首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zucchini squash is host to Cucurbit yellow stunting disorder virus (CYSDV), a member of the genus Crinivirus, and Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, both transmitted by the whitefly Bemisia tabaci. Field observations suggest the appearance of new symptoms observed on leaves of zucchini squash crops when both viruses were present. When infected during controlled experiments with CYSDV only, zucchini plants showed no obvious symptoms and the virus titer decreased between 15 and 45 days postinoculation (dpi), after which it was no longer detected. CVYV caused inconspicuous symptoms restricted to vein clearing on some of the apical leaves and the virus accumulated progressively between 15 and 60 dpi. Similar accumulations of virus followed single inoculations with the potyvirus Zucchini yellow mosaic virus (ZYMV) and plants showed severe stunting, leaf deformation, and mosaic yellowing. However, in mixed infections with CYSDV and CVYV, intermediate leaves showed chlorotic mottling which evolved later to rolling, brittleness, and complete yellowing of the leaf lamina, with exception of the veins. No consistent alteration of CVYV accumulation was detected but the amounts of CYSDV increased ≈100-fold and remained detectable at 60 dpi. Such synergistic effects on the titer of the crinivirus and symptom expression were not observed when co-infected with ZYMV.  相似文献   

2.
3.
尤毅  李华平  谢大森 《植物保护》2016,42(2):182-186
本研究在我国主要冬瓜产区采集具有典型病毒病症状的病叶材料105份,根据葫芦科作物上常见的5种病毒病原的CP基因设计特异性引物,对105份待检冬瓜材料进行RT-PCR检测。检测结果表明:5对特异引物可分别在105份待检材料的95份中检测到小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)、西瓜花叶病毒(Watermelon mosaic virus,WMV)、黄瓜花叶病毒(Cucumber mosaic virus,CMV)、番木瓜环斑病毒(Papaya ringspot virus,PRSV)4种病毒,未检测到南瓜花叶病毒(Squash mosaic virus,SqMV);并且发现不同的冬瓜主产区致病的病毒种类有较大差异;同时还发现,在这些待检样品中4种病毒复合侵染现象较普遍,其中以PRSV与WMV组合最常见,占复合侵染现象的31.25%;未发现有4种病毒复合侵染。  相似文献   

4.
A selection of cucumber mosaic virus (CMV) subgroup I strains originating from Asia and Fny-CMV isolated in USA were studied for their interaction with tomato plants. All strains caused mosaic, fernleaf expression and stunting of tomato plants. Symptom expression was relatively mild after infection with Fny-CMV, T-CMV, Le-CMV and MB-CMV, whereas strains PRC-CMV, NT-CMV and K-CMV caused more severe symptoms. Biologically active clones of NT-CMV RNAs 2 and 3 were generated to construct pseudorecombinant viruses with Fny-CMV to map the symptom determining RNA. The pseudorecombinant FNF-CMV (RNAs 1 and 3 from Fny-CMV, RNA 2 from NT-CMV) showed a similar phenotype on tomatoes to those caused by NT-CMV, whereas FFN-CMV (RNAs 1 and 2 from Fny-CMV, RNA 3 from NT-CMV) induced symptoms comparable to Fny-CMV. The data indicate that CMV RNA 2 of NT-CMV is involved in the induction of severe symptoms in tomato plants.  相似文献   

5.
Zucchini yellow mosaic virus   总被引:24,自引:0,他引:24  
Zucchini yellow mosaic potyvirus (ZYMV), first isolated in Italy in 1973, described in 1981, and then identified in all continents within a decade, is one of the most economically important viruses of cucurbit crops. It is efficiently aphid-transmitted in a nonpersistent manner and it is also seed-borne in zucchini squash, which could have contributed to its rapid spread worldwide. Biological variability has been observed among ZYMV isolates, concerning host range, symptomatology and aphid transmissibility. More recent studies also revealed a serological and molecular variability. The survival of ZYMV in areas where cucurbits are not grown throughout the year remains to be elucidated, because very few natural over-wintering hosts have been identified so far. Partial control of ZYMV can be achieved by limiting transmission of the virus to the crops by aphids, using adapted cultural practices. Cross-protection with a mild strain has been shown to be effective against most ZYMV isolates. Resistance genes found in cucurbit germplasms are currently being introduced into cultivars with good agronomical characteristics. Pathogen-derived resistance strategies using the expression of ZYMV genes in transgenic plants have also been developed and appear promising. Nevertheless, the high biological variability of ZYMV justifies a careful evaluation of the deployment of genetic control strategies in order to increase their durability.  相似文献   

6.
ABSTRACT Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of "resistant" zucchini squash (C. pepo) F(1) hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.  相似文献   

7.
8.
 根据5种病毒小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)、西瓜花叶病毒(Watermelon mosaic virus,WMV)、烟草花叶病毒(Tobacco mosaic virus,TMV)、南瓜花叶病毒(Squash mosaic virus,SqMV)和黄瓜花叶病毒(Cucumber mosaic virus,CMV)的核苷酸保守区序列,设计特异性引物对,从影响多重RT-PCR (mRT-PCR)扩增的引物浓度、Mg2+浓度、Taq DNA聚合酶浓度、dNTPs浓度、退火温度等方面进行反应体系的优化,建立了一种能够同时检测ZYMV、WMV、TMV、SqMV和CMV的多重RT-PCR技术体系,并进行了实际应用。在一个体系中对上述5种病毒复合侵染的西瓜材料进行多重RT-PCR扩增,得到与试验设计相符的5条特异性条带,依次是542、485、410、354和293bp。该体系实现了对侵染西瓜的5种病毒的同时检测,极大地提高了检测效率,降低了检测成本,体现了多重RT-PCR的优越性。  相似文献   

9.
甘肃省南瓜及西葫芦小西葫芦黄花叶病毒病鉴定   总被引:1,自引:0,他引:1  
文朝慧  刘雅莉 《植物保护》2010,36(4):120-122
利用双抗夹心酶联免疫吸附测定(DAS-ELISA)的方法对甘肃出入境南瓜、西葫芦种子及采自河西地区显症病株叶片进行检测,在种子及病叶组织中均检测到ZYMV病毒,其中南瓜种子带毒批次占12.5%,西葫芦种子带毒批次占11.8%。根据已报道的小西葫芦黄花叶病毒(Zucchini yellow mosaic virus)基因组核苷酸序列,设计引物扩增其外壳蛋白(CP)基因,以ELISA阳性种子或病叶组织总RNA为模板,进行RT-PCR扩增,对预期大小的扩增产物进行测序,结果表明扩增获得的核苷酸序列与世界各地的ZYMV分离物CP基因具有高度一致性,综合ELISA检测和RT-PCR的结果,确定南瓜、西葫芦种子可携带ZYMV,且ZYMV是侵染甘肃瓜类作物的重要病毒种类。  相似文献   

10.
A study was conducted to better understand the population structure of Zucchini yellow mosaic virus (ZYMV), a severe virus affecting cucurbit crops worldwide, in Tunisia and to estimate whether the use of resistant cultivars may provide durable control. Analysis of the polymerase and coat protein (NIb‐CP) partial sequences of 83 isolates collected in the three main cucurbit‐growing areas in Tunisia showed that ZYMV grouped into two distinct clusters within ZYMV molecular group A. An important variability was observed in the MREK motif of the P3 protein, a motif associated with tolerance breaking in ZYMV‐tolerant zucchini squash cultivars. Interestingly, significant differences were found in the distribution of the MREK variants in the two clusters defined by the partial NIb‐CP sequences, MREK and MKEK sequences being more common in cluster 1 and cluster 2, respectively. When combining NIb‐CP and P3 sequence information, ZYMV molecular variability was shown to be significantly higher in the Cap Bon region than in the Bizerte area. An important biological variability was observed in a subset of 23 isolates regarding symptomatology in susceptible or resistant cucurbits. Some isolates overcame ZYMV tolerance or resistance in zucchini squash and melon, but not in cucumber. Three serotypes were differentiated using a set of 13 monoclonal antibodies (MAbs). Seven parameters characterizing the 23 isolates, including molecular, serological and biological properties, were used for a multiple component analysis (MCA). This analysis revealed that symptom intensity of a given isolate was similar in different susceptible cucurbit hosts, suggesting similar degrees of aggressiveness in different hosts.  相似文献   

11.
Field surveys were carried out in the main vegetable-growing areas of Western and Central Albania to evaluate the sanitary status of open-field and protected cultivations of capsicum, tomato, potato, watermelon, cucumber, courgette, aubergine, lettuce, cabbage, chicory, leek and celery. The following viruses were detected: Alfalfa mosaic alfamovirus (AMV), Cucumber mosaic cucumovirus (CMV), Potato Y potyvirus (PVY), Tomato spotted wilt tospovirus (TSWV) and Watermelon mosaic potyvirus 2 (WMV-2). The virus found most frequently was CMV and all the isolates identified were of subgroup IA. AMV was also detected in several areas and all isolates were of subgroup II, suggesting a French origin. Finally, at the time of this survey, TSWV infections appeared to be moderately relevant and absent in protected crops. This is the first documented record of AMV, CMV, PVY, TSWV and WMV-2 in Albania. No infection by Tomato yellow leaf curl begomovirus (TYLCV) or Zucchini yellow mosaic potyvirus (ZYMV) was detected during this survey.  相似文献   

12.
两种葫芦科病毒的分子检测和致病性研究   总被引:16,自引:2,他引:14  
 小西葫芦黄化花叶病毒(ZYMV)和黄瓜花叶病毒(CMV)是浙江及其周边地区侵染葫芦科植物最主要的病毒种类。本文通过RT-PCR和基因克隆,获得了侵染南瓜的CMV杭州分离物(HZ01S10)的3'端序列,通过CP氨基酸序列同源性分析,确定其属于CMV亚组I;分别以32P标记的ZYMV和CMV基因组cDNA作为探针,用RNA点杂交方法定点检测了浙江地区自然感病的葫芦科作物中以上2种病毒的发生情况。ZYMV和CMV在葫芦科作物上的发生表现出显著的季节性差异:夏季CMV发生普遍,只有部分南瓜和甜瓜感染ZYMV;ZYMV则主要发生在秋季,同一时期未检测到CMV。此外,幼苗期接种试验显示:以上2种病毒对西葫芦(早青一代)、丝瓜(中长)、黄瓜(津绿4号)的致病性存在明显差异,供试西葫芦对ZYMV比较敏感,供试丝瓜对CMV更敏感,而供试黄瓜品种对以上2种病毒均表现抗病。复合侵染在丝瓜和西葫芦上加重病害发生程度。  相似文献   

13.
14.
 调查发现河南省开封市祥符区和郑州市中牟县西瓜田病毒病严重发生,症状表现为叶片黄化、蕨叶、皱缩、卷曲,枝梢翘起,果实变小和瓜纹不清。为明确其病毒种类,通过小RNA测序及生物信息学分析发现采集的西瓜样本中存在8种病毒。其中包括5种已知病毒:小西葫芦黄花叶病毒(Zucchini yellow mosaic virus, ZYMV)、甜瓜蚜传黄化病毒(Melon aphid-borne yellows virus, MABYV)、西瓜花叶病毒(Watermelon mosaic virus, WMV)、黄瓜绿斑驳花叶病毒(Cucumber green mottle mo-saic virus, CGMMV)和西瓜隐潜病毒(Citrullus lanatus cryptic virus, CiLCV);3种为新检出的RNA病毒:西瓜病毒A(Watermelon virus A, WVA)、西瓜皱叶相关病毒1号(Watermelon crinkle leaf-associated virus 1, WCLaV-1)和西瓜皱叶相关病毒2号(Watermelon crinkle leaf-associated virus 2, WCLaV-2)。RT-PCR检测田间66个西瓜标样发现,WMV、CiLCV和ZYMV是侵染两地西瓜的主要病毒,其阳性检出率分别为61%、56%和52%,两种及以上病毒复合侵染的比率达68%。  相似文献   

15.
Gal-On A 《Phytopathology》2000,90(5):467-473
Sequence comparison had previously shown three amino acid changes in conserved motifs in the 455-amino acid sequence of the helper component-protease (HC-Pro) between a severe field strain of Zucchini yellow mosaic virus (ZYMV-NAT) and a mild field strain of ZYMV (ZYMV-WK). In this study, exchange of fragments and site-directed mutagenesis within the HC-Pro gene in an infectious clone of ZYMV enabled the effects of the mutations on symptom expression to be mapped. The substitution of Ile for Arg at position 180 in the conserved motif Phe-Arg-Asn-Lys (FRNK) of potyviruses was found to affect symptom expression. Infection of cucurbits with the engineered ZYMV (ZYMV-AG) that contained this mutation caused a dramatic symptom change from severe to mild in squash and to a symptom-free appearance in cucumber, melon, and watermelon. The Ile to Arg mutation was found to be stable, and no revertant virus was found after several passages through plants after long incubation periods. The AG strain was detected 4 days postinoculation and accumulated in cucurbits to a level and with kinetics similar to that of the wild-type ZYMV-AT strain. Cucurbit plants infected with the AG strain were protected against infection by the severe strain.  相似文献   

16.
A virus disease causing severe mosaic in melon (the melon isolate) was identified as a strain of zucchini yellow mosaic virus (ZYMV). Identification was based on host range, aphid transmissibility, electron microscopy, and serological tests. The virus was recovered from all cultivated cucurbits in Jordan and from naturally infected Moluccella laevis. It was seed-transmitted in Ranunculus sardous. Host-range comparison showed that the melon isolate and a French isolate belong to a different biotype group from a Connecticut isolate (ZYMV-CT); this was confirmed by indirect ELISA. During 1987–1988. ZYMV appeared to be the predominant virus affecting cucurbits.  相似文献   

17.
Characterization and occurrence of Zucchini Yellow Mosaic Virus in Sudan   总被引:1,自引:0,他引:1  
Zucchini yellow mosaic potyvirus (ZYMV) was isolated in 1993 from a squash plant ( Cucurbita pepo cv. Eskandrani) showing severe leaf and fruit distortions, collected in the Gezira region (Sudan). This isolate (ZYMV-Su) was found to be very closely serologically related if not identical to the type strain from Italy. The host range was mostly limited to Cucurbitaceae but systemic infection was found to occur on sesame ( Sesamum indicum ), an important cultivated crop in Sudan. ZYMV-Su induced mosaic symptoms on the resistant melon accession PI 414723, indicating that it belongs to pathotype 2, but did not cause wilting of melon cv. Doublon. ZYMV-Su was efficiently transmitted by Myzus persicae and Aphis gossypii in a non-persistent manner. Surveys conducted from 1993 to 1995 revealed that ZYMV occurred in the major cucurbit growing areas in Sudan, in a diversity of crops and agroecosystems.  相似文献   

18.
 西瓜花叶病毒(watermelon mosaic virus,WMV)是危害我国葫芦科作物生产的重要病原。培育和种植抗病品种是防治病毒病最经济有效的措施。本研究利用RT-PCR和血清学方法在表现环斑症状的西葫芦果实上检测到WMV,未检测到番木瓜环斑病毒(papaya ringspot virus,PRSV)。接种WMV侵染性克隆到西葫芦品种绿源冬宝,果实表面产生环斑症状,表明WMV是引起西葫芦果实表面环斑症状的重要病原。利用间接ELISA方法对山东泰安的西瓜、黄瓜、甜瓜、西葫芦和南瓜等46个样品检测发现33个样品表现WMV血清学阳性(检出率71.74%),薛庄采集的带有环斑症状的西葫芦均检测到WMV。对山东省81份葫芦科作物种质资源抗WMV鉴定发现西葫芦品种万盛丰宝、盛丰金珠表现中抗(MR);西瓜品种绿宝新秀和浪潮一号表现中抗(MR);甜瓜品种黄皮面瓜表现抗病(R);黄瓜品种星君贝贝表现中抗(MR);南瓜品种爱维80南瓜表现高抗(HR),蜜本南瓜、传统蜜本南瓜、七叶早南瓜、玲珑二号和绿贝贝迷你南瓜等5个品种表现抗病(R);瓠瓜品种均表现为感病(S)。研究结果对合理布局葫芦科作物品种防控WMV具有重要意义。  相似文献   

19.
Zucchini yellow mosaic virus (ZYMV) is the most prevalent virus in cucurbits in Syria. Two Syrian ZYMV isolates, SYZY-1 and SYZY-3, collected from a courgette field in 2006 were characterized using molecular and biological means for the first time. These isolates showed biological diversity with regard to their pathogenicity and symptoms. SYZY-1 was more aggressive in cucurbits, but could not induce any infection in Fabaceae. On the contrary, SYZY-3 could not infect cucumber and melon plants, induced milder symptoms in courgette and watermelon but induced local and occasional systemic infection in Fabaceae tested. Nonetheless, according to their molecular characteristics, SYZY-1 and SYZY-3 were closely related. The SYZY-1 CP nucleotide and amino acid sequences had similarity of 99.5% and 100% with those of SYZY-3, respectively. The high similarity of the CP nucleotide sequences of SYZY-1 and SYZY-3 with that of a ZYMV isolate from Germany suggests a common origin. Adaptation to different hosts might have caused the variable biological properties of these Syrian ZYMV isolates.  相似文献   

20.
Symptom expression and levels of the ipomovirus Cucumber vein yellowing virus (CVYV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV) were compared in greenhouse cucumbers in single and mixed infections. Results were contrasted with those obtained for plants infected with the potyvirus Zucchini yellow mosaic virus (ZYMV) in single and in mixed infections with either CVYV or CYSDV. Cucumber showed leaf symptoms of each co‐infecting virus, except for the combination of CYSDV with ZYMV, where the typical CYSDV‐like symptoms of interveinal leaf yellowing were inconspicuous or absent. The progression of CVYV as quantified by real‐time RT‐PCR was similar in plants with single infections and in mixed infection with CYSDV between 15 and 60 days post‐inoculation (dpi). However, CYSDV was detected at significantly enhanced levels in plants when co‐infected with CVYV but not when co‐infected with ZYMV. In the latter case, ZYMV levels were reduced when compared with single infections. During mixed infections of ZYMV and CVYV, the titre levels of the ipomovirus were significantly lower when compared with single infections. Cucumber had reduced plant height, internode length, dry weight and fruit yield, positively correlated with the titre levels of CVYV and not of CYSDV during mixed infections. It is concluded that co‐infections with CVYV enhance the titre of CYSDV, which could have epidemiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号