首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Using a combination of experimentation and mathematical modeling, the effects of initial (particulate) inoculum density on the dynamics of disease resulting from primary and secondary infection of wheat by the take-all fungus, Gaeumannomyces graminis var. tritici, were tested. A relatively high inoculum density generated a disease progress curve that rose monotonically toward an asymptote. Reducing the initial inoculum density resulted in a curve that initially was monotonic, rising to a plateau, but which increased sigmoidally to an asymptotic level of disease thereafter. Changes in the infectivity of particulate inoculum over time were examined in a separate experiment. Using a model that incorporated terms for primary and secondary infection, inoculum decay, and host growth, we showed that both disease progress curves were consistent with consecutive phases dominated, respectively, by primary and secondary infection. We examined the spread of disease from a low particulate inoculum density on seminal and adventitious root systems separately. Although seminal roots were affected by consecutive phases of primary and secondary infection, adventitious roots were affected only by secondary infection. We showed that the characteristic features of disease progress in controlled experiments were consistent with field data from crops of winter wheat. We concluded that there is an initial phase of primary infection by G. graminis var. tritici on winter wheat as seminal roots grow through the soil and encounter inoculum, but the rate of primary infection slows progressively as inoculum decays. After the initial phase, there is an acceleration in the rate of secondary infection on both seminal and adventitious roots that is stimulated by the increase in the availability of infected tissue as a source of inoculum and the availability of susceptible tissue for infection.  相似文献   

2.
ABSTRACT Epidemiological modeling, together with parameter estimation to experimental data, was used to examine the contribution of disease-induced root growth to the spread of take-all in wheat. Production of roots from plants grown in the absence of disease was compared with production of those grown in the presence of disease and the precise form of diseaseinduced growth was examined by fitting a mechanistic model to data describing change in the number of infected and susceptible roots over time from a low and a high density of inoculum. During the early phase of the epidemic, diseased plants produced more roots than their noninfected counterparts. However, as the epidemic progressed, the rate of root production for infected plants slowed so that by the end of the epidemic, and depending on inoculum density, infected plants had fewer roots than uninfected plants. The dynamical change in the numbers of infected and susceptible roots over time could only be explained by the mechanistic model when allowance was made for disease-induced root growth. Analysis of the effect of disease-induced root production on the spread of disease using the model suggests that additional roots produced early in the epidemic serve only to reduce the proportion of diseased roots. However, as the epidemic switches from primary to secondary infection, these roots perform an active role in the transmission of disease. Some consequence of disease-induced root growth for field epidemics is discussed.  相似文献   

3.
ABSTRACT Epidemiological modeling combined with parameter estimation of experimental data was used to examine differences in the contribution of disease-induced root production to the spread of take-all on plants of two representative yet contrasting cultivars of winter wheat, Ghengis and Savannah. A mechanistic model, including terms for primary infection, secondary infection, inoculum decay, and intrinsic and disease-induced root growth, was fitted to data describing changes in the numbers of infected and susceptible roots over time at a low or high density of inoculum. Disease progress curves were characterized by consecutive phases of primary and secondary infection. No differences in root growth were detected between cultivars in the absence of disease and root production continued for the duration of the experiment. However, significant differences in disease-induced root production were detected between Savannah and Genghis. In the presence of disease, root production for both cultivars was characterized by stimulation when few roots were infected and inhibition when many roots were infected. At low inoculum density, the transition from stimulation to inhibition occurred when an average of 5.0 and 9.0 roots were infected for Genghis and Savannah, respectively. At high inoculum density, the transition from stimulation to inhibition occurred when an average of 4.5 and 6.7 roots were infected for Genghis and Savannah, respectively. Differences in the rates of primary and secondary infection between Savannah and Genghis also were detected. At a low inoculum density, Genghis was marginally more resistant to secondary infection whereas, at a high density of inoculum, Savannah was marginally more resistant to primary infection. The combined effects of differences in disease-induced root growth and differences in the rates of primary and secondary infection meant that the period of stimulated root production was extended by 7 and 15 days for Savannah at a low and high inoculum density, respectively. The contribution of this form of epidemiological modeling to the better management of take-all is discussed.  相似文献   

4.
Cavity spot of carrot (CCS), one of the most important soilborne diseases of this crop worldwide, is characterized by small sunken elliptical lesions on the taproot caused by a complex of pathogens belonging to the genus Pythium , notably P. violae . In most soilborne diseases the soil is the source of inoculum for primary infections, with diseased plants then providing inoculum for secondary infections (both auto- and alloinfection). Using fragments of CCS lesions to infest soil, it was demonstrated that CCS lesions on carrot residues can cause primary infection of healthy roots. Using a novel soil infestation method, in which an artificially infected carrot root (the donor plant) was placed close to healthy roots (receptor plants) the formation of typical CCS lesions were induced more efficiently than the use of classical soil inoculum and showed that CCS can spread from root to root by alloinfection from transplanted diseased roots. The method also demonstrated the polycyclic nature of a CCS epidemic caused by P. violae in controlled conditions. Secondary infections caused symptoms and reduced root weight as early as two weeks after transplantation of the diseased carrot. This reproducible method may be used for delayed inoculation and for studying the effect of cropping factors and the efficacy of treatments against primary and secondary cavity spot infections.  相似文献   

5.
Schoeny A  Lucas P 《Phytopathology》1999,89(10):954-961
ABSTRACT Take-all, caused by Gaeumannomyces graminis var. tritici, is a damaging disease of wheat that remains difficult to control. The efficacy of an experimental fungicide, applied as a seed treatment, was evaluated in five naturally infested field experiments conducted during three cropping seasons. Plants were sampled and assessed for take-all incidence and severity at different growth stages. Nonlinear models expressing disease variables as a function of degree-days were fitted to the observed data. The incidence equation involved two parameters reflecting the importance of primary and secondary infection cycles. The earliness of infection was identified as an important variable to interpret the effects of the fungicide. In an early epidemic, the fungicide significantly reduced take-all incidence during all or most of the cropping season, whereas in late epidemics, it provided only moderate reductions of incidence. The seed treatment reduced incidence by delaying the primary infection cycle. The fungicide significantly reduced severity during the whole epidemic. It appeared more efficient in limiting root-to-root spread than in slowing down the extension of necrosis on diseased roots.  相似文献   

6.
A compartmental model was developed to describe the progress with time of light leaf spot ( Pyrenopeziza brassicae ) on leaves of winter oilseed rape ( Brassica napus ) during the autumn in the UK. Differential equations described the transition between the four compartments: healthy susceptible leaves, infected symptomless leaves, sporulating symptomless leaves and leaves with necrotic light leaf spot lesions, respectively. The model was fitted to data on the progress of light leaf spot on winter oilseed rape at a single site during the autumn of the 1990–1991 season. Model parameters were used to describe rates of leaf appearance, leaf death, infection by airborne ascospores (primary inoculum) and infection by splash-dispersed conidiospores (secondary inoculum). Infection was dependent on sufficient leaf wetness duration. The model also included delay terms for the latent period between infection and sporulation and the incubation period between infection and the appearance of necrotic light leaf spot lesions. This modified SEIR model formulation gave a reasonable fit to the experimental data. Sensitivity analysis showed that varying the parameter accounting for the rate of infection by ascospores affected the magnitude of the curves after the start of the epidemic, whilst including a parameter for conidiospore infection improved the fit to the data. Use of ascospore counts from different sites and different years showed variation in spore release patterns sufficient to affect model predictions.  相似文献   

7.
Clubroot, caused by Plasmodiophora brassicae, has two infection stages (primary and secondary). Although primary infection occurs in many plant species, secondary infection only continues to completion in susceptible hosts. As part of a larger study of clubroot pathogenesis, secondary zoospores collected from infected root hairs of canola and ryegrass were inoculated onto healthy roots of both plant species. The treatments consisted of all possible combinations of the two plant species and the two sources of inoculum. At 5 days after inoculation, levels of root hair infection were similar and in a range of 50–68% on roots in all of the treatments. Secondary infection was also observed from all of the treatments, with approximately 50% on canola and 40% on ryegrass. The proportion of secondary infection and the number of secondary plasmodia were higher in canola inoculated with zoospores from canola than in ryegrass inoculated with zoospores from ryegrass, with the other combinations intermediate. At 35 days after inoculation, typical clubs developed on 14% of the canola plants inoculated with secondary zoospores from canola, and tiny clubs developed on 16% of the canola plants inoculated with zoospores from ryegrass. Secondary infection occurred in about one-third of ryegrass plants but no clubs developed, regardless of inoculum source. These results indicate that resistance to secondary infection in ryegrass is induced during primary infection. This is the first report that secondary zoospores produced on a nonhost can infect a host and reconfirms that secondary infection can occur in a nonhost.  相似文献   

8.
Fusarium oxysporum f. sp. radicis-lycopersici the causal agent of crown and root rot in tomato comprises two overlapping separate phases: monocyclic and polycyclic. Oversummering inoculum is the source of primary infection (the monocyclic phase) and the spread from plant to plant via root-to-root contact is the source of the secondary infection (the polycyclic phase). In the present work, relationships between initial inoculum density, population dynamics of the pathogen in the root zone of diseased plants, and disease onset were studied. For the monocyclic phase, 55.1% of the variance of disease onset was attributed to the rate of pathogen proliferation in the root zone of plants, and only 12.8% of the variance was attributed to the amount of initial inoculum density. For the polycyclic phase, disease onset was not related to either initial inoculum density or the rate of pathogen proliferation in the root zone. At disease onset, the inoculum density of the pathogen in the root zone of plants infected from oversummering inoculum reached an average of 4.08 log cfu g soil–1. The inoculum density of the pathogen in the root zone of plants infected by their diseased neighbors was 3.23 log cfu g soil–1. A large variation in pathogen proliferation rate in the root zone was found among individual plants, suggesting that differences in the level of soil suppressiveness may occur not only between fields, but even in the same field over short distances.  相似文献   

9.
Point pattern analysis (fitting of the beta-binomial distribution and binary form of power law) was used to describe the spatial pattern of natural take-all epidemics (caused by Gaeumannomyces graminis var. tritici ) on a second consecutive crop of winter wheat in plots under different cropping practices that could have an impact on the quantity and spatial distribution of primary inoculum, and on the spread of the disease. The spatial pattern of take-all was aggregated in 48% of the datasets when disease incidence was assessed at the plant level and in 83% when it was assessed at the root level. Clusters of diseased roots were in general less than 1 m in diameter for crown roots and 1–1·5 m for seminal roots; when present, clusters of diseased plants were 2–2·5 m in diameter. Anisotropy of the spatial pattern was detected and could be linked to soil cultivation. Clusters did not increase in size over the cropping season, but increased spatial heterogeneity of the disease level was observed, corresponding to local disease amplification within clusters. The relative influences of autonomous spread and inoculum dispersal on the size and shape of clusters are discussed.  相似文献   

10.
The incidence of potato pathogens on healthy roots of micropropagated (MP) and seed tuber (ST) plants was examined on successive dates during the growing season in two field experiments. Microplants were grown in a glasshouse for 4–5 weeks in perlite or peal-based substrates, and exposed or not to natural inoculum before planting in the field. The seed tubers originated from stocks of visually clean or moderately blemished tubers and were surface-sterilized or not before planting. Polyscytalum pustulans and Helminthosporium solani only infected roots of ST plants and inoculated MP plants. The incidence of P. pustulans was affected by seed tuber-borne inoculum and, in I year, by the substrate. H. solani was detected infrequently on roots. Rhizoctonia solani was present at low frequencies in most root samples, and more ST than MP plant roots were colonized; there were no substrate effects. In 1 year, increased inoculum levels increased root infection, but only in MP roots. Colletotrichum coccodes occurred at high frequencies and was most common in roots of ST plants. Progeny tubers showed some treatment effects when tested in September and after storage for 6 months, but there were no consistent relationships between root and progeny tuber infection.  相似文献   

11.
The impact of cultivar resistance and inoculum density on the incidence of primary infection of canola root hairs by Plasmodiophora brassicae, the causal agent of clubroot, was assessed by microscopy. The incidence of root hair infection in both a resistant and a susceptible cultivar increased with increasing inoculum density, but was two‐ to threefold higher in the susceptible cultivar; the relationship between root hair infection and inoculum density was also substantially stronger and more consistent in the susceptible cultivar. In the susceptible cultivar, the root hair infection rate peaked between 6 and 8 days after sowing and then declined. In the resistant cultivar, it increased over the 14‐day duration of each study. It appears that examination of root hair infection by microscopy in a bait crop of susceptible canola could serve as a useful tool for estimating P. brassicae inoculum levels in soil. In a separate trial, the relationship between inoculum density and clubroot severity, plant growth parameters, and seed yield was assessed under greenhouse conditions. Inoculum density in the susceptible genotype was strongly and positively correlated with clubroot severity and negatively correlated with plant height and seed yield. In addition, a single cropping cycle of the susceptible cultivar contributed significantly higher levels of resting spores to the soil in a greenhouse test than did a cycle of the resistant cultivar, as assessed by quantitative PCR and microscope analysis.  相似文献   

12.
Green H  Jensen DF 《Phytopathology》2000,90(9):1049-1055
ABSTRACT This study demonstrates that outward growth of mycelium from primary foci through bulk potting mix to roots of adjoining plants can be an important means of spread of damping-off and root rot caused by Pythium ultimum. The use of a rhizobox system, which confines plant roots, enabled us to study the spread of actively growing mycelium between root systems placed at precise distances from each other. In steamed potting mix, hyphae of P. ultimum on average grew 9.6 cm from diseased root tissue compared to 5.3 cm in raw potting mix. The density of mycelium was highest within the first 2 cm from the infected root tissue, decreasing with increasing distances from the roots. Accordingly, the disease on adjacent plants decreased as the distance from infected roots increased. The time required for damping-off of adjacent plants was 3 days slower in raw as compared to steamed potting mix and increased by 2 days for each additional centimeter between the rhizoboxes. The presence of Trichoderma harzianum diminished the production of secondary inoculum and reduced the ability of P. ultimum hyphae to extend through bulk potting mix. In conclusion, the concentration of the primary inoculum, the plant density, the distance separating diseased from healthy roots, the resident microflora, and the presence of an antagonist were shown to be important factors affecting disease spread by mycelial growth.  相似文献   

13.
ABSTRACT Epidemiological investigations were performed in a 3-ha maritime pine (Pinus pinaster) plantation established on a site heavily infested by Armillaria ostoyae. Geostatistics were used to examine the density and the distribution of the initial inoculum. Disease dynamics were monitored for 17 years after planting. On the whole site, the cumulative mortality rate reached 35% over this period, plateauing at 12 years. Disease progress curves differed according to the density of the initial inoculum, although in all the cases, the Gompertz model described the epidemics well. The epidemiological contributions of both primary (initially colonized stumps) and secondary inoculum (newly dead pines) were evaluated by analyzing their spatial relation to annual mortality. Newly dead pines acted as secondary inoculum from year 3 and their role increased with time. When the initial inoculum density was low, the contribution of secondary inoculum to epidemic development increased faster and halted sooner than when the density of primary inoculum was high. Regardless of its density, the primary inoculum acted throughout the dynamic phase of the epidemic. When the inoculum density was low, the probability of mortality during the first 6 years of the epidemic depended on the tree distance from the nearest stumps colonized by Armillaria sp. When the inoculum density was high, the probability of mortality was higher and not related to the distance between trees and colonized stumps.  相似文献   

14.
15.
Field isolates ( n  = 144) of the wheat take-all fungus Gaeumannomyces graminis var. tritici ( Ggt ) were tested for sensitivity to silthiofam, a take-all-specific fungicide used as a seed treatment, and identified as A- or B-type by PCR–RFLP analysis of nuclear rDNA. A possible association was identified between polymorphisms in ITS2 of the nuclear rDNA and sensitivity to silthiofam. A Ggt -specific PCR assay was developed which simultaneously identified isolates of Ggt as A- or B-type, based on the polymorphisms in the nuclear rDNA. A highly significant correlation between Ggt type using the PCR assay and sensitivity to silthiofam was demonstrated in a collection of 358 isolates from three field experiments designed to test the effects of seed-treatment fungicides on take-all and Ggt populations in winter wheat. In one experiment the percentages of silthiofam-sensitive and B-type isolates were significantly less in populations from plots sown with silthiofam-treated seed in two consecutive years than in populations from plots sown with nontreated seed. However, silthiofam still provided a significant amount of control of take-all. The natural occurrence of fungicide-insensitive isolates, up to about 30% in soils in which the fungicide had never been used, is unusual. The new PCR assay provides a useful tool for studying the population structure of Ggt , and may provide a novel method for assessing the incidence of insensitivity to silthiofam (the target site for which has not yet been identified) in field populations of Ggt .  相似文献   

16.
ABSTRACT Wheat was assessed at four crop growth stages for take-all (Gaeumannomyces graminis var. tritici) in a series of field trials that studied the effects of five wheat management practices: sowing date, plant density, nitrogen fertilizer dose and form, and removal/burial of cereal straw. An equation expressing disease level as a function of degree days was fitted to the observed disease levels. This equation was based on take-all epidemiology and depended on two parameters reflecting the importance of the primary and secondary infection cycles, respectively. Early sowing always increased disease frequency via primary infection cycle; its influence on the secondary cycle was variable. Primary infection and earliness of disease onset were increased by high density; however, at mid-season take-all was positively correlated to the root number per plant, which was itself negatively correlated to plant density. At late stages of development, neither plant density nor root number per plant had any influence on disease. A high nitrogen dose increased both take-all on seminal roots and severity of primary infection cycle but decreased take-all on nodal roots and secondary infection cycle. Ammonium (versus ammonium nitrate) fertilizer always decreased disease levels and infection cycles, whereas straw treatment (burial versus removal of straw from the previous cereal crop) had no influence.  相似文献   

17.
Epidemics of the splash-dispersed pathogenic fungus Diaporthe adunca on its host, the perennial herb Plantago lanceolata , were followed during two consecutive years in transects at roadsides in the Netherlands. Epidemics of D. adunca were also studied on clones of a susceptible and a partially resistant genotype of P. lanceolata grown either in a pure stand or in a 1:1 mixture in small plots in the garden. The epidemics in the natural and experimental populations could be adequately described by logistic and Gompertz models, but large differences were found in final disease levels and relative growth rates. The effect of partial resistance on the epidemic in the mixture was less than in a pure stand, probably due to the provision of inoculum from the highly diseased susceptible genotype to the partially resistant genotype. In the garden focal and wind-direction effects were seen. In the natural populations the epidemics developed from numerous primary infected scapes making foci and wind-directions effects less conspicuous.  相似文献   

18.
Septoria tritici blotch (STB), caused by Mycosphaerella graminicola, is the most prevalent disease of wheat worldwide. Primary inoculum and the early stages of STB epidemics are still not fully understood and deserve attention for improving management strategies. The inoculum build‐up and overseasoning involves various fungal structures (ascospores, pycnidiospores, mycelium) and plant material (wheat seeds, stubble and debris; wheat volunteers; other grasses). Their respective importance is assessed in this review. Among the mechanisms involved in the early stages of epidemics and in the year‐to‐year disease transmission, infection by ascospores wind‐dispersed from either distant or local infected wheat debris is the most significant. Nevertheless, infection by pycnidiospores splash‐dispersed either from neighbouring wheat debris or from senescent basal leaves has also been inferred from indirect evidence. Mycosphaerella graminicola has rarely been isolated from seeds so that infected seed, although suspected as a source of primary inoculum for a long time, is considered as an epidemiologically anecdotal source. Mycosphaerella graminicola can infect a few grasses other than wheat but the function of these grasses as alternative hosts in natural conditions remains unclear. Additionally, wheat volunteers are suspected to be sources of STB inoculum for new crops. This body of evidence is summarized in a spatio‐temporal representation of a STB epidemic aimed at highlighting the nature, sources and release of inoculum in the early stages of the epidemic.  相似文献   

19.
以郑单958和鲁单981为研究对象,进行水培分根试验,在正常供水和水分胁迫条件下,分别以均匀低浓度硝酸盐处理主根和种子根(LPR-LSR)、局部高浓度硝酸盐处理主根(HPR-LSR)和局部高浓度硝酸盐处理种子根(LPR-HSR),测定分析根系形态、生物量以及氮含量。结果表明:与氮低效鲁单981相比,氮高效郑单958具有较高的主根根长、根表面积、根系生物量、地上部生物量和氮累积量。水分胁迫条件下,郑单958和鲁单981的主根的根长、根表面积、根体积、地上部生物量和氮累积量总体上均低于正常水分条件。玉米主根和种子根对局部高浓度硝酸盐的反应存在差异。与均匀低浓度硝酸盐处理相比,局部高浓度硝酸盐处理促进正常水分条件下主根和种子根根系的生长,尤其是根长和根系表面积;在正常水分条件下,主根根长和根系表面积增加幅度范围为6.8%~27.3%和1.9%~21.9%,除HPR-LSR处理条件下的郑单958外,种子根根长和根系表面积增加幅度范围为30.4%~92.7%和10.5%~135.1%;在水分胁迫条件下,主根根长和表面积增加幅度范围为24.6%~152.9%和62.1%~229.9%,然而种子根根长降低了10.0%~29.9%,表明水分胁迫会影响种子根对高浓度硝酸盐的响应。除水分胁迫条件下LPR-HSR处理外,局部高浓度处理可同时增加两侧根系的生物量和氮累积量。无论是正常供水还是水分胁迫,与LPR-LSR处理相比,局部高浓度硝酸盐供应均能够增加地上部生物量以及氮累积量,在LPR-HSR处理条件下,增加幅度范围分别在35.0% ~107.9%和162.9%~291.1%,在HPR-LSR处理条件下分别为56.7%~109.4%和204.1%~377.0%,HPR-LSR处理条件下增加幅度较大,表明在氮素非均匀分布环境中,当主根处于高浓度硝酸盐区域时将会更显著促进生物量的增加和氮累积。  相似文献   

20.
ABSTRACT The effect of components of primary inoculum dispersal in soil on the temporal dynamics of Phytophthora blight epidemics in bell pepper was evaluated in field and growth-chamber experiments. Phytophthora capsici may potentially be dispersed by one of several mechanisms in the soil, including inoculum movement to roots, root growth to inoculum, and root-to-root spread. Individual components of primary inoculum dispersal were manipulated in field plots by introducing (i) sporangia and mycelia directly in soil so that all three mechanisms of dispersal were possible, (ii) a plant with sporulating lesions on the soil surface in a plastic polyvinyl chloride (PVC) tube so inoculum movement to roots was possible, (iii) a wax-encased peat pot containing sporangia and mycelia in soil so root growth to inoculum was possible, (iv) a wax-encased peat pot containing infected roots in soil so root-to-root spread was possible, (v) noninfested V8 vermiculite media into soil directly as a control, or (vi) wax-encased noninfested soil as a control. In 1995 and 1996, final incidence of disease was highest in plots where sporangia and mycelia were buried directly in soil and all mechanisms of dispersal were operative (60 and 32%) and where infected plants were placed in PVC tubes on the soil surface and inoculum movement to roots occurred with rainfall (89 and 23%). Disease onset was delayed in 1995 and 1996, and final incidence was lower in plants in plots where wax-encased sporangia (6 and 22%) or wax-encased infected roots (22%) were buried in soil and root growth to inoculum or root-to-root spread occurred. Incidence of root infections was higher over time in plots where inoculum moved to roots or all mechanisms of dispersal were possible. In growth-chamber studies, ultimately all plants became diseased regardless of the dispersal mechanism of primary inoculum, but disease onset was delayed when plant roots had to grow through a wax layer to inoculum or infected roots in tension funnels that contained small volumes of soil. Our data from both field and growth-chamber studies demonstrate that the mechanism of dispersal of the primary inoculum in soil can have large effects on the temporal dynamics of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号