首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid incremental treadmill exercise test was used to determine the repeatability of the following measurements in exercising horses: maximal oxygen consumption (VO2max), maximal heart rate (HRmax), velocity at a heart rate of 200 beats/min (V-200), oxygen consumption at a heart rate of 200 beats/min (VO2-200), oxygen consumption at HRmax (VO2-HRmax), work rate at a heart rate of 200 beats/min (W-200), work rate at HRmax (W-HRmax) and treadmill velocity at HRmax (V-HRmax). Six Standardbred geldings were exercised on three separate occasions on a treadmill set at an inclination of 6 degrees. The exercise protocol was that each horse was exercised for 2 mins at 3 m/sec, after which the treadmill speed was increased by 1 m/sec every 60 secs, until the horse could no longer maintain its speed. A minimum of 24 h was allowed between repeated tests. No significant differences were found between the three means of any of the eight cardiorespiratory variables with repeated measurement. Variables with high coefficients of variation (greater than 10 per cent) included V-HRmax, W-HRmax and VO2-HRmax. The V-200, W-200 and VO2-200 showed less variation. The VO2max showed good reproducibility, there being coefficients of variation ranging from 1.4 to 9.0 per cent. The individual horse values for VO2max ranged from 104 to 169 ml/kg bodyweight/min. Maximal heart rate was also highly reproducible and the coefficients of variation were less than or equal to 2.7 per cent in all horses. It is concluded that the measurement of VO2max has good reproducibility, but other estimates of maximal aerobic capacity are less precise.  相似文献   

2.
The purpose of this study was to determine the optimal treadmill slope for trotters to produce the same heart rate and blood lactate responses as on the track during a standardized exercise test. Nine 2-year-old French trotters performed exercise tests on a training track and on a treadmill set at an incline of 0, 2 or 4%. For all horses, track testing was performed on day 1 and then on the treadmill according to a Latin-square design. The track test utilized three steps each of 3 min at speeds of 470, 530, 590 m/min and the same speeds were used on the treadmill. Derived physiological variables such as the speed at a HR of 200 bpm (V(200)) and the speed inducing blood lactate concentrations of 4 mmol/L (V(4)) were calculated. There were significant differences for V(200)and V(4)(P<0.05) between the track and the treadmill data when the treadmill was set at inclines of 0 and 4%, but no significant differences with the treadmill set at a 2% incline. The optimal treadmill incline to reproduce similar responses to those on the track was determined by regression analysis, and was found to be 2.4% for the two most often utilized derived physiological variables, V(4)and V(200).  相似文献   

3.
Eight standardbred horses trotted on a treadmill for 55 mins at a sub-maximal speed of 5m/sec and subsequently performed an exercise test consisting of 2 min intervals at increasing speed. Heart (HR) and respiratory (Rf) rates and venous blood samples were obtained before, during and for 5 mins after exercise. Gluteus medius muscle biopsies and rectal temperatures were taken before and after exercise. The mean HR was 132/min and the mean Rf was 156/min during the 5m/sec trotting. With 5m/sec exercise, plasma free fatty acids (FFA), glucose, creatinine and cortisol concentrations increased markedly. Blood lactate increased slightly and plasma potassium increased initially and then decreased with a lengthened duration of trotting. Within 5 mins post exercise plasma FFA, glucose and cortisol concentrations continued to rise, whereas creatinine and lactate levels declined slightly and potassium concentrations declined rapidly to below resting values. The mean intramuscular (im) glycogen utilisation was 86 mmol/kg, no significant changes occurred in creatine phosphate (CP), adenosine triphosphate (ATP) and glucose-6-phosphate (G-6-P) concentrations and muscle lactate decreased significantly. During the second exercise test mean HR was 215/min and Rf 126/min at top speed. No significant change was seen in plasma glucose whereas cortisol levels rose to a lesser extent, and creatinine lactate, ammonia and potassium concentrations to a greater extent, compared to 5 m/sec trotting. Post exercise, these parameters continued to increase except for creatinine which declined slightly and potassium which decreased rapidly. The mean im glycogen utilisation was 144 mmol/kg, ATP concentrations were unaltered, CP declined, lactate and G-6-P increased during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Six untrained mares were subjected to incremental treadmill exercise to examine exercise-induced changes in plasma renin activity (PRA) and plasma aldosterone (ALDO) and plasma arginine vasopressin (AVP) concentrations. Plasma renin activity, ALDO and AVP concentrations, and heart rate (HR) were measured at each step of an incremental maximal exercise test. Mares ran up a 6 degree slope on a treadmill set at an initial speed of 4 m/s. Speed was increased 1 m/s each minute until HR reached a plateau. Plasma obtained was stored at -80 C and later was thawed, extracted, and assayed for PRA and ALDO and AVP values by use of radioimmunoassay. Exercise caused significant increase in HR from 40 +/- 2 beats/min (mean +/- SEM) at rest to 206 +/- 4 beats/min (HRmax) at speed of 9 m/s. Plasma renin activity increased from 1.9 +/- 1.0 ng/ml/h at rest to a peak of 5.2 +/- 1.0 ng/ml/h at 9 m/s, paralleling changes in HR. Up to treadmill speed of 9 m/s, strong linear correlations were obtained between exercise intensity (and duration) and HR (r = 0.87, P less than 0.05) and PRA (r = 0.93, P less than 0.05). Heart rate and PRA reached a plateau and did not increase when speed was increased from 9 to 10 m/s. Plasma ALDO concentration increased from 48 +/- 16 pg/ml at rest to 191 +/- 72 pg/ml at speed of 10 m/s. Linear relation was found between exercise intensity (and duration) and ALDO concentration (r = 0.97, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The aim of this study was to investigate the effects of reduced muscle glycogen concentration on some physiological and metabolic responses during moderate intensity treadmill exercise in horses. Six Thoroughbred geldings were randomly allocated to 2 treatments (protocols A and B) or control in a 3 x 3 replicated Latin square design. In protocol A, horses performed low intensity exercise while horses in protocol B performed short bursts of high intensity exercise. Protocol A was designed to induce glycogen depletion mainly of slow twitch muscle fibers while protocol B aimed to deplete mainly fast twitch muscle fibers. Horses in the control group did not undergo exercise prior to the exercise test. Five hours after glycogen depletion, horses performed treadmill exercise at 60% VO2max at a treadmill slope of 10% until fatigue (20-30 min). The induced glycogen depletion prior to exercise had no significant effect on plasma glucose, insulin, or lactate concentrations during the exercise test, and there was no effect on glycogen utilization rate, although respiratory exchange ratios were lower in the glycogen-depleted groups. The VO2, heart rate and central blood temperature did not vary significantly between the protocols A and B and control throughout the exercise test. It was concluded that 20-30% depletion of glycogen concentration in the middle gluteal muscle resulted in a shift towards fat metabolism, but does not significantly affect heart rate, oxygen uptake, or concentrations of plasma glucose and lactate during moderate intensity exercise.  相似文献   

6.
Five Standardbred trotters with red cell hypervolaemia (RCHV) were compared before and after removal of approximately 22% (36 ml/kg bwt) of the total blood volume in order to evaluate the haemodynamic responses, haemorheological alterations and oxygen transport during exercise to fatigue. Data were recorded during submaximal exercise at 4 different speeds on a treadmill and then during continued running at the highest speed step until fatigue. Oxygen uptake (VO2), pulmonary artery pressure (PAP), systemic artery pressure (SAP), heart rate (HR), haematocrit and haemoglobin concentrations (Hb) were measured. Arteriovenous O2 content difference (C(a-v)O2), pulmonary vascular resistance (PVR) and total systemic resistance (TSR) were calculated. Whole blood and plasma viscosity and erythrocyte aggregation tendency were determined with a rotational viscometer. Endoscopy was performed after exercise. ANOVA was used for statistical analysis. Phlebotomy resulted in a decrease in haematocrit and Hb during the course of exercise. Blood and plasma viscosity were lower and erythrocyte aggregation tendency was higher after phlebotomy. Throughout exercise, including submaximal work and continued running to fatigue, PAP, SAP, PVR, TSR and C(a-v)O2 were lower after phlebotomy. HR was higher after phlebotomy during submaximal exercise. Oxygen delivery and VO2 were lower after phlebotomy in the period from submaximal exercise to fatigue. Run time to fatigue was shorter after phlebotomy. Four horses showed exercise-induced pulmonary haemorrhage (EIPH) before phlebotomy and the degree of bleeding was diminished but not abolished after phlebotomy. The reductions in PVR, TSR, PAP and SAP after phlebotomy were probably a result of reduced blood viscosity. In conclusion, although a 22% reduction in blood volume improved the haemodynamic and haemorheological parameters and the degree of EIPH, it was found that RCHV trotters have to rely on high oxygen delivery to the working muscles for maintenance of maximal performance.  相似文献   

7.
Significant differences exist in the respiratory adaptation to exercise in different equine breeds. This research describes the ergoespirometric response to exercise of Andalusian (AN) and Arabian (A) horses, both selected according to morphological criteria. Thirteen untrained male horses (6 AN and 7 A) performed a treadmill exercise test (TET) with a slope of 6%, with workloads starting from 5 m/s and increasing 1 m/s every 3 min until the horses were not able to keep the required velocity. Tidal volume (TV), respiratory rate, minute ventilation (VE), oxygen uptake (VO2), carbon dioxide production, peak oxygen uptake (VO2peak), respiratory exchange ratio (RER), exercise time to fatigue (ETF) and respiratory aerobic threshold (RAT) were determined. AN horses presented higher TV and VE, whereas respiratory rate, VO2 and VCO2 were lower at the same velocities. RER was similar between breeds. ETF was longer in A horses (556.7 ± 66.5 in AN vs. 607.1 ± 71.1 s in A) and no significant differences were found in RAT (5.50 ± 0.50 in AN vs. 5.86 ± 1.07 m/s in A). In summary, despite the more intense ventilatory response to exercise at the same velocity, AN horses had lower VO2. The AN horse develops a more intense ventilatory response to fixed velocities than the A horse and it could be interesting to clarify the role of the locomotion characteristics in this response.  相似文献   

8.
In Study 1, a single speed test of 6 to 12 m/sec was performed for 2 mins at an incline of 5 degrees on a high-speed treadmill (single-step test). Only one speed was performed per session and blood samples were taken before and after the test. In Study 2 horses cantered for 1 min at increasing speeds of 6 to 13 m/sec on an incline of 3 degrees (multiple-step test). Blood samples were taken before exercise, throughout the test and during recovery. In the single-step test plasma concentrations of adrenaline and noradrenaline both increased at speeds of 9 m/sec, as did blood lactate. Mean concentrations of adrenaline and noradrenaline at the end of the 12 m/sec test were 153 and 148 nmol/litre, respectively. Plasma concentrations were similar over all speeds although there was a tendency for the increase in noradrenaline to be greater than that of adrenaline at the lower speeds. The multiple-step test resulted in smaller increases in both adrenaline and noradrenaline. Although again closely correlated, increases in adrenaline were 20-30% greater than those for noradrenaline. In both exercise models, changes in plasma adrenaline and noradrenaline values with exercise showed an exponential relationship to plasma lactate. A plasma half-life of less than 30 secs was indicated during recovery from the multiple-step test. Changes in adrenaline and noradrenaline were much greater than previously recorded in man and emphasise the importance of catecholamines in mediating the physiological response of the horse to exercise.  相似文献   

9.
In a crossover study, either a placebo paste or N,N-dimethylglycine was administered orally at a dose rate of 1.2 mg/kg twice daily for five days to six thoroughbred horses, with bodyweights ranging from 424 to 492 kg. Using previously determined regression equations for oxygen uptake (VO2) against speed for each horse, a standardised exercise test was given with speeds equivalent to fixed percentages of the maximum oxygen uptake (VO2max). The test consisted of two minutes at speeds equivalent to approximately 40 per cent and 50 per cent VO2max, and one minute at speeds that produced approximately 60, 70, 80, 90 and 100 per cent VO2max. During the last five seconds of each exercise stage, the values of VO2, carbon dioxide production (VCO2), heart rate, arterial blood and plasma lactate concentrations, arterial blood gases and pH were measured. Before and immediately after the exercise test, muscle biopsies were collected from the middle gluteal muscle to determine the muscle lactate concentrations. The administration of N,N-dimethylglycine produced no significant differences in any of the measured values, and it is concluded that the compound has no beneficial effects on cardiorespiratory function or lactate production in the exercising horse.  相似文献   

10.
Summary Various cardiorespiratory and metabolic indices were assessed during treadmill exercise in Thoroughbred and Standardbred racehorses with T wave changes in 4 or more leads on the electrocardiogram or second-degree atrio-ventricular (AV) block, and in horses that had no abnormalities on clinical examination, resting electrocardiography or upper respiratory tract endoscopy. No significant differences in heart rate, plasma lactate concentration, arterial blood gases, oxygen uptake, run time, peak velocity, or blood and red cell volumes were found between normal horses and horses with T wave changes or second-degree AV block. These results indicate that some electrocardiographic findings that are considered by some clinicians to indicate cardiac dysfunction, may have little effect on exercise capacity.  相似文献   

11.
High intensity exercise is associated with production of energy by both aerobic and anaerobic metabolism. Conditioning by repeated exercise increases the maximal rate of aerobic metabolism, aerobic capacity, of horses, but whether the maximal amount of energy provided by anaerobic metabolism, anaerobic capacity, can be increased by conditioning of horses is unknown. We, therefore, examined the effects of 10 weeks of regular (4-5 days/week) high intensity (92+/-3 % VO2max) exercise on accumulated oxygen deficit of 8 Standardbred horses that had been confined to box stalls for 12 weeks. Exercise conditioning resulted in increases of 17% in VO2max (P<0.001), 11% in the speed at which VO2max was achieved (P = 0.019) and 9% in the speed at 115% of VO2max (P = 0.003). During a high speed exercise test at 115% VO2max, sprint duration was 25% longer (P = 0.047), oxygen demand was 36% greater (P<0.001), oxygen consumption was 38% greater (P<0.001) and accumulated oxygen deficit was 27% higher (P = 0.040) than values before conditioning. VLa4 was 33% higher (P<0.05) after conditioning. There was no effect of conditioning on blood lactate concentration at the speed producing VO2max or at the end of the high speed exercise test. The rate of increase in muscle lactate concentration was greater (P = 0.006) in horses before conditioning. Muscle glycogen concentrations before exercise were 17% higher (P<0.05) after conditioning. Exercise resulted in nearly identical (P = 0.938) reductions in muscle glycogen concentrations before and after conditioning. There was no detectable effect of conditioning on muscle buffering capacity. These results are consistent with a conditioning-induced increase in both aerobic and anaerobic capacity of horses demonstrating that anaerobic capacity of horses can be increased by an appropriate conditioning programme that includes regular, high intensity exercise. Furthermore, increases in anaerobic capacity are not reflected in blood lactate concentrations measured during intense, exhaustive exercise or during recovery from such exercise.  相似文献   

12.
Two groups of previously unconditioned young adult horses participated in 6 weeks of gradually increasing exercise on an inclined plane treadmill while receiving a cornoats-hay diet with or without a commercially available dietary yeast culture preparation. Forced treadmill exercise at a workload of 11.98 j/kg/m, equivalent to a workrate of 18.34 j/sec/kg and an estimated ground speed of 5.36 m/sec, began at 5 minutes per day (2.75 Mjoules/500 kg body-weight) and was increased by 5 minutes per week to a maximum of 35 minutes per day (19.25 Mjoules/500 kg) after 6 weeks. Treadmill exercise increased venous plasma lactate concentrations in direct proportion to the duration of an exercise bout, but the increases tended to be smaller after a given amount of work as the horses became conditioned. At the end of 35 minutes of exercise, plasma lactate concentrations averaged 30.08 mg/dl in the supplemented horses and 41.29 mg/dl in the unsupplemented horses (p<.01). Plasma glucose concentrations decreased significantly and triglyceride concentrations increased significantly in both groups as exercise duration exceed 10 minutes. Changes in plasma glucose concentrations were not significantly affected by yeast culture supplementation, while the supplemented horses exhibited somewhat slower rates of increased plasma triglyceride concentrations. During the 35-minute exercise bouts, significantly lower heart rates were recorded in the supplemented horses during the first 5 and the final 10 minutes of the workouts (p<.01), suggesting an enhanced state of athletic fitness. The digestible energy required for work (Mcal/500 kg bodyweight) was calculated to be 0.454 (Mcal/Mjoule) (Mjoules of work/500 kg bodyweight) + 0.024 Mcal/500 kg bodyweight (r2=0.95), with an efficiency of converting dietary DE to work of 53% for both groups of horses. Although the exercise challenges to these horses were not severe, these results suggest that dietary yeast culture supplementation of horses entering into conditioning programs may well enhance athletic training.  相似文献   

13.
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy.  相似文献   

14.
OBJECTIVE: To determine the effect of girth construction and tension on respiratory mechanics and gas exchange during supramaximal treadmill exercise in horses. METHODS: Six healthy detrained Thoroughbred horses were exercised on a treadmill inclined at 10% at 110% VO2max. Horses were instrumented for respiratory mechanics and gas exchange studies, and data were recorded during incremental exercise tests. The animals were exercised for 2 min at 40% VO2max, and samples and measurements were collected at 1 min 45 sec. After 2 min, speed was increased to that estimated at 110% VO2max and data was collected at 45 sec, 90 sec and every 30 sec thereafter at this speed until the horses fatigued. Horses were run on three occasions with the same racing saddle and saddle packing but using two different girths, either an elastic girth (EG) or a standard canvas girth (SCG) which is nonelastic. A run with 5 kg tension applied to a standard canvas girth was the control for each horse, with additional runs at 15 kg using either the standard canvas girth or using the elastic girth. The runs were randomised and tensions applied were measured at end exhalation whilst at rest. RESULTS: Increasing girth tension was not associated with changes in respiratory mechanical or gas exchange properties. Although girths tightened to 15 kg tension had short run to fatigue times this was not found to be significantly different to girths set at 5 kg resting tension. Girth tensions declined at end exhalation in horses nearing fatigue. CONCLUSIONS: Loss in performance associated with high girth tensions is not due to alteration of respiratory mechanics. Loss in performance may be related to inspiratory muscles working at suboptimal lengths due to thoracic compression or compression of musculature around the chest. However, these changes are not reflected in altered respiratory mechanical or gas exchange properties measured during tidal breathing during supramaximal exercise. Other factors may hasten the onset of fatigue when horses exercise with tight girths and further studies are required to determine why excessively tight girths affect performance.  相似文献   

15.
Circulatory and muscle metabolic responses were studied in 10 horses which all performed incremental draught work at a low trotting speed on a treadmill (D-test) and also exercise with gradually increasing velocities (S-test). Exercise was continued until the horses could no longer maintain the weights above the floor or maintain speed trotting without changing gait to a gallop. Muscle biopsies were taken from the gluteus and the semitendinosus muscles before, and immediately after, exercise. The heart rate (HR) increased linearly with both increasing draught resistance and velocity and reached mean values of 212 and 203 beats/min, respectively. Blood lactate levels increased exponentially to mean values of 12.9 and 7.9 mmol/litre in the two tests. Both HR and blood lactate levels were significantly higher at the cessation of work in the D-test compared to the S-test. The relationship between HR and blood lactate response in the S-test was similar to that in the D-test. The red cell volume was determined after a standardised exercise tolerance test and was significantly correlated both to the weightloading and to the velocity, producing a HR of 200 beats/min. The changes seen in muscle glycogen and glucose-6-phosphate were similar in the two tests, whereas significantly higher lactate levels and lower creatine phosphate and adenosine triphosphate levels were seen in the D-test compared to the S-test. It was concluded that high oxidative capacity is of importance both for fast trotting and for draught work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Six nontrained mares were subjected to steady-state, submaximal treadmill exercise to examine the effect of exercise on the plasma concentration of atrial natriuretic peptide (ANP) in arterial, compared with mixed venous, blood. Horses ran on a treadmill up a 6 degree grade for 20 minutes at a speed calculated to require a power equivalent to 80% of maximal oxygen uptake (VO2MAX). Arterial and mixed venous blood samples were collected simultaneously from the carotid and pulmonary arteries of horses at rest and at 10 and 20 minutes of exercise. Plasma was stored at -80 C and was later thawed; ANP was extracted, and its concentration was determined by radioimmunoassay. Exercise caused significant (P < 0.05) increases in arterial and venous plasma ANP concentrations. Mean +/- SEM arterial ANP concentration increased from 25.2 +/- 4.4 pg/ml at rest to 52.7 +/- 5.2 pg/ml at 10 minutes of exercise and 62.5 +/- 5.2 pg/ml at 20 minutes of exercise. Mean venous ANP concentration increased from 24.8 +/- 4.3 pg/ml at rest to 67.2 +/- 14.5 pg/ml at 10 minutes of exercise and 65.3 +/- 13.5 pg/ml at 20 minutes of exercise. Significant differences were not evident between arterial or mixed venous ANP concentration at rest or during exercise, indicating that ANP either is not metabolized in the lungs or is released from the left atrium at a rate matching that of pulmonary metabolism.  相似文献   

17.
A valved gas collection system for horses was validated, then used to examine the relationship between the respiratory exchange ratio (RER), and plasma and muscle lactate in exercising horses. Four healthy Standardbred horses were trained to breathe through the apparatus while exercising on a treadmill. Comparisons of arterial blood gas tensions were made at 3 work levels for each horse, without (control), and with the gas collection system present. At the highest work level, the arterial oxygen tension (PaO2) was significantly lower (P < 0.05), and the arterial carbon dioxide tension (PaCO2) was significantly higher (P < 0.05), than control levels when the apparatus was present; however arterial oxygen content remained unchanged. The horses completed a standardized incremental treadmill test on 4 occasions to determine the repeatability of measurements of oxygen consumption (VO2), carbon dioxide production (VCO2), inspired minute ventilation (VI), respiratory exchange ratio (RER), ventilatory equivalent for oxygen (VI/VO2), tidal volume (VT), and ventilatory frequency (VF). All gas exchange and respiratory measurements showed good reproducibility with the mean coefficient of variation of the 4 horses ranging from 3.8 to 12%. We examined the relationship between 3 indices of energy metabolism in horses performing treadmill exercise: respiratory exchange ratio (RER), central venous plasma and muscle lactate concentrations. A relationship between RER and plasma lactate concentration was established. To compare muscle and plasma lactate concentrations, the horses completed a discontinuous exercise test without the gas collection apparatus present. Significant relationships (P < 0.05), between plasma lactate concentration and RER, and between plasma and muscle lactate concentration, were described for each horse. The valved gas collection system produced a measurable but tolerable degree of interference to respiration, and provided reproducible measurements of gas exchange and ventilatory measurements. It was concluded that measurements of both gas exchange and blood lactate may be used to indicate increased glycolytic activity within exercising skeletal muscle.  相似文献   

18.
Thirty-eight endurance horses underwent clinical and ancillary examinations, including haematological and biochemical evaluation, standardised exercise tests both on a treadmill and in the field, Doppler echocardiography, impulse oscillometry, video endoscopy and collection of respiratory fluids. All of the examined poorly performing horses were affected by subclinical diseases, and most of them had multiple concomitant disorders. On the contrary, the well-performing horses were free of any subclinical disease. The most frequently diagnosed diseases were respiratory disorders, followed by musculoskeletal and cardiac problems. Poor performers exhibited lower speeds at blood lactate concentration of 4 mmol/l (VLA4) and at heart rates of 160 (V160) and 200 bpm (V200) on the treadmill and in the field, as well as slower recovery of heart rate.  相似文献   

19.
The blood lactate concentration (LA) and heart rate (HR) of 10 horses exercising in water on a treadmill were examined. With the water at 10 and 50% of the withers height (WH), the blood LA increased up to mean values around 1.9 mm during the standardized exercise test (SET) until after step 3 of 5 (each step lasted 5 min, speed increasing step by step). Thereafter, blood LA of horses remained constant, while with the water at 80% of WH, the blood LA decreased from the mean peak of 2.16 ± 0.62 mm after the 4th step. The HR of the horses increased to 132 ± 14 beats/min until the 3rd step of SET with the water at 10% of WH, up to the 2nd step with the water at 50% (134 ± 10 beats/min) and up to the 1st step only with the water at 80% of WH (134 ± 10 beats/min). In another SET, horses were exercised five times for 5 min at the maximal attainable speed of 5.5 m/s in water at 20% of the withers height in step 1, 35% in step 2, 49% in step 3, 63% in step 4 and 77% in step 5. On using this SET, blood LA increased to 1.91 ± 0.25 mm until after the 2nd step and decreased after the 3rd step. The HR increased between before commencing SET and the 1st step (143 ± 13 beats/min) and remained constant thereafter. In conclusion, increasing water height and speed of exercise does not augment continuously blood LA and HR of horses exercising in water treadmills.  相似文献   

20.
Twenty-four Thoroughbred and twelve Standardbred racehorses aged between 2 and 6 years, presented for reported poor racing performance, underwent clinical exercise testing. During the last 10 s of exercise at each speed throughout an incremental speed exercise test on a treadmill inclined at a 10% slope, samples of arterial blood and expired gases were collected. Maximum oxygen uptake and the partial pressures of oxygen and carbon dioxide in arterial blood were determined. These values were compared between the two breeds of horses and also with reference to cytological findings of bronchoalveolar lavage samples, including neutrophil, erythrocyte and haemosiderophage percentage and the total nucleated cell concentration. The results revealed an inverse relationship (Spearman R = -0.45, p < 0.05) between the total nucleated cell count in bronchoalveolar lavage samples and arterial oxygen partial pressure during exercise at 11 m.s(-1). This result suggests that subclinical pulmonary disease may be a more important cause of poor racing performance than previously thought. Also of note was a positive correlation (Spearman R = 0.50, p < 0.05) between maximum oxygen uptake and the percentage of erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号