首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic and virulence variability of 112 isolates of Phaeoisariopsis griseola , collected from various locations in Central America, were studied using seven random amplified polymorphic DNA (RAPD) primers and 12 common-bean differential genotypes. Broad molecular diversity ( H  = 0·92) among isolates was found using RAPD markers. Fifty pathotypes were identified on 12 differential bean genotypes, 29 of which were represented by only one isolate. Only 18 pathotypes were found in two or more countries. Pathotype 63-63 was the most virulent and caused leaf spots on all 12 common-bean differential genotypes. Comparison of virulence phenotypes and RAPD profiles to known Andean P. griseola isolates confirmed that all isolates belonged to the Mesoamerican group. Pairwise comparison between individual RAPD loci showed that the majority were in gametic phase linkage disequilibrium, revealing that P. griseola maintains a genetic structure that is consistent with asexual reproduction. The molecular and virulence diversities of P. griseola isolates from Central America imply that using single resistance genes to manage angular leaf spot is inadequate and stacking resistance genes may be necessary to manage the disease effectively.  相似文献   

2.
Virulence on a standard set of 12 common bean differential varieties, DNA sequence of repetitive-elements (Rep-PCR) and random amplified microsatellites (RAMS) were used to assess the genetic variability of 200 Colletotrichum lindemuthianum isolates collected from Andean and Mesoamerican bean varieties and regions. High levels of pathotypic (90 pathotypes) and genetic diversity (0.97) were identified among 200 isolates, revealing that C. lindemuthianum is a highly diverse pathogen. Although a significant number of pathotypes were common to Andean and Mesoamerican regions, many more were only found in the Mesoamerican region. Cluster analysis of virulence and molecular data did not separate isolates into groups that were structured with common bean gene pools. No genetic differentiation (G ST=0.03) was apparent between Andean and Mesoamerican isolates of C. lindemuthianum. The diversity exhibited by C. lindemuthianum does not appear to cluster according to common bean gene pools, and the high diversity found in the Mesoamerican region seems to indicate that C. lindemuthianum originated and was disseminated from this region. Due to the high genetic variation exhibited by C. lindemuthianum, stacking major resistance genes appears to be the best option for developing cultivars with durable anthracnose resistance.  相似文献   

3.
The genetic structure of wild populations of Colletotrichum lindemuthianum was evaluated for virulence and molecular markers. Forty-five isolates were collected from five wild common bean populations located in their South-Andean centre of origin. The five pathogen populations were monomorphic in their ITS regions, but 45 polymorphic markers were identified using RAPDs. Polymorphism for virulence was also observed; 15 pathotypes were characterized on an international set of 12 differentials. A molecular variance analysis ( AMOVA ) showed that a very large part of the total genetic variation was within populations. Statistical analysis showed that there was a weak though significant differentiation among the five populations for the RAPD and virulence markers. A positive and significant correlation was found between geographic distance and the distances from RAPD and virulence data, suggesting migration between adjacent populations along the Argentinian transect. Our results suggest that the Andean wild isolates of C. lindemuthianum do not reflect all the putative diversity found in the isolates from cultivated common bean.  相似文献   

4.
Angular leaf spot caused by Phaeoisariopsis griseola is an economically important disease of beans ( Phaseolus vulgaris ) in southern Africa. The success of local programmes breeding for resistance to this disease depends to a large extent on the genetic variation within the pathogen population. To assess variability within the pathogen, 28 isolates of P. griseola from various localities were compared using isozyme analysis by means of starch gel electrophoresis. Thirteen loci were identified in 10 enzyme systems. Using UPGMA, three electrophoretic types were detected. The most common type included the South African isolates, namely seven from the Mpumalanga and KwaZulu-Natal provinces, respectively, 10 from Malawi, and one from Portugal. Two isolates from Bembeke in Malawi, and one from the Netherlands, differed from the rest. An isolate of Phaeoramularia angolensis , used as an outgroup, differed from the P. griseola isolates in all enzyme systems tested. The high homology of banding patterns among isolates of P. griseola from southern Africa suggests the local population to be uniform.  相似文献   

5.
ABSTRACT Population subdivision of Colletotrichum lindemuthianum, the causal agent of anthracnose, was studied in three regions located in three centers of diversity of its host, Phaseolus vulgaris. Random amplified polymorphic DNA (RAPD) markers, restriction endonuclease analysis of the amplified ribosomal internal transcribed spacer region, and virulence on a set of 12 cultivars were used to assess the genetic diversity of C. lindemuthianum strains isolated in Mexican, Ecuadorian, and Argentinean wild common bean populations. The three regions were significantly differentiated for molecular markers. For these markers, Mexico was the most polymorphic and the most distant from Ecuador and Argentina. The majority of the RAPD alleles present in Ecuador and Argentina were found in Mexico, suggesting that Andean populations have been derived from the Mesoamerican center. Pathogenicity tests on a set of 12 cultivars showed that all but one of the Mexican strains were virulent exclusively on Mesoamerican cultivars. Argentinean strains were virulent preferentially on southern Andes cultivars, and the Ecuadorian strains, except for one strain, were avirulent on all cultivars. These results suggest an adaptation of strains on cultivars of the same geographic origin. Thus, based on molecular and virulence markers, C. lindemuthianum strains isolated from wild common bean populations were divided into three groups corresponding to host gene pools.  相似文献   

6.
ABSTRACT Alternaria spp. were sampled from two rough lemon (RL) and two Minneola tangelo (MIN) groves in a limited geographic area in central Florida to test for host-specialized forms of the pathogen. Isolates of Alternaria spp. were scored for variation at 16 putative random amplified polymorphic DNA (RAPD) loci and for pathogenicity on both hosts. Subpopulations on each host were differentiated genetically and pathogenically, which was consistent with the hypothesis of host specialization. Highly significant genetic differentiation was detected among all four subpopulations (Nei's coefficient of gene differentiation [G(ST)] = 0.292, P = 0.000); most of the differentiation occurred between hosts (G(ST) = 0.278, P = 0.000). Phenograms of qualitative similarities among isolates within subpopulations revealed two or three distinct clusters of isolates within each subpopulation. The majority of isolates sampled from RL were pathogenic on RL and not on MIN, although a few RL isolates were able to induce disease on MIN, and 44% were nonpathogenic on either host. In contrast, isolates from MIN were pathogenic only on MIN, never on RL, and only 3% of the isolates were nonpathogenic. Overall, three genetically distinct clusters of isolates were detected on both hosts. One of the clusters (cluster A) sampled from RL was pathogenic on RL and not on MIN and consisted almost entirely of one RAPD genotype. This cluster also contained two isolates that were 93% similar to the majority genotype but were pathogenic on MIN and not RL. In isolates from MIN, two distinct clusters of isolates were found in one subpopulation (clusters B and C), and three distinct clusters were found in another subpopulation (clusters A, B, and C). Clusters A and B were found on both hosts, while cluster C was limited to MIN. Populations of Alternaria spp. sampled from RL and MIN showed a high degree of host specificity; however, the specificity obscured a high level of genetic variation within subpopulations.  相似文献   

7.
ABSTRACT Genetic variability and population structure of Cercospora sorghi from wild and cultivated sorghum were investigated to gain insight into their potential impact on epidemics of gray leaf spot of sorghum in Africa. Population structure was examined using data derived from amplified fragment length polymorphism (AFLP) of C. sorghi by Nei's test for population differentiation, G(ST), and analysis of molecular variation (AMOVA). Two ecological populations of C. sorghi in Uganda were devoid of population structure (G(ST) = 0.03, small ef, CyrillicF(ST) = 0.01, P = 0.291). AMOVA revealed that genetic variability was due mainly to variations within (99%) rather than between (0.35%) populations, and Nei's genetic distance between the two populations was 0.014. Phenetic analysis based on AFLP data and polymerase chain reaction-restriction fragment length polymorphism analyses of the internal transcribed spacer regions of rDNA and mitochondrial small subunit rDNA separated Cercospora cereal pathogens from dicot pathogens but did not differentiate among C. sorghi isolates from wild and cultivated sorghum. Our results indicate that Ugandan populations of C. sorghi compose one epidemiological unit and suggest that wild sorghum, while not affecting genetic variability of the pathogen population, provides an alternative host for generating additional inoculum.  相似文献   

8.
ABSTRACT A total of 360 Xylella fastidiosa strains were isolated from sweet orange (Citrus sinensis) cv. Pera plants growing in five geographic regions in the Brazilian state of S?o Paulo. The genetic variation of these strains was determined by 15 variable number tandem repeat (VNTR) and 58 random amplified polymorphic DNA (RAPD) markers. The mean values of genetic diversity (H) of X. fastidiosa strains within each geographic region determined by RAPD (H(RAPD)) were substantially lower than H(VNTR) values. H(RAPD) values ranged from 0.00 to 0.095, whereas the H(VNTR) values ranged from 0.024 to 0.285. A highly significant value of Nei's coefficient of gene differentiation (G(ST) = 0.355; P = 0.000) was detected among all five populations. Analysis of the molecular variance (AMOVA) also revealed significant genetic differentiation among regions or populations ( phi(STAT) = 0.810; P< 0.001). In addition, genetic differentiation among subpopulations (plants) within the regions (phi(STAT) = 0.699; P < 0.001) and within each plant (phi(STAT) = 368; P < 0.001) were statistically significant. These high values of genetic differentiation among X. fastidiosa strains from different regions suggest a genetic structure according to region of host origin. However, no apparent correlation between genetic distance and region of origin of populations were supported statistically by Mantel analysis (r = 0.27; P = 0.22).  相似文献   

9.
Angular leaf spot, a disease of common bean produced by Phaeoisariopsis griseola, an imperfect (Deuteromycotina) fungus, causes significant yield losses in Argentina. The development of a strategy to control and/or reduce the impact of P. griseola requires a previous knowledge of the population structure. Therefore, the purpose of this work was to analyze diversity among 45 isolates of P. griseola collected within the production area of common bean in Northwestern Argentina. Pathotypes diversity was determined based on a set of bean differentials and genomic differences between isolates were determined by means of molecular markers. We confirmed that isolates belonging to Middle American and Andean groups coexist in Northwestern Argentina and the level of diversity between them was considerable and of similar level within each group. Even though the number of isolates analyzed was 45, among them 37 were Middle American and only eight were Andean. The number of haplotypes found based on ISSR and RAPD markers were 18 and as expected, they were unrelated with pathotypes. The wild bean species, Phaseolus vulgaris var. aborigineus, showed a high level of tolerance to most pathotypes of P. griseola except 63.63 and 63.23. This together with the fact that none of the bean differentials was resistant to all pathotypes led us to conclude that the range of pathogenic responses might be conditioned by multigenic interactions between the pathogen and the host. Our results not only provided basic information about the diversity of the causative agent of the disease but it will also help to develop cultivars with enhanced tolerance and/or resistance to the disease.  相似文献   

10.
Cai G  Schneider RW 《Phytopathology》2008,98(7):823-829
Random amplified polymorphic DNA (RAPD) and microsatellite-primed polymerase chain reaction (MP-PCR) were used to characterize 164 isolates of Cercospora kikuchii, most of which were collected from Louisiana. Plant tissue (seeds versus leaves), but not host cultivar, had a significant impact on pathogen population differentiation. Cluster analysis showed that the Louisiana population was dominated by a primary lineage (group I) with only a few Louisiana isolates belonging to the minor lineage that also included the non-Louisiana isolates (group II). A previous study showed that isolates could be differentiated according to vegetative compatibility groups (VCGs). However, RAPD and MP-PCR data demonstrated that isolates of C. kikuchii were not generally clustered according to these VCGs. Furthermore, genetic relationships within and between VCGs were examined using sequences of the intergenic spacer region of rDNA. These analyses showed that VCG is not an indicator of evolutionary lineage in this fungus. Our results suggest the likely existence of a cryptically functioning sexual stage in some portion of the C. kikuchii population.  相似文献   

11.
Phytophthora cinnamomi isolates from South Africa and Australia were compared to assess genetic differentiation between the two populations. These two populations were analysed for levels of phenotypic diversity using random amplified polymorphic DNAs (RAPDs) and gene and genotypic diversity using restriction fragment length polymorphisms (RFLPs). Sixteen RAPD markers from four decanucleotide Operon primers and 34 RFLP alleles from 15 putative loci were used. A few isolates from Papua New Guinea known to posses alleles different from Australian isolates were also included for comparative purposes. South African and Australian P. cinnamomi populations were almost identical with an extremely low level of genetic distance between them (Dm=0.003). Common features for the two populations include shared alleles, low levels of phenotypic/genotypic diversity, high clonality, and low observed and expected levels of heterozygosity. Furthermore, relatively high levels of genetic differentiation between mating type populations (Dm South Africa=0.020 and Dm Australia=0.025 respectively), negative fixation indices, and significant deviations from Hardy–Weinberg equilibrium, all provided evidence for the lack of frequent sexual reproduction in both populations. The data strongly suggest that both the South African and Australian P. cinnamomi populations are introduced.  相似文献   

12.
Fifty four isolates of Phaeoisariopsis griseola, the agent of common bean angular leaf spot disease from the Great Lakes Region of Africa, were characterised according to their virulence behaviour and their molecular patterns. Virulence properties were revealed through the inoculation of 29 genotypes of Phaseolus vulgaris, Phaseolus coccineus and Phaseolus polyanthus. Differences in reaction types revealed high variability among these isolates. Most of them, even when collected within the same location, showed differences in their respective reactions on many plant genotypes. For molecular typing, RAPD amplifications were performed for each isolate using five random primers. Isolates with different patterns were collected within one region. Simultaneously, similar molecular patterns were found in isolates collected at different sites. However, the average of molecular similarity, based on the percentages of shared bands for each isolates pair, was higher among isolates collected within one site. No direct correlation between molecular pattern and pathotype was observed.  相似文献   

13.
ABSTRACT A random amplified polymorphic DNA (RAPD) marker directly linked (0.0 cM) with a resistance gene was identified in a snap bean recombinant inbred population (Moncayo x Primo) consisting of 94 F(5:7) recombinant inbred lines that had uniform segregation for disease reaction to Beet curly top virus (BCTV) across three field locations. Resistance was conditioned by a single dominant allele tentatively designated Bct. Seven hundred and fifty decamer primers were screened to obtain the linked RAPD marker that was then converted to a sequence characterized amplified region (SCAR) marker SAS8.1550. The SCAR mapped within a cluster of resistance genes on linkage group B7 of the core map. A survey of 103 BCTV-resistant and -susceptible snap and dry bean genotypes was conducted using SAS8.1550. Results showed that the SCAR would be highly useful for marker-assisted selection of Bct in snap and dry bean originating from the Andean gene pool. Marker-assisted selection for Bct will expedite the development of BCTV-resistant cultivars and minimize the need for cumbersome pathogen tests.  相似文献   

14.
Isolates of Colletotrichum gloeosporioides associated with anthracnose disease on coffee berries in Vietnam were characterized by morphological and molecular methods. Random amplified polymorphic DNA (RAPD) and microsatellite-primered PCR (MP-PCR) analyses were employed to investigate the genetic variation among 38 and 51 isolates of C. gloeosporioides , respectively. According to both methods, the isolates mainly grouped in accordance with geographical origins. Higher genetic variation ( H  = 0·312 and 0·335) in the northern population of C. gloeosporioides than in the southern population ( H  = 0·261 and 0·186), according to the RAPD and MP-PCR markers, respectively, was indicative of a difference between the northern and southern populations. Moderate gene differentiation ( G st = 0·1) between populations from the north and the south was found. However, there was no differentiation between locations within the northern or southern populations, indicating significant gene flow. A four-gamete test indicated a high level of recombination, particularly in the south. The geographic differences may be explained by different histories of coffee cultivation in different parts of Vietnam. The symptoms caused by the Vietnamese isolates on both hypocotyls and green berries were less severe than symptoms caused by the reference CBD (coffee berry disease; Colletotrichum kahawae ) isolates originating from Africa.  相似文献   

15.
ABSTRACT Two isolates of the barley net blotch pathogen (Pyrenophora teres f. teres), one possessing high virulence (0-1) and the other possessing low virulence (15A) on the barley cultivar Harbin, were crossed and the progeny of the mating were isolated. Conidia from cultures of the parent and progeny isolates were used as inoculum to determine the inheritance of virulence in the pathogen. Of the 82 progeny tested, 42 exhibited high virulence and 40 exhibited low virulence on 'Harbin' barley. The data support a model in which a single, major gene controls virulence in P. teres f. teres on this barley cultivar (1:1 ratio; chi(2) = 0.05, P = 0.83). Preparations of DNA were made from parental and progeny isolates, and the DNA was subjected to the random amplified polymorphic DNA (RAPD) technique in a search for molecular genetic markers associated with the virulence phenotype. Five RAPD markers were obtained that were associated in coupling with low virulence. The data indicate that the RAPD technique can be used to tag genetic determinants for virulence in P. teres f. teres.  相似文献   

16.
ABSTRACT Sixty-five isolates of Alternaria alternata were sampled from brown spot lesions on tangerines and mandarins (Citrus reticulata) and tangerine x grapefruit (C. reticulata x C. paradisi) hybrids in the United States, Colombia, Australia, Turkey, South Africa, and Israel to investigate the worldwide phylogeography of the fungus. Genetic variation was scored at 15 putative random amplified polymorphic DNA (RAPD) loci and 465 bp of an endo-polygalacturonase (endo-PG) gene was sequenced for each isolate. Cluster analysis of RAPD genotypes revealed significant differentiation between United State and Colombia isolates and Turkey, South Africa, Israel, and Australia isolates. Sequencing of endo-PG revealed 21 variable sites when the outgroup A. gaisen (AK-toxin-producing pathogen of Japanese pear) was included and 13 variable sites among the sampled isolates. Nucleotide substitutions at 10 of 13 variable sites represented silent mutations when endo-PG was translated in frame. Eight distinct endo-PG haplotypes were found among the sampled isolates and estimation of a phylogeny with endo-PG sequence data revealed three clades, each with strong bootstrap support. The most basal clade (clade 1) was inferred based on its similarity to the outgroup A. gaisen and consisted exclusively of pathogenic isolates from the United States and Colombia. Clade 2 consisted of pathogenic and nonpathogenic isolates from the United States, Australia, South Africa, and Israel and clade 3 contained pathogenic and nonpathogenic isolates from Australia, South Africa, Israel, and Turkey. Quantitative estimates of virulence (disease incidence) were obtained for isolates from the United States, Colombia, South Africa, Israel, and Turkey by spray inoculating detached citrus leaves and counting the number of lesions 24 h after inoculation. Large differences in virulence were detected among isolates within each location and isolates from the United States were significantly more virulent than isolates from other locations. Several isolates from Colombia, South Africa, Israel, and Turkey had low virulence and 8% of all isolates were nonpathogenic. All but one of the nonpathogenic isolates were found in clade 2 of the endo-PG phylogeny, which also included the most highly virulent isolates sampled.  相似文献   

17.
ABSTRACT In order to characterize the genetic variation of the poplar pathogen Mycosphaerella populorum (anamorph Septoria musiva), we have studied seven North American populations using the polymerase chain reaction random amplified polymorphic DNA (RAPD) technique. The fungal populations were sampled in 2001 and 2002 by obtaining 352 isolates from cankers and leaf spots in hybrid poplar plantations and adjacent eastern cottonwood (Populus deltoides). A total of 21 polymorphic RAPD markers were obtained with the six RAPD primers used. A fine-level scale analysis of the genetic structure within the populations revealed that subpopulations sampled on P. deltoides and on hybrid trees were not significantly differentiated. In contrast, analyses performed on the entire data set showed high levels of haplotypic diversity and moderate to high genetic differentiation, with 20% of the expected genetic diversity found at the interpopulation level. Moreover, a high and significant correlation between genetic and geographic distances among populations was found, suggesting isolation by distance of the sampled populations. Although the occurrence of the sexual stage of this fungus remained unclear in field populations, five of the six populations were at gametic equilibrium for RAPD loci, suggesting the occurrence of recombination episodes in Septoria musiva populations. Overall, S. musiva appears to consist of differentiated subpopulations, with both asexual and sexual recombination contributing to the local level of genetic structure.  相似文献   

18.
山东小麦纹枯病菌致病性与遗传分化关系的研究   总被引:4,自引:0,他引:4  
 对山东麦区被鉴定为双核丝核菌的35个菌株进行致病性测定的基础上,选用15个随机引物对上述菌株进行了RAPD分析,共标记出171条DNA片段,其中多态性片段161个,多态率为94.15%。用UPGMA法构建系统树,以遗传距离0.33为阈值,被鉴定为AG-D融合群的33个菌株隶属于同一个RAPD组,而3个未定融合群菌株(WK-6、WK-37和WK-13)均为独立的RAPD组。以遗传距离0.25为阈值,将属于同一个融合群的33个AG-D群菌株划分为7个亚组,说明受试小麦纹枯病菌株间存在丰富的遗传多样性。综合分析受试菌株的致病力测定结果与RAPD分析发现,供试菌株的RAPD组与菌株致病力的强弱无明显的相关性,但少数菌株的致病力强弱与亚RAPD组有一定的相关性。  相似文献   

19.
Bardin  Carlier  & Nicot 《Plant pathology》1999,48(4):531-540
The relative incidence of Erysiphe cichoracearum and Sphaerotheca fuliginea , both agents of powdery mildew of cucurbits, was determined from 275 samples of mildewed leaves of cucurbits collected in 1994 from five regions of France. E. cichoracearum was identified in 9 to 39% of the mildewed leaf samples from four of the regions but was not detected in samples from the Mediterranean island of Corsica. The genetic structure of the French population of E. cichoracearum was examined using RFLPs of the ribosomal internal transcribed spacers amplified by PCR, random amplified polymorphic DNA (RAPD) markers, pathogenicity and mating-type tests. Forty-one isolates, including one from England, were analysed. Cluster analysis from 147 RAPD fragments using 16 primers revealed the existence of three distinct genetic lineages corresponding to three rDNA haplotypes (designated groups A, B and C). Bootstrap, genetic diversity, gametic disequilibrium and private allele analyses supported this differentiation. The genetic differentiation observed in the French population was not related to the geographical origin of the isolates. Group A isolates may be more specialized on melon as, with one exception, they were of race 1 (growth on four of the five melon cultivars tested) in comparison with group B and C isolates, which were of race 0 (growth on IranH only). Thus, the genetic differentiation observed may indicate a host-specialized subdivision within the French population of E. cichoracearum from cucurbits. Gametic disequilibrium analysis among RAPD loci and biological observations suggest that the sexual stage is of minor importance for epidemics of E. cichoracearum on cucurbits.  相似文献   

20.
Sclerotinia sclerotiorum, causal agent of white mould, is the most destructive and widely distributed soilborne pathogen of common bean during the autumn–winter season in Brazil. Nevertheless, little is known about the genetic structure of the pathogen population. Microsatellite (SSR) markers and mycelial compatibility groups (MCGs) were used to characterize 118 isolates collected from 20 bean fields located in the most important growing regions of Minas Gerais State (MG). Additionally, the genetic variability among 10 isolates obtained from a single sclerotium was investigated in 10 different sclerotia. Seventy SSR haplotypes and 14 MCGs were identified among the 118 isolates. The genetic differences within bean growing areas accounted for most of the genetic variation (72%). Despite the relatively high genotypic diversity, the SSR loci were at linkage disequilibrium. Moreover, 70% of the isolates were assigned to only two MCGs, and haplotypes of a given MCG were closely related. The discriminant analysis of principal components revealed five groups. There was strong genetic differentiation between isolates collected in one municipality in southern MG when compared to other regions. Common bean resistance to white mould should be assessed with representative isolates of the five genetic groups and, if possible, of the different MCGs detected in the present study. One to five haplotypes were detected among the 10 isolates obtained from a single sclerotium. Therefore, in order to ensure genetic identity of an isolate, hyphal tip or monoascosporic isolates should be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号