首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA isolated from the formae speciales of Erysiphe graminis that grow on barley, wheat, rye and oats was studied using restriction endonucleases and DNA/DNA hybridization procedures. DNA fragments were purified by molecular cloning and a few containing repeated sequences were used to demonstrate the many variations in restriction fragments both within and between the four formae speciales. In an analysis of six single-colony isolates of the barley mildew pathogen collected from different UK sites in different years, more than a quarter of the fragments scored varied among isolates. One isolate, with an uncommon pathogenicity character, differed from the remainder in the distribution of DNA bands. Isolates of rye mildew were also distinct from one another but isolates of oat mildew from a population of similar size appeared to belong to a single clone.
It is concluded that the chromosomes of E. graminis contain many families of dispersed repeated sequences and that there may be extensive polymorphism for restriction endonuclease cleavage sites associated with these repeats. Such unselected polymorphisms could be useful in helping to understand and discriminate among the factors affecting population structure in the pathogen as it responds to different agricultural practices.  相似文献   

2.
3.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

4.
ABSTRACT Fusarium oxysporum f. sp. lactucae, causal agent of Fusarium wilt of lettuce, is a serious pathogen recently reported in Arizona. Sequence analysis of the mitochondrial small subunit (mtSSU), translation elongation factor 1-alpha (EF-1alpha) gene, and the nuclear ribosomal DNA intergenic spacer (IGS) region was conducted to resolve relationships among f. sp. lactucae isolates, F. oxysporum isolates from other hosts, and local non-pathogenic isolates. Analysis of mtSSU sequences provided limited phylogenetic resolution and did not differentiate the lactucae isolates from 13 other F. oxysporum isolates. Analysis of EF-1alpha sequences resulted in moderate resolution, grouping seven formae speciales with the lactucae isolates. Analysis of the IGS region revealed numerous sequence polymorphisms among F. oxysporum formae speciales consisting of insertions, deletions, and single nucleotide transitions and substitutions. Repeat sequence analysis revealed several duplicated subrepeat units that were distributed across much of the region. Based on analysis of the IGS sequence data, lactucae race 1 isolates resolved as a monophyletic group with three other formae speciales of F. oxysporum. In all analyses, lactucae race 2 isolates composed a separate lineage that was phylo-genetically distinct and distantly related to the lactucae race 1 isolates.  相似文献   

5.
ABSTRACT The monophyletic origin of host-specific taxa in the plant-pathogenic Fusarium oxysporum complex was tested by constructing nuclear and mitochondrial gene genealogies and amplified fragment length polymorphism (AFLP)-based phylogenies for 89 strains representing the known genetic and pathogenic diversity in 8 formae speciales associated with wilt diseases and root and bulb rot. We included strains from clonal lineages of F. oxysporum f. spp. asparagi, dianthi, gladioli, lilii, lini, opuntiarum, spinaciae, and tulipae. Putatively nonpathogenic strains from carnation and lily were included and a reference strain from each of the three main clades identified previously in the F. oxysporum complex; sequences from related species were used as outgroups. DNA sequences from the nuclear translation elongation factor 1alpha and the mitochondrial small subunit (mtSSU) ribosomal RNA genes were combined for phylogenetic analysis. Strains in vegetative compatibility groups (VCGs) shared identical sequences and AFLP profiles, supporting the monophyly of the two single-VCG formae speciales, lilii and tulipae. Identical genotypes were also found for the three VCGs in F. oxysporum f. sp. spinaciae. In contrast, multiple evolutionary origins were apparent for F. oxysporum f. spp. asparagi, dianthi, gladioli, lini, and opuntiarum, although different VCGs within each of these formae speciales often clustered close together or shared identical EF-1alpha and mtSSU rDNA haplotypes. Kishino-Hasegawa analyses of constraints forcing the monophyly of these formae speciales supported the exclusive origin of F. oxysporum f. sp. opuntiarum but not the monophyly of F. oxysporum f. spp. asparagi, dianthi, gladioli, and lini. Most of the putatively nonpathogenic strains from carnation and lily, representing unique VCGs, were unrelated to F. oxysporum f. spp. dianthi and lilii, respectively. Putatively nonpathogenic or rot-inducing strains did not form exclusive groups within the molecular phylogeny. Parsimony analyses of AFLP fingerprint data supported the gene genealogy-based phylogram; however, AFLP-based phylogenies were considerably more homoplasious than the gene genealogies. The predictive value of the forma specialis naming system within the F. oxysporum complex is questioned.  相似文献   

6.
Sequences of the internal transcribed spacer (ITS) region 1 were used to examine the phylogenetic relationships among races of 19 isolates of Phytophthora vignae f. sp. adzukicola and between this forma specialis and three isolates of the closely related P. vignae f. sp. vignae. The ITS 1 sequences were highly conserved (> 98.7% similarity) among representatives of both formae speciales groups. The results of this study indicate that P. vignae is a monophyletic group. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession nos. AB120062–AB120080 and AB120122  相似文献   

7.
Oat stem rust, caused by Puccinia graminis f. sp. avenae (Pga), is one of the most severe diseases of oats worldwide. Population studies are scarce for this pathogen, mainly due to the lack of polymorphic molecular markers suitable for genetic analysis. In this study, an Australian Pga isolate was sequenced, the abundance of simple sequence repeats (SSRs) was determined and PCR‐based polymorphic markers suitable for genetic diversity analysis were developed. The amplification of 194 primer pairs was initially assessed using a set of 12 isolates of different cereal rust species and their formae speciales. A high frequency of cross‐species amplification was observed for most markers; however, 36 SSRs were diagnostic for P. graminis only. A subset of 19 genome‐derived SSRs were deemed useful for genetic diversity analysis of Pga and were assessed on 66 Pga isolates from Australia, Brazil and Sweden. Brazilian and Australian isolates were characterized by one and two predominant clonal lineages, respectively. In contrast, the Swedish isolates, previously shown to undergo sexual recombination, were highly diverse (nine distinct genotypes out of 10 isolates) and divided into two subpopulations. The genome‐derived SSR markers developed in this study were well suited to the population studies undertaken, and have diagnostic capabilities that should aid in the identification of unknown rust pathogen species.  相似文献   

8.
为探明玉米专化型和高粱专化型凸脐蠕孢菌的细胞壁降解酶在致病过程中的作用,采用酶活性检测方法测定了2种专化型的细胞壁降解酶活性,并检测了相关基因的表达。结果表明:高粱专化型凸脐蠕孢菌的聚甲基半乳糖醛酸酶(PMG)活性为115.84 U/mg,略高于玉米专化型;玉米专化型的多聚半乳糖醛酸酶(PG)和纤维素酶(Cx)的活性分别为151.76 U/mg和168.53 U/mg,略高于高粱专化型;且同一种专化型菌株的细胞壁降解酶活性存在差异。2种专化型的细胞壁降解酶基因表达量存在差异,Cx基因在2种专化型互作过程中均随病程的延长而大幅度上调表达;高粱专化型的PG基因随病程的延长大幅度上调表达,而玉米专化型的PG基因随病程的延长上调表达量有所下降;高粱专化型的PMG基因随病程的延长大幅度上调表达,而玉米专化型的PMG基因随病程的延长下调表达。推测产酶能力、基因表达和基因时间表达的差异可能是引起凸脐蠕孢菌专化型致病专化性的诱因之一。  相似文献   

9.
The disease development and population structure of Puccinia graminis f. sp. avenae, which causes stem rust on oats, were studied to investigate if sexual reproduction plays an important role in the epidemiology of the disease. The genetic population structure of P. graminis f. sp. avenae in Sweden was investigated by sampling 10 oat fields in July and August 2008 and seven fields during the same period in 2009. Nine single‐pustule isolates were first used to test simple sequence repeat (SSR) markers developed for P. graminis f. sp. tritici. Eleven of the 68 tested SSR markers were useful for genotyping P. graminis f. sp. avenae. For the main study, DNA from single uredinia was extracted and the SSR markers were used to genotype 472 samples. Both allelic and genotypic diversity were high in all fields, indicating that P. graminis f. sp. avenae undergoes regular sexual reproduction in Sweden. No significant relationship between genetic and geographic distances was found. Disease development was studied on two farms during 2008 and 2009. The apparent infection rates ranged between 0·17 and 0·55, indicating the potential for rapid disease development within fields. The incidence of oat stem rust has increased recently in Sweden. One possible explanation is a resurgence of its alternate host, barberry (Berberis spp.), after the repeal of the barberry eradication law in 1994. Barberry is present in several grain‐producing areas in Sweden, which supports the conclusion that P. graminis f. sp. avenae undergoes regular sexual reproduction there.  相似文献   

10.
 对尖孢镰刀菌10个专化型18个菌株进行分析发现,在尖孢镰刀菌大豆专化型Fusarium oxysporum f.sp.Glycines 1193-31中存在双链RNA,由6种成分组成,其大小分别为3.8kb,3.0kb,2.4kb,0.48kb,0.43kb和0.21kb,该菌株气生菌丝少,形成大量的粉红色分生孢子堆,并发生角变。  相似文献   

11.
Induction of susceptibility in oats to a normally avirulent pathotype of Puccinia graminis f.sp. avenae was studied in the presence of different pathotypes of P. coronata f.sp. avenae . Induction occurred on seedlings only in the presence of a virulent culture of P. coronata avenae and was not dependent on time or order of inoculation of either pathogen. This phenomenon was restricted to seedlings of lines possessing the Pg-a source of oat stem rust resistance. The specificity of induced susceptibility can be used as a valuable bioassay for screening and identifying Pg-a . Induced susceptibility occurred only at the seedling stage, and apparently provides no obstacle to the use of Pg-a as a source of stem rust resistance in oats.  相似文献   

12.
甘肃定西地区甘蓝枯萎病病原菌的分离与鉴定   总被引:2,自引:0,他引:2  
自2009年起,甘肃定西地区出现了甘蓝植株矮化、叶片黄化、枯萎甚至死亡的现象。2015年8月,我们采集了田间病株样本,使用常规组织分离法对病原菌进行了分离和纯化,依据柯赫氏法则进行了病原菌确认,并通过形态学和分子生物学方法对病原菌进行了鉴定。结果表明病原菌的形态学特征与尖孢镰刀菌Fusarium oxysporum一致,其rDNA-ITS、rDNA-IGS以及EF-1α序列与尖孢镰刀菌F.oxysporum相似性达99%,基于病原菌及尖孢镰刀菌各代表专化型EF-1α序列构建的系统发育树将该菌与尖孢镰刀菌黏团专化型F.oxysporum f.sp.conglutinans聚为一类,故引致甘肃定西地区甘蓝枯萎病的病原菌为尖孢镰刀菌黏团专化型F.oxysporum f.sp.conglutinans。  相似文献   

13.
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of fusarium wilt of chickpea, consists of two pathotypes (yellowing and wilting) and eight races (races 0, 1B/C, 1A and 2–6) of diverse geographical distribution. Six Foc isolates, one each of races 0, 1B/C, 1A, 4, 5 and 6, representing the two pathotypes and the geographical range of the pathogen, showed identical sequences in introns of the genes for translation elongation factor 1α ( EF1 α), β-tubulin, histone 3, actin and calmodulin. Eleven additional Foc isolates representative of all races, pathotypes and geographical range, and three isolates of F. oxysporum (Fo) nonpathogenic to chickpea were further analysed for sequence variation in the EF1 α gene. All isolates pathogenic to chickpeas shared an identical EF1 α gene sequence, which differed from that shared by the three Fo isolates nonpathogenic to chickpea. EF1 α gene sequences from the 17 Foc isolates and the three Fo isolates were compared with 24 EF1 α gene sequences in GenBank from isolates of 11 formae speciales of F. oxysporum by parsimony analysis. Foc isolates formed a grouping distinct from other formae speciales and nonpathogenic isolates. These results indicate that F. oxysporum f. sp. ciceris is monophyletic.  相似文献   

14.
A severe root and stem rot disease of melon was observed during the 2001 growing season on four glasshouse crops in Heraklio, Greece. A total of 43 isolates of F. oxysporum , obtained in Crete from glasshouse-grown melon and showing fusarium wilt or root and stem rot symptoms, were characterized by pathogenicity and vegetative compatibility. The majority of these isolates was also fingerprinted via amplified fragment length polymorphic (AFLP) analysis. Of the total number of isolates, 22 were identified by pathogenicity tests as F. oxysporum f. sp. melonis , 20 as F. oxysporum f. sp. radicis-cucumerinum , while one isolate was nonpathogenic on cucumber, melon, sponge gourd and pumpkin. All 22 isolates of F. oxysporum f. sp. melonis were assigned to vegetative compatibility group (VCG) 0134, and all 20 isolates of F. oxysporum f. sp. radicis-cucumerinum to VCG 0260. Isolates of F. oxysporum f. sp. radicis-cucumerinum were incompatible with isolates of F. oxysporum f. sp. melonis. AFLP fingerprinting allowed for the clustering of the isolates of the two formae speciales of F. oxysporum along two separate phenetic groups: f. sp. melonis to AFLP major haplotype I, and f. sp. radicis-cucumerinum to AFLP major haplotype II. Overall, pathogenicity, vegetative compatibility grouping and AFLP analysis were correlated and effectively distinguished isolates of F. oxysporum from melon. This appears to be the first report of natural infection of melon by F. oxysporum f. sp. radicis-cucumerinum worldwide.  相似文献   

15.
The use of Brassica crops as green manure in the so-called biofumigation treatment has been successfully exploited for the management of soilborne pathogens and is gaining interest particularly in the case of less intensive agricultural systems. A study was undertaken to investigate possible negative side-effects of biofumigation in order to prevent possible damage caused by wilt pathogens able to attack both plants used for biofumigation as well as agricultural crops. To do so, firstly the response of different Brassicas, including some used in biofumigation, to the formae speciales of Fusarium oxysporum known for being pathogenic on Brassica crops was evaluated. Secondly, the effect of green manure treatments on yield, quality of crops, and inoculum densities, infection and survival of Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. raphani was evaluated. In the second part of the work, four Brassica crops, selected for their response (susceptibility or resistance) to F. oxysporum f. sp. conglutinans and to F. oxysporum f. sp. raphani were evaluated in order to determine their response to the two pathogens during subsequent crops grown in soil where plants were incorporated as green manure into the soil at the end of each cycle. Moreover, the dynamics of the populations of F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. raphani in the soil after several biofumigation cycles was studied. Many of the Brassica crops used for biofumigation tested were susceptible to F. oxysporum f. sp. conglutinans and or to F. oxysporum f. sp. raphani. Green manure treatment, carried out by growing nine cycles of biocidal plants, with a short crop cycle of 30–35 days, did not reduce Fusarium wilts on susceptible Brassica hosts. The population of the pathogen was partially increased as a result of the incorporation of tissues of the susceptible plants. When Brassica crops grown were resistant to the two F. oxysporum pathogens used for soil infestation, green manure simulation did inhibit both pathogens, thus confirming its biocidal activity. The results obtained under our experimental conditions show that biofumigation treatment is not applicable for soil disinfestation on crops susceptible to the same formae speciales of F. oxysporum affecting Brassica species used for biofumigation. Brassica crops resistant to Fusarium yellows should be grown where biofumigation is applied. Moreover, alternation of crops used for biofumigation should be encouraged.  相似文献   

16.
Shi AN  Leath S  Murphy JP 《Phytopathology》1998,88(2):144-147
ABSTRACT A major gene for resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici = Erysiphe graminis f. sp. tritici) has been successfully transferred into hexaploid common wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) from wild einkorn wheat (Triticum monococcum subsp. aegilopoides, 2n = 2x = 14, AA). NC96BGTA5 is a germ plasm line with the pedigree Saluda x 3/PI427662. The response patterns for powdery mildew resistance in NC96BGTA5 were tested with 30 differential isolates of B. graminis f. sp. tritici, and the line was resistant to all tested isolates. The analyses of P(1), P(2), F(1), F(2), and BC(1)F(1) populations derived from NC96BGTA5 revealed two genes for wheat powdery mildew resistance in the NC96BGTA5 line. One gene, Pm3a, was from its recurrent parent Saluda, and the second was a new gene introgressed from wild einkorn wheat. The gene was determined to be different from Pm1 to Pm21 by gene-for-gene and pedigree analyses. The new gene was identified as linked to the Pm3a gene based on the F(2) and BC(1)F(1) populations derived from a cross between NC96BGTA5 and a susceptible cultivar NK-Coker 68-15, and the data indicated that the gene was located on chromosome 1A. It is proposed that this new gene be designated Pm25 for wheat powdery mildew resistance in NC96BGTA5. Three random amplified polymorphic DNA markers, OPX06(1050), OPAG04(950), and OPAI14(600), were found to be linked to this new gene.  相似文献   

17.
Isolates of the take-all fungus, Gaeumannomyces graminis var. avenae , which affects oats, wheat and other grasses, and of G.g. var. tritici , which preferentially affects wheat, rye and barley, contain a high proportion of repeated sequences. Total DNA from 57 fungal isolates collected from many locations and different cereal hosts, and scored for virulence on wheat, rye and oats, revealed many restriction fragment length polymorphisms. These RFLP s were observed either by staining the DNA directly, by hybridization to radioactively labelled total fungal DNA , or by hybridization with labelled wheat ribosomal DNA . With only a few exceptions, the isolates with the same preferred cereal hosts showed more similar patterns of restriction fragments than isolates that had different pathogenicity properties on cereal hosts, irrespective of the geographical origins of the isolates. This was even the case for R isolates of G.g. var. tritici that were virulent on wheat and rye compared with N isolates that were virulent only on wheat. Isolates were identified by hybridizing DNA from infected root samples with 32P-labelled total fungal DNA . The restriction fragment polymorphisms involving families of repeated sequence can therefore be used as a predictive assay for host preference of an isolate, and have probably arisen by host selection of fungal lineages. The variation between isolates in different pathogenicity groups suggests that there is little gene flow between isolates that can infect different hosts, even though they can coexist in the same field.  相似文献   

18.
Isolates ofFusarium oxysporum from wilted muskmelons, watermelons, cucumbers and from the muskmelon rootstockBenincasa hispida were screened for pathogenicity on seedlings and adult plants of these crops and related species. In seedling tests the isolates were not typically species-specific, contrary to what might be expected as an implication of their characterization as forma specialis. They often attacked species of several genera of plants, but not beyond the family of theCucurbitaceae. In the adult stage, plants were much more exclusively attacked by their corresponding formae speciales, but essential exceptions occurred. Isolates from cucumber were highly pathogenic to muskmelons, in the adulstage even causing more wilt of the latter than of cucumber.Comparing the results of these experiments with data from the literature, it is argued that the proposed f.sp.cucurbitacearum, embracing all formae speciales which specialize on plants within the family of theCucurbitaceae, would best fit in with the present state of knowledge. A proposition is given for equivalence of old and new classifications of isolates.Samenvatting Isolaten vanFusarium oxysporum uit verwelkte meloenen, watermeloenen, komkommers en uit de meloene-onderstamBenincasa hispida werden getoetst op pathogeniteit voor zaailingen en volwassen planten van deze gewassen en verwante soorten. In zaailingtoetsen waren de isolaten weinig soort-specifiek, in tegenstelling tot wat mocht worden afgeleid uit hun karakterisering als forma specialis. Zij tastten vaak soorten uit verschillende geslachten aan, maar niet buiten de grenzen van de familie derCucurbitaceae. in het volwassen stadium waren de interacties veel specifieker en werden planten slechts aangetast door de bijbehorende formae speciales. Enkele essentiële uitzonderingen kwamen echter voor. Isolaten van komkommer waren zeer pathogeen voor meloen. In het volwassen stadium veroorzaakten zij zelfs sterkere verwelking van meloen dan van komkommer.Vergelijking van de resultaten van deze proeven met gegevens uit de literatuur leidt tot de conclusie dat de voorgestelde f.sp.cucurbitacearum, die alle formae speciales met specialisatie opCucurbitaceae omvat, het best overeenkomt met de huidige stand van kennis. Een voorstet wordt gedaan ter vervanging van de oude classificatie van isolaten door corresponderende nieuwe aanduidingen.  相似文献   

19.
The ethylene production of severalFusarium species and formae speciales in vitro was measured under comparable conditions. All of them produced ethylene.Fusarium oxysporum Schlecht. ex Fr. f.tulipae Apt. produced much more than the other 18 strains investigated.Samenvatting Aangezien er aanwijzingen zijn dat ethyleen een rol speelt bij de aantasting van de tulpebol doorFusarium, werd de ethyleenproduktie van diverse soorten en formae speciales vanFusarium onder standaardvoorwaarden in vitro vergeleken. Alle onderzochteFusarium spp. en vormen vanFusarium produceerden ethyleen.Fusarium oxysporum Schlecht. ex Fr. f.tulipae Apt. bleek in vergelijking met 18 andere getoetste soorten en formae speciales enige duizenden malen meer ethyleen te produceren.  相似文献   

20.
 Green fluorescent protein (GFP)-marked Fusarium oxysporum f. sp. melonis and nonmarked F. oxysporum f. sp. fragariae were stained with neutral red. The neutral red stained vacuoles of the fungi without disturbing GFP fluorescence in the cytoplasm. GFP-marked fungi showed fluorescent hyphae with dark-stained vacuoles, whereas nonmarked fungi were detected as nonfluorescent hyphae with dark-dotted vacuoles. Root colonization by these two fungi was monitored using this method. Microconidia attached similarly to the root surface and elongated vegetative hyphae. Only the pathogenic fungi invaded, causing necrosis at the inoculation site. Thus, the present method enabled us to track simultaneously the various formae speciales of F. oxysporum colonizing the root surface. Received: March 25, 2002 / Accepted: September 27, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号