it did not inhibit the growth of EHEC O157 in vitro. Two E. coli O157:H7 that were isolated were totally drug sensitive whereas 60 commensal E. coli isolates that were examined were highly resistant. Antibodies in milk replacer that might be protective in vivo, and susceptibility to antimicrobial agents in the milk replacer may contribute to the low prevalence of EHEC O157 in white veal calves.  相似文献   

15.
Three-hundred and forty-five herds (17 swine, 122 dairy sheep, 124 beef and 82 dairy cattle) were investigated for prevalence of Shiga toxin-producing Escherichia coli (STEC). Rectal faecal samples were selectively enriched and then examined by immunodetection techniques (Immunomagnetic Separation with anti-E. coli O157 Dynabeads, ImmunoMagnetic cell Separation (IMS) and automated enzyme-linked fluorescent immunoassay using VIDAS) and polymerase chain reaction (PCR) (rfbE and fliC genes) to assess the prevalence of E. coli O157:H7. Prevalence of non-O157 STEC was estimated by PCR screening for stx genes of 10 lactose-positive colonies grown on MacConkey agar after enrichment. PCR was used on all STEC isolates to detect stx(1), stx(2), eaeA and E-hlyA genes. Both immunodetection methods showed a moderate-good level of agreement (kappa = 0.649) but IMS showed 87.5% complementary sensitivity. Prevalence of positive herds for E. coli O157:H7 was estimated at 8.7% for sheep and 3.8% for cattle, whereas all the porcine herds tested negative. Non-O157 STEC were also absent from swine, but were isolated more frequently from ovine (50.8%) than bovine herds (35.9%). Within-herd prevalences of excretion of E. coli O157:H7 established by individual testing of 279 sheep (six herds) and 30 beef cattle (one herd) were 7.3% and 6.7% respectively. PCR analysis of 49 E. coli O157:H7 and 209 non-O157 isolates showed a different distribution of virulence genes. All E. coli O157:H7 were stx(2) gene-positive, eaeA was detected in 95.9%, and the toxigenic profile stx(2)/eaeA/E-hlyA was present in 75.5% of the isolates. Among the non-O157 STEC, prevalence of eaeA was significantly lower (5.3%) and E-hlyA was present in 50.2% of the isolates but only sporadically associated with eaeA. stx(2) was predominant in non-O157 isolates from cattle, whereas in sheep the combination stx(1)/stx(2) was more prevalent. This study demonstrated the wide distribution of STEC in ruminant herds, which represent an important reservoir for strains that pose a potential risk for human infections.  相似文献   

16.
OBJECTIVE: To determine the prevalence of fecal shedding of Escherichia coli O157:H7 in white-tailed deer (Odocoileus virginianus) with access to cattle pastures. DESIGN: Survey study. SAMPLE POPULATION: 212 fecal samples from free ranging white-tailed deer. PROCEDURE: Fresh feces were collected on multiple pastures from 2 farms in north central Kansas between September 1997 and April 1998. Escherichia coli O157:H7 was identified by bacterial culture and DNA-based methods. RESULTS: Escherichia coli O157:H7 was identified in 2.4% (5/212) of white-tailed deer fecal samples. CONCLUSIONS AND CLINICAL RELEVANCE: There is considerable interest in the beef industry in on-farm control of E coli O157:H7 to reduce the risk of this pathogen entering the human food chain. Results of our study suggest that the design of programs for E coli O157:H7 control in domestic livestock on pasture will need to account for fecal shedding in free-ranging deer. In addition, the results have implications for hunters, people consuming venison, and deer-farming enterprises.  相似文献   

17.
为了了解新疆伊犁地区肉牛屠宰过程中大肠杆菌的污染情况,检测非O157致病性产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)的感染情况,本试验采集新疆伊犁地区某定点肉牛屠宰场中屠宰肉牛的粪样和屠宰后的胴体表面拭子,并对样品进行了大肠杆菌的分离鉴定、毒力基因(eae、stx1、stx2)的PCR检测、O157鉴定(rfbE)、ERIC-PCR基因分型和小鼠致病性试验。结果显示,在采集的45份样品中分离鉴定出42株大肠杆菌,分离率为93.3%。其中2株菌株同时编码了毒力基因stx1和stx2,检出率为4.8%,毒力基因eae未被检出。PCR鉴定均为非O157 STEC。ERIC-PCR基因分型检测发现,2株菌的基因型非常相似,同源关系密切。对小鼠进行腹腔注射攻毒,攻菌6 h后,小鼠开始出现死亡,立即解剖死亡小鼠发现,其肠道出血,肝脏、脾脏、肾脏明显出血肿大,解剖对照小鼠表现正常,表明菌株具有一定的致病性。综上所述,在肉牛屠宰过程中存在大肠杆菌污染,其中粪便中非O157 STEC菌株对胴体造成了污染,需要加强控制肉牛的屠宰加工关键环节的环境卫生。  相似文献   

18.
OBJECTIVE: To describe the frequency and distribution of Escherichia coli O157:H7 in the feces and environment of cow-calf herds housed on pasture. SAMPLE POPULATION: Fecal and water samples for 10 cow-calf farms in Kansas. PROCEDURE: Fecal and water samples were obtained monthly throughout a 1-year period (3,152 fecal samples from 2,058 cattle; 199 water samples). Escherichia coli O157:H7 in fecal and water samples was determined, using microbial culture. RESULTS: Escherichia coli O157:H7 was detected in 40 of 3,152 (1.3%) fecal samples, and 40 of 2,058 (1.9%) cattle had > or = 1 sample with E coli. Fecal shedding by specific cattle was transient; none of the cattle had E coli in more than 1 sample. Significant differences were not detected in overall prevalence among farms. However, significant differences were detected in prevalence among sample collection dates. Escherichia coli O157:H7 was detected in 3 of 199 (1.5%) water samples. CONCLUSIONS AND CLINICAL RELEVANCE: Implementing control strategies for E coli O157:H7 at all levels of the cattle industry will decrease the risk of this organism entering the human food chain. Devising effective on-farm strategies to control E coli O157:H7 in cow-calf herds will require an understanding of the epidemiologic characteristics of this pathogen.  相似文献   

19.
Cattle are an important reservoir for STEC and eating food contaminated with fecal material is a frequent source of human STEC infection. It is thus essential to reliably determine the prevalence of STEC contamination in cattle. Currently, different enrichment protocols are used before the detection of Shiga-Toxin producing Escherichia coli (STEC) in fecal samples. However, there have not been any studies performed that have compared the effectiveness of these various enrichment protocols for the growth of non-O157 STEC in fecal samples. The objective of this present study was to characterize the effects of different enrichment factors on the simultaneous growth of the feces background microflora (BM) and two non-O157 STEC strains. The different factors studied were the basal medium (TSB and EC), the effect of novobiocin in the broth (N+ or N-) and the incubation temperature (37 or 40 degrees C). The BM and STEC growth data were simultaneously fitted by using a competitive growth model. The STEC final levels obtained after 24h were higher for the protocols with novobiocin and/or EC compared to the others. However, novobiocin inhibited the growth of one STEC strain. We observed that the addition of novobiocin into broths is not advisable for optimal growth conditions. Moreover, given high BM and low STEC levels often observed in feces, predictions made with the growth model highlighted that false negative results could more likely appear with protocols using TSB without novobiocin than with protocols using EC. In conclusion, the use of EC broth in enrichment protocols seems to be more appropriate for detecting non-O157 STEC from bovine fecal samples. This can help avoid false negative results that cause an underestimation of the STEC prevalence in cattle.  相似文献   

20.
Distillers dried grains with solubles (DDGS) are a coproduct of the ethanol industry and are often used as a replacement for grain in livestock production. Feeding corn DDGS to cattle has been linked to increased fecal shedding of Escherichia coli O157:H7, although in Canada, DDGS are often produced from wheat. This study assessed the effects of including 22.5% wheat or corn DDGS (DM basis) into barley-based diets on performance, carcass characteristics, animal health, and fecal E. coli O157:H7 shedding of commercial feedlot cattle. Cattle (n = 6,817) were randomly allocated to 10 pens per treatment group: WDDGS (diets including 22.5% wheat DDGS), CDDGS (diets including 22.5% corn DDGS), or CTRL (barley substituted for DDGS). Freshly voided fecal pats (n = 588) were collected and pooled monthly for fecal pH measurement and screened for naturally occurring E. coli O157:H7 by immunomagnetic separation (IMS) and direct plating (DP). Hide swabs (n = 367) were collected from randomly selected cattle from each pen before slaughter. Pen-floor fecal samples (n = 18) were collected from treatment groups at entry to the feedlot (<14 d on the finishing diet) and after adapting to the finishing diet for ≥14 d, inoculated (10(9) cfu of a 5 strain naldixic acid-resistant E. coli O157:H7 mixture), incubated (20°C) and evaluated weekly (IMS and DP) to assess fecal E. coli O157:H7 persistence. The WDDGS group had 3.0% poorer ADG (P = 0.007), 5.3% poorer G:F (P < 0.001), and a decreased proportion of Canada Quality Grade AAA carcasses (P = 0.022) compared with CTRL cattle. The CDDGS group had a similar ADG (P = 0.06), a decreased proportion of Canada Yield Grade (YG) 1 (P < 0.001), and greater proportions of Canada YG 2 (P = 0.003) and YG 3 (P < 0.001) carcasses compared with the CTRL group. There were no differences among groups in any of the animal health parameters assessed. Inclusion of DDGS in cattle finishing diets had no effect on fecal shedding (P = 0.650) or persistence (P = 0.953) of E. coli O157:H7. However, feces from cattle on starter diets <14 d had longer persistence of E. coli O157:H7 (week) than cattle on finishing diets ≥14 d (P < 0.003). Inclusion of DDGS in feedlot diets depends on commodity pricing relative to that of barley and for WDDGS must also include the risk of feedlot performance and carcass grading disadvantages. Feeding cattle barley based-diets with 22.5% corn or wheat DDGS did not affect fecal shedding of E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号