首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The distribution of egg and larvae of mackerel, horse mackerel, sardine, hake, megrim, blue whiting and anchovy along the European Atlantic waters (south Portugal to Scotland) during 1998 is described. Time of the year, sea surface temperature and bottom depth are used to define the spawning habitat of the different species. Mackerel, horse mackerel, and sardine eggs and larvae presented the widest distribution, whereas megrim and anchovy showed a limited distribution, restricted to the Celtic Sea and the Bay of Biscay respectively. Correspondingly mackerel, horse mackerel and sardine showed the highest aggregation indices. Blue whiting larvae were found at the lowest temperatures, whereas anchovy eggs and larvae were found in the warmest waters. The analysis is a basis for evaluation of ongoing changes in the pelagic ecosystem of the north‐east Atlantic.  相似文献   

3.
In this study we developed and utilized a complex model approach to investigate the impact of stage‐specific transport processes on the development and spatial distribution of brown shrimp (Crangon crangon) post‐larvae and juveniles in the German Bight. First, we focused on drift processes during the pelagic larval stage by coupling an individual‐based model for egg and larval development ‘off‐line’ to a 3D hydrodynamic model utilizing the Lagrangian method. Secondly, we investigated tidal‐induced transport processes after juvenile settlement. To determine the tidal cycle, the model coupling was accomplished ‘on‐line’ by resolving the individual‐based model and hydrodynamic model with the same time step. The vertical migration of juveniles, a prerequisite for the selective tidal stream transport (STST), was modelled as a sub‐grid scale physical process (balance of forces: gravitation, buoyancy, Stoke’s friction and dynamic uplift) and considered complex particle dynamics. We applied the model to test temperature and salinity cues as possible tidal indicators utilized by juvenile brown shrimp. Our results indicated that transport processes could significantly change the timing and spatial distribution of post‐larval abundance. We also showed that the small‐scale hydrodynamic forcing acting on the bodies of juvenile brown shrimps was sufficient to account for the vertical migration required to use STST. For both investigated tidal cues STST performing juvenile brown shrimp were transported on‐shore. A faster and more continuous STST was calculated for the salinity cue, resulting in larger abundances of brown shrimp in estuarine areas.  相似文献   

4.
The beach‐seine fishery is a commercial fishing activity on the Portuguese coast, with reports dating as far back as the early 15th century. The main target species of this fishery are small pelagic fish such as Atlantic chub mackerel, Atlantic horse mackerel and sardine. To identify the best conditions for fishing the target species, catches of beach seine (2007–2017) were used and generalized linear models were applied, using a binomial and gamma distributions. The logistic model explained between 36.3% and 45.7% of the catches variability; the gamma model explained 9.1% and 46.9% of the catches variability, being month and wind direction the best covariates for the occurrence and/or abundance of the three small pelagic fishes in analysis. If the effort is directed to the days that meet the conditions found for each species (sardine: between May and October, wind NW, daytime; Atlantic horse mackerel: May, NW/NE wind, 800 m from the coastline; Atlantic chub mackerel: from July to August, NW moderate wind), a reduction in bycatch and discards can be achieved. This approach can have a positive economic and social impact, since it provides information for turning fisheries more efficient.  相似文献   

5.
Mackerel (Scomber scombrus) is one of the ecologically and economically most important fish species in the Atlantic. Its recruitment has, for unknown reasons, been exceptional from 1998 to 2012. The majority (75%) of the survivors in the first winter were found north of an oceanographic division at approximately 52°N, despite the fact that mackerel spawns over a wide range of latitudes. Multivariate time series modelling of survivor abundance in the north revealed a significant correlation with the abundance of copepodites (stage I–IV) of Calanus sp. in the spawning season (April to June). The copepodites were a mix of C. helgolandicus (dominating) and C. finmarchicus. The growth of mackerel larvae is known to be positively related to the availability of nauplii and copopodites of preferred prey species, namely, large calanoid copepod species such as Calanus. The statistical relationship between mackerel survivors and abundance of Calanus, therefore, most likely, reflected a causal relationship: high availability of Calanus probably reduced starvation, stage‐specific predation and cannibalism (owing to prey switching). The effects of other abundant, but less preferred zooplankton taxa, (Acartia sp., Branchiopoda spp. and Echinodermata spp. larvae), as well as stock size, temperature and wind‐induced turbulence were not found to be significant. However, stock size was retained in the final model because of a significant interaction with Calanus in oceanic areas west of the North European continental shelf. This was suggested to be a consequence of a density driven expansion of the spawning area that increased the overlap between early life stages of mackerel and food (Calanus) in new areas.  相似文献   

6.
We investigate the effect of strong meteorological perturbations in early spring on the success of mackerel (Scomber scombrus) recruitment in the N/NW Iberian area (southern Bay of Biscay) for the period 1999–2008. In 2000, the year of the most pronounced recruitment failure on record, two consecutive multidisciplinary surveys sampled hydrographic conditions and mackerel eggs, larvae and post‐larvae over the main mackerel spawning grounds of the north and northwest coast of the Iberian Peninsula. Analysis of egg and larval abundance and birthdates based on the otoliths of mackerel juveniles caught between July and October 2000 showed that there were no survivors from the early spring spawns, indicating a massive loss of early spawning effort. Moreover, the abundance of 1‐year‐old mackerel estimated from an acoustic survey carried out in 2001 was the lowest observed within the 1999–2008 time series. This low or null survival from the early spawns in 2000 could be due to the meteorological and oceanographic conditions of that spring, in particular two storm events in April after a relatively calm March. The first storm event from the north caused strong local wind in the southern Bay of Biscay but a weak oceanographic response. The second storm event from the southwest was mainly felt west of Galicia and caused a notable increase in shelf currents and a shift of the hydrographical structure along the shelf. Detailed analysis of strong wind pulses in early spring within the historical recruitment record suggests that strong local turbulence generated by high wind speeds and advection of larvae caused by the enhancement of shelf currents can contribute to reduced recruitment. Our observations indicate that, in 2000, both mechanisms were present.  相似文献   

7.
We tested whether the predation dynamics of chub mackerel Scomber japonicus and spotted mackerel S. australasicus on young anchovy Engraulis japonicus relates to individual growth characteristics of the prey and could account for the growth-selective survival predicted by recruitment hypotheses. Juvenile and adult mackerel were sampled along with their young anchovy prey field in 2004 (juvenile mackerel and larval anchovy) and 2005 (adult mackerel and juvenile anchovy) off the Pacific coast of Honshu, Japan. The recent 5-day mean growth rate of larval and juvenile survivors and prey found in the stomach of mackerel was estimated from the otolith microstructure. No significant difference was found between the recent growth of larval or juvenile survivors and that of preyed individuals. We conclude that despite a relatively small body size, the high activity level and predation skills displayed by mackerel prevent fast-growing larvae and early juveniles from benefitting in terms of the expected survival advantage over slow-growers. Hence, growth-selective predation mortality of larval fish would depend on the feeding ecology of the predator rather than predator size. Selection for fast growth is more likely to occur under predation pressure from invertebrate organisms and small pelagic fish specialized on zooplankton, such as herring and anchovy.  相似文献   

8.
Abstract The abundance of 0+ pikeperch, Stizostedion lucioperca (L.), in trawls was compared with water temperature, water level and commercial catches 6–9 years later. The abundance of juveniles in autumn was positively correlated with the water temperature but not with water level in May or in June. The sum of a year abundance of juveniles showed a strong correlation with the catch years later. This abundance and the cumulative water temperature between August and October inclusive in five consecutive years one year prior to recruitment into the commercial fishery explained 86% of the variation in catches. This empirical model indicates that catches of pikeperch depend on both juvenile abundance and water temperature.  相似文献   

9.
Horizontal distribution patterns of jack mackerel (Trachurus japonicus) larvae and juveniles were investigated in the East China Sea between 4 February and 30 April 2001. A total of 1549 larvae and juveniles were collected by bongo and neuston nets at 357 stations. The larvae were concentrated in the frontal area between the Kuroshio Current and shelf waters in the upstream region of the Kuroshio. The abundance of small larvae (<3 mm notochord length) was highest in the southern East China Sea (SECS) south of 28°N, suggesting that the principal spawning ground is formed in the SECS from late winter to spring. Jack mackerel also spawned in the northern and central East China Sea (NECS and CECS, respectively), as some small larvae were also collected in these areas. In the SECS, the abundance of small larvae was highest in February and gradually decreased from March to April. The habitat temperature of small larvae in the SECS and CECS (20–26°C) was higher than that in the NECS (15–21°C), suggesting higher growth rates in the SECS and CECS than in the NECS. The juveniles (10‐ to 30‐mm standard length) became abundant in the NECS off the west coast of Kyushu Island and CECS in April and were collected in association with scyphozoans typical of the Kuroshio waters. However, juveniles were rarely collected in the SECS, where the small larvae were concentrated. Considering the current systems in the study area, a large number of the eggs and larvae spawned and hatched in the SECS would be transported northeastward by the Kuroshio and its branches into the jack mackerels’ nursery grounds, such as the shallow waters off the west coast of Kyushu and the Pacific coast of southern Japan.  相似文献   

10.
The occurrence and density of Pacific saury Cololabis saira larvae and juveniles were examined in relation to environmental factors during the winter spawning season in the Kuroshio Current system, based on samples from extensive surveys off the Pacific coast of Japan in 2003–2012. Dense distributions of larvae and juveniles were observed in areas around and on the offshore side of the Kuroshio axis except during a large Kuroshio meander year (2005). The relationships of larval and juvenile occurrence and density given the occurrence to sea surface temperature (SST), salinity (SSS), and chlorophyll‐a concentration (CHL) were examined by generalized additive models for 10‐mm size classes up to 40 mm. In general, the optimal SST for larval and juvenile occurrence and density given the occurrence was consistently observed at 19–20°C. The patterns were more complex for SSS, but a peak in occurrence was observed at 34.75–34.80. In contrast, there were negative relationships of occurrence and density given the occurrence to CHL. These patterns tended to be consistent among different size classes, although the patterns differed for the smallest size class depending on environmental factors. Synthetically, the window for spawning and larval and juvenile occurrence and density seems to be largely determined by physical factors, in particular temperature. The environmental conditions which larvae and juveniles encounter would be maintained while they are transported. The survival success under the physically favorable but food‐poor conditions of the Kuroshio Current system could be key to their recruitment success.  相似文献   

11.
Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid‐Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re‐examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year‐class strength is decoupled from larval supply and is determined by temperature‐linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large‐scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes.  相似文献   

12.
Plankton sampling was conducted in the Baltic to obtain sprat larvae. Their individual drift patterns were back‐calculated using a hydrodynamic model. The modelled positions along the individual drift trajectories were subsequently used to provide insight into the environmental conditions experienced by the larvae. Autocorrelation analysis revealed that successive otolith increment widths of individual larvae were not independent. Otolith increment width was then modelled using two different generalized additive model (GAM) analyses (with and without autocorrelation), using environmental variables determined for each modelled individual larval position as explanatory variables. The results indicate that otolith growth was not only influenced by the density of potential prey but was controlled by a number of simultaneously acting environmental factors. The final model, not considering autocorrelation, explained more than 80% of the variance of otolith growth, with larval age as a factor variable showing the strongest significant impact on otolith growth. Otolith growth was further explained by statistically significant ambient environmental factors such as temperature, bottom depth, prey density and turbulence. The GAM analysis, taking autocorrelation into account, explained almost 98% of the variability, with the previous otolith increment showing the strongest significant effect. Larval age as well as ambient temperature and prey abundance also had a significant effect. An alternative approach applied individual‐based model (IBM) simulations on larval drift, feeding, growth and survival starting as exogenously feeding larvae at the back‐calculated positions. The IBM results revealed optimal growth conditions for more than 97% of the larvae, with a tendency for our IBM to slightly overestimate larval growth.  相似文献   

13.
The demersal settlement of pelagic juvenile fish has been considered a critical period in which the final adjustment is made to the size of a year class. Distribution patterns of pelagic and recently settled juvenile cod (Gadus morhua) were examined from nine surveys on Georges Bank during the summer over 5 years, 1984–1989, to relate juvenile survival to the sedimentary environment. Pelagic juveniles were widespread across Georges Bank in June, and by mid‐July they occurred on all bottom types from sand to gravel on eastern Georges Bank. However, by late July‐early August they were mostly abundant on the northeastern edge gravel deposit, which with its complex relief, provides abundant prey and refuge from predators. A bank‐wide estimate of pelagic juvenile abundance in 1986 and 1987 was used to assess mortality of the recently settled juveniles and to evaluate the relative importance of survivors from the northeastern edge gravel area to recruitment of the Georges Bank population. Settlement mortality rates over 1–2 months on the northeastern gravel area ranged from 3 to 8% day?1, which compared reasonably with other studies. The seasonal abundance of the pelagic juveniles was almost an order of magnitude higher in 1987 than 1986; however, recruitment at age 1 was similar, indicating that a high mortality of the demersal juveniles occurred in 1987. The limited northeastern gravel area on Georges Bank may represent a survival bottleneck depending on the variability in the distribution and abundance of juvenile cod settlement in relation to that of their predators.  相似文献   

14.
Drift of propagules occurs within many populations inhabiting flow fields. This affects the number of propagules that rejoin their source population (recruitment) and plays a role in adaptive spatial redistribution. We focus on the cause and consequence of interannual variation in geographic distribution of population density among five cohorts of young‐of‐the‐year (age‐0) juvenile walleye pollock Gadus chalcogrammus in the western Gulf of Alaska (GOA). The coastal GOA is a wind‐driven advective system. Walleye pollock spawn during spring and their eggs and larvae drift southwestward; by late summer, age‐0 juveniles are variously distributed over the shelf. We found that high population densities of age‐0 juveniles (ca. 6 months old) near the southwestward exit of the Alaska Coastal Current from the GOA corresponded with high abundance of larvae from the major spawning area upstream, but did not translate into high abundance at older ages. Further, offshore and upwelling‐favorable winds were associated with the high downstream abundance and presumed export. In contrast, downwelling‐favorable (northeasterly) wind during and shortly after spawning (April–May) was associated with high recruitment at age 1. Finally, we found that recruitment also increased with apparent retention of age‐0 juveniles in favorable habitat upstream near the main spawning area. We hypothesize that wind‐related retention in superior upstream habitat favors recruitment. Our results argue for including wind‐driven transport in future walleye pollock recruitment models. We encourage more work on the juvenile stage of marine fishes aimed at understanding how transport and species‐specific habitat suitability interact to affect population response to large‐scale forcing.  相似文献   

15.
Pacific herring were susceptible to waterborne challenge with viral haemorrhagic septicaemia virus (VHSV) throughout their early life history stages, with significantly greater cumulative mortalities occurring among VHSV‐exposed groups of 9‐, 44‐, 54‐ and 76‐day‐old larvae than among respective control groups. Similarly, among 89‐day–1‐year‐old and 1+year old post‐metamorphosed juveniles, cumulative mortality was significantly greater in VHSV‐challenged groups than in respective control groups. Larval exposure to VHSV conferred partial protection to the survivors after their metamorphosis to juveniles as shown by significantly less cumulative mortalities among juvenile groups that survived a VHS epidemic as larvae than among groups that were previously naïve to VHSV. Magnitude of the protection, measured as relative per cent survival, was a direct function of larval age at first exposure and was probably a reflection of gradual developmental onset of immunocompetence. These results indicate the potential for easily overlooked VHS epizootics among wild larvae in regions where the virus is endemic and emphasize the importance of early life history stages of marine fish in influencing the ecological disease processes.  相似文献   

16.
17.
Temperature and body size are widely agreed to be the primary factors influencing vital rates (e.g., growth, mortality) in marine fishes. We created a biophysical individual‐based model which included the effects of body size and temperature on development, growth and mortality rates of eggs, larvae and juveniles of Atlantic cod (Gadus morhua L.) in the North Sea. Temperature‐dependent mortality rates in our model were based on the consumption rate of predators of cod early‐life stages. The model predicted 35%, 53% and 12% of the total mortality to occur during the egg, larval and juvenile stages, respectively. A comparison of modeled and observed body size suggested that the growth of survivors through their first year of life is high and close to the growth rates in ad libitum feeding laboratory experiments. Furthermore, our model indicates that experiencing warmer temperatures during early life only benefits young cod (or theoretically any organism) if a high ratio exists between the temperature coefficients for the rate of growth and the rate of mortality. During the egg stage of cod, any benefit of developing more rapidly at warmer temperatures is largely counteracted by temperature‐dependent increases in predation pressure. In contrast, juvenile (age‐0) cod experiences a higher cumulative mortality at warmer temperatures in the North Sea. Thus, our study adds a new aspect to the ‘growth–survival’ hypothesis: faster growth is not always profitable for early‐life stages particularly if it is caused by warmer temperatures.  相似文献   

18.
Age‐0 gizzard shad Dorosoma cepedianum are the main prey fish for white crappies Pomoxis annularis in many US reservoirs. However, these prey fish commonly outgrow their vulnerability to white crappie predation in some, but not all, northern Missouri reservoirs. Potential variables that could influence abundance, growth and mortality of age‐0 gizzard shad were examined in three reservoirs that differed with respect to age‐0 gizzard shad growth rates. Because of thermal effluent from a power plant, gizzard shad spawned earlier in Thomas Hill Lake and initial densities of larvae were greater than in the other reservoirs. Larval and juvenile gizzard shad grew slowest in Thomas Hill Lake, followed by Mark Twain Lake and Long Branch Lake. Growth rate of larvae increased with increasing water temperature and food abundance, but decreased with increasing conspecific density. Similar relationships were found for juvenile growth, except that growth declined with increasing temperature. The slower growth of larvae and juveniles in Thomas Hill Lake was probably a consequence of their greater densities relative to their food abundance and higher water temperatures during the juvenile stage. Conversely, both larvae and juvenile gizzard shad grew more rapidly and juveniles attained large sizes in Long Branch Lake owing to their lower densities relative to their available food. Mortality of larvae and juveniles was mostly similar among the reservoirs. Because of their greater abundance and slower growth, gizzard shad were available as prey for white crappies for a longer period in Thomas Hill Lake than in the other reservoirs.  相似文献   

19.
Between 1982 and 1991, an annual survey of stage I egg production of Atlantic mackerel ( Scomber scombrus ) was conducted in June/early July in the southern Gulf of St Lawrence. We investigated the relationship between interannual variability in biomass of zooplankton, determined from the archived survey plankton samples, and mackerel recruitment, estimated from the proportion of three-year-olds in the catch of the commercial fishery. Zooplankton biomass varied by a factor of 2.5, primarily owing to fluctuations in the >1000 μm size fraction. The index of mackerel recruitment fluctuated by a factor of ≈20 and was positively related (linear regression: P  < 0.05; n  = 10) to variations in the zooplankton biomass. Both mackerel recruitment and zooplankton biomass were negatively related (linear regression: P  < 0.05) to RIVSUM, a measure of freshwater discharge from the St Lawrence River system and an index of variability in the region's climate. Three hypotheses are put forward to explain these observations: (1) there is a strong link between interannual variation in abundance of copepod females, which produce prey for mackerel larvae, and larval survival; the exceptional recruitment and subsequent year class resulted from an exceptional production of Calanus finmarchicus nauplii; (2) years of high zooplankton biomass provide better feeding conditions and consequently higher survival of mackerel juveniles; and (3) mackerel recruitment and zooplankton biomass are independently under the control of an underlying physical process, without strong trophic linkage. The first hypothesis is supported by a study of copepod species composition and female abundance conducted for four of the survey years. At the present time, none of these hypotheses can be ruled out.  相似文献   

20.
The brown shrimp C. crangon supports a large commercial fishery in British, Belgian, Dutch, German and Danish waters. It produces eggs throughout the year with two seasonal peaks in summer and winter, respectively. Uncertainty exists with regard to the relative importance of the two egg production seasons for the mass invasion of juvenile recruits of 10–20 mm length in May/June, which is the dominant seasonal signal in the German and Dutch Wadden Sea, and which is presumed to grow into the exploitable stock by the autumn, causing the typical rise of commercial catches at that time of the year. A simulation model was developed that predicts the daily abundance of juvenile recruits attaining a given length, typically in the range of 10–20 mm. The model uses: (i) experimental data on the development times of eggs and larvae and the growth rates of juveniles; (ii) field data on the seasonal temperature cycle in different years (1986, 1992 and 1993 or mean conditions) and areas (German and Dutch Wadden Sea) of the North Sea; and (iii) a calculated index of the relative seasonal egg production intensity of adult C. crangon . Predictions of the simulations are compared with field observations on the seasonal occurrence of juvenile recruits in the German and Dutch Wadden Sea. Using temperature data from German waters, in the simulations peak recruitment was predicted to occur 1–2 months later than that observed in the field. However, if seasonal temperature data from Dutch waters were used, the predicted time of the first mass occurrence of recruits matched the field observations more closely. Simulations revealed that the first mass invasion of juveniles originates almost entirely from the winter egg production. It was also found that the simulated recruitment is condensed into a peak, which is narrower after a cold winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号