首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
【目的】优化低频再生黄瓜离体培养体系,为黄瓜遗传转化体系的进一步完善奠定基础。【方法】以低频再生黄瓜种质Q24和L66为材料,分别以黄瓜的子叶、子叶节和下胚轴为外植体,研究外植体类型对黄瓜再生频率的影响;在MS培养基中添加不同质量浓度6-苄基腺嘌呤(6-BA)和脱落酸(ABA),研究激素配比对黄瓜再生频率的影响;将获得的黄瓜子叶节外植体置于1/2 MS培养基上预培养0,1,2,3和4 d,研究预培养处理对黄瓜再生频率的影响。【结果】不同基因型黄瓜再生频率差异显著,其中Q24整体上具有相对较高的再生频率,其子叶节再生频率为54.8%,下胚轴再生频率为50.0%;L66的再生频率相对较低,其子叶节再生频率为36.9%,下胚轴再生频率为16.7%。激素配比显著影响黄瓜子叶节外植体的再生频率,其中1.00 mg/L ABA+1.00 mg/L 6-BA对Q24子叶节不定芽的诱导效果最好,再生频率达到60.7%;2.00 mg/L ABA+1.00 mg/L 6-BA对L66子叶节不定芽的诱导效果最好,再生频率达到42.9%。预培养处理可显著提高L66子叶节的再生频率,经过1~3 d预培养,其再生频率逐渐增加并达到最高(32.1%),4 d后再生频率开始降低;Q24子叶节经3 d预培养再生频率达到最高,为27.4%,但与对照相比差异不显著。【结论】Q24子叶节外植体最适激素配比为1.00 mg/L ABA+1.00 mg/L 6-BA,经3 d预培养后其再生频率可达60.7%;L66子叶节外植体最适激素配比为2.00 mg/L ABA+1.00 mg/L 6-BA,经3 d预培养后再生频率可达42.9%。  相似文献   

2.
【目的】建立黄瓜的高频再生体系,为黄瓜种质的遗传转化奠定基础。【方法】分别以华北型黄瓜种质26号、欧洲型黄瓜种质14-1为材料,研究不同激素组合、AgNO3质量浓度、苗龄、子叶切割方式及外植体接种方式对黄瓜子叶节不定芽诱导的影响。【结果】华北型黄瓜种质26号再生的最适激素组合为4.0mg/L 6-BA+0.3mg/L IAA+1.0mg/L AgNO3,再生率与再生系数分别可达85.00%和2.51;欧洲型黄瓜种质14-1再生的最适激素组合为3.0mg/L 6-BA+2.0mg/L ABA+1.0mg/L AgNO3,再生率与再生系数分别可达86.70%和2.77;5d苗龄的黄瓜子叶作为外植体时诱导不定芽的状态最佳;切除子叶端部2/3且基部附带有1mm子叶柄、以叶背向下子叶柄微插入的方式进行接种再生效率最高。【结论】建立了黄瓜种质14-1和26号材料的高频再生体系,再生率均可达85%以上。  相似文献   

3.
黄瓜组织培养与组培苗嫁接研究   总被引:1,自引:0,他引:1  
本研究的外植体为黄瓜自交系2~3 d的子叶,培养基为MS,讨论了AgNO3和6-BA的浓度组合对芽的诱导和增殖的影响,并以白籽南瓜为砧木,黄瓜子叶组织培养再生芽为接穗,进行嫁接,比较了不同砧木苗龄、培养方式和接穗大小对嫁接成活率的影响。研究表明,黄瓜子叶再生苗诱导率较高的培养基为MS+BA 1.0 mg/L+AgNO3 1.0 mg/L,增殖芽数较多的培养基为MS+BA2.0 mg/L+AgNO3 1.0 mg/L;组培苗的嫁接接穗长度为2.5+0.5 cm,砧木苗龄以3叶1心时嫁接成活率最高,可达100%。  相似文献   

4.
三个不同基因型黄瓜再生体系的优化研究   总被引:1,自引:1,他引:1  
以欧美型、华北型、华南型3个不同基因型的黄瓜为试材,比较了苗龄、激素配比、外植体类型、芽诱导时间的长短以及基因型对再生频率的影响。结果表明,以2天苗龄的黄瓜子叶为外植体,在MS+6-BA1 mg/L+ABA1 mg/L+Ades 20 mg/L的诱导培养基上诱导15天左右,转入MS+GA30.5 mg/L的芽伸长培养基,3种基因型黄瓜都能获得较高的植株再生率,每个外植体出苗数在1.8以上。从外植体接种到再生苗移栽仅需6~7周。  相似文献   

5.
激素配比对黄瓜子叶再生和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
在建立和优化黄瓜子叶不定芽再生系统的基础上,研究了黄瓜再生过程中激素配比对黄瓜再生频率和抗氧化酶SOD、POD和CAT活性变化的影响。试验表明:激素ABA和Ades对黄瓜不定芽的再生频率的影响很大,其中在MS+6-BA 1 mg/L+ABA 1 mg/L+Ades 40 mg/L培养基上的出芽率最高,达90.0%;在培养早期ABA和Ades都能明显提高外植体SOD含量,降低POD含量;黄瓜不定芽再生与SOD含量呈正相关,与POD含量呈负相关。  相似文献   

6.
提高八楞海棠遗传转化植株再生率技术的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步提高八楞海棠遗传转化效率,以八楞海棠试管苗不同组织部位(叶片、叶柄、节间茎段、破坏生长点的茎尖)为外植体,在含有0,1,3,5,10mg/L除草剂草丁膦(glufosinate)的分化培养基(MS+4mg/L6-BA+0.2mg/LNAA)上进行筛选压力的确定,其中3mg/L除草剂为适宜的筛选压力;在此筛选压力下,以八楞海棠不同外植体进行遗传转化,其中破坏生长点的茎尖处理组获得的再生芽效率最高,通过对部分再生苗进行PCR及Southern杂交检测,均鉴定为转化苗。  相似文献   

7.
以黄瓜4d苗龄子叶节和农杆菌GV3101为实验材料,对再生体系和转化体系条件进行优化。再生部分,将培养基中的6-BA和ABA设立浓度梯度,并添加适量的AgNO3,进行再生情况对比,得最佳配方MS+1.5mg/L 6-BA+1.0mg/L ABA+2.0mg/L AgNO3,可直接诱导出芽,最短45d获得完整植株。转化部分,根据敏感性试验确定选择培养卡那霉素(kan)筛选压,并运用gus瞬时表达法对预培养时间、侵染时间、共培养时间和抗氧化剂的添加等影响转化效率的因素进行优化。结果表明,50mg/L kan筛选压即可筛选出阳性株;预培养时间1~2d,侵染时间20~30min,共培养3d时转化效率较高;抗氧化剂的加入可显著提高转化效率。对该转化体系进行验证,PCR结果初步表明外源基因成功整合入黄瓜基因组中。  相似文献   

8.
利用诱导分化培养基(MS BA 1.5mg·L-1 ABA 0.5mg·L-1 AgNO3 2.0mg·L-1 蔗糖30g·L-1 琼脂5.8g·L-1,pH5.8)对26个黄瓜自交系的子叶进行离体再生培养,其中的S52、S94、S04、S17S44和S47等6个自交系具有较高的不定芽分化率,最高达93%(S44),最低为57%(S94)。除草剂PPT对这6个材料再生分化的抑制程度品种间差异较大。以S52(ff)的子叶为外植体,以pEZT-ACS1为中间载体,利用优化的S52诱导分化培养基MS BA 2.0mg·L-1 ABA 2.0mg·L-1 AgNO3 2.0mg·L-1进行农杆菌(LBA4404)介导的遗传转化,选择培养基中PPT浓度为2.0mg·L-1,生根培养基中PPT浓度为1.0mg·L-1,获得抗性再生苗,经PCR检测有15株为阳性株,炼苗移栽到温室。  相似文献   

9.
刘海臣  王秀香  刘海学  朱文碧 《安徽农业科学》2010,38(28):15498-15499,15506
[目的]研究了向日葵子叶节的再生,为逐步建立起高效、稳定的向日葵遗传转化系统提供理论和实践依据。[方法]以不同基因型向日葵为材料,研究了向日葵子叶节在不同的培养基中诱导不定芽再生的情况。[结果]不同基因型向日葵子叶节在含适宜IAA、6-BA等激素的培养基中均较易形成愈伤组织;不同基因型向日葵子叶节不定芽诱导的适宜6-BA浓度存在差异,龙食葵为1.2mg/L,PR29则为1.8mg/L;不同基因型向日葵不定芽的诱导能力不同,其中基因型PR29再生能力较强。[结论]培养基配方MS+0.03mg/LIAA+1.2mg/L6-BA可用于向日葵子叶节再生体系的培养。  相似文献   

10.
大豆子叶节再生及农杆菌介导转化研究   总被引:5,自引:0,他引:5  
用大豆早熟一号无菌苗不同外植体进行再生研究发现都能获得再生植株,但再生能力差异较大,以子叶节和顶芽的再生能力较强且以子叶节作为遗传转化的受体较好,宜用带少量子叶的子叶节作外植体,AS浓度160μmol/L、40min浸染时间、共培养2d进行农杆菌介导转化和Kan浓度120mg/L筛选获得的转化抗性苗率较高。  相似文献   

11.
以剑麻H.11648为材料,研究不同外植体、培养基和激素对不定芽诱导及生根的影响。试验结果表明,以珠芽苗茎尖为最佳快繁材料,最佳消毒时间25 min,最适合的基本培养基为SH;最佳分化培养基为SH+NAA0.05 mg/L+6-BA 4 mg/L,芽的分化率达到85%,同时可做增殖培养基,增殖平均倍数为18。分化芽在MS和SH两种培养基中添加NAA 0.1 mg/L+6-BA 0.1 mg/L中均可生根,生根率为95%。  相似文献   

12.
半夏胚状体诱导及植株再生的研究   总被引:1,自引:1,他引:0  
以采自甘肃省西和县的野生半夏为试验材料,以MS为基础培养基,观察了不同的激素配比及不同外植体对愈伤组织诱导、胚状体分化及植株再生的影响.结果表明,最佳培养基为MS+2,4-D(0.5 mg/L)+6-BA(1.5 mg/L),外植体以叶柄、株芽和块茎为好.  相似文献   

13.
[目的]探究独一味组培快繁技术体系,保护并合理利用独一味资源.[方法]选取独一味无菌苗的子叶、嫩芽和幼根为外植体,采用不同类型的培养基和不同种类的植物生长调节剂进行组培快繁研究.[结果]独一味幼叶、嫩芽和幼根均可诱导出愈伤组织,其中幼根的愈伤组织诱导率最高,达93.5%,出愈时间为7d,最适诱导培养基为MS +1.0mg/L2,4-D+ 0.5 mg/L 6-BA+ 0.5 mg/L NAA;丛生芽诱导的适宜培养基为MS+ 1.0 mg/L 6-BA+ 0.5 mg/L NAA,诱导率达88.8%;生根的适宜培养基为1/2 MS+ 0.5 mg/L NAA,诱导率高达97.9%.[结论]利用组织培养技术能够实现独一味的快速繁殖,为独一味资源的可持续利用提供参考.  相似文献   

14.
以单瓣、重瓣两个晚香玉品种叶片为材料,选用4种升汞消毒时间、6种愈伤组织诱导培养基、6种分化培养基和9种生根培养基,研究不同基因型和激素组合对再生体系建立的影响。结果表明:(1)叶片的消毒时间为0.1%HgCl2浸泡2min;(2)诱导单瓣叶片愈伤形成的较适培养基为:MS+6-BA2.0mg/L+NAA1.0mg/L:诱导重瓣叶片愈伤形成的较适培养基为:MS+6-BA1.5mg/L+NAA0.5mg/L.(2)2单瓣叶片分化最佳配方为:MS+6-BA1.0mg/L+NAA0.5mg/L;重瓣叶片分化的较适培养基为:MS+6-BA0.5mg/L+NAA0.2mg/L,(3)诱导生根的最佳培养基为:1/2MS+KT0.2mg/L+NAA0.5mg/L+6-BA0.2mg/L。  相似文献   

15.
【目的】探索灰木莲组培快繁体系,为灰木莲的进一步开发和利用提供参考依据。【方法】以灰木莲盆栽苗的带芽茎段为外植体,以MS为基本培养基,通过添加不同种类、不同浓度植物生长调节剂,研究不同培养基对腋芽萌发、芽增殖及生根的影响。【结果】1~5号培养基均可以诱导灰木莲腋芽萌发,其中3号培养基MS+6-BA0.5mg/L+NAA0.1mg/L腋芽萌发速度最快,芽的诱导率89.3%;添加KT(Kinetin,激动素)的10~13号培养基增殖系数为2.2~2.7,没有添加KT的6~9号培养基增殖系数为1.8~2.2,11号培养基MS+6-BA0.3mg/L+NAA0.05mg/L+KT1.0mg/L芽的增殖系数可达2.7,为最适宜的增殖培养基;添加生长调节剂浓度在0.5mg/L以上的17~21号培养基能诱导灰木莲组培苗生根,其中NAA浓度为0.5、1.5、2.0mg/L生根率分别为33.3%、45.4%、58.3%,21号培养基1/2MS+NAA2.0mg/L上生根率最高。【结论】初步建立灰木莲组织培养体系,组培苗的芽诱导率和增殖率较高,苗木长势良好。  相似文献   

16.
[目的]建立短果杜鹃高效快繁体系,实现短果杜鹃的高效离体快繁。[方法]以短果杜鹃嫩茎段为外植体,选用U10(10^8)均匀表,考察IAA、IBA、NAA和GA,浓度交叉配比对短果杜鹃腋芽生长伸长及生根的影响,筛选最适合短果杜鹃腋芽萌发生长及生根的培养基。继代快繁采取节培法。[结果]最适合嫩茎段的腋芽萌发生长及生根的最佳培养基为MS(改良)+IAA0.15mg/L+IBA0.30mg/L+GA,3.00mg/L,再生率达92%以上。以再生植株的茎节为材料进行快繁的结果表明,在35d的1个培养周期内增殖倍数平均达45以上。待苗根长至2.0cm以上时,从培养瓶中取出试管苗,在含有5.00mg/L杀毒矾溶液中洗去苗上残留的琼脂,然后将苗植入经20倍杀毒矾消毒过的腐烂松针、泥炭土和细河砂混合(比例为2:2:1)的基质中,用透光好的塑料薄膜覆盖以保湿保温,湿度保持在75%,温度控制在(18±2)℃,每天自然光照8h,每天中午通风换气10min。10d后揭去薄膜,每天早晚喷洒清水各1次。采用上述炼苗和移栽方法,短果杜鹃试管苗的成活率达95%以上。[结论]该研究建立了短果杜鹃的高效快繁体系,为长白山高山杜鹃的开发利用和工厂化育苗提供了依据。  相似文献   

17.
【目的】探讨啤酒花品种青岛大花脱毒苗植株再生技术,以期获得青岛大花脱毒苗快速繁殖的便捷途径。【方法】以青岛大花脱毒苗的单芽茎段为外植体,分别以不同水质(自来水、凉开水、蒸馏水、当地井水)、不同前茬和简易营养液处理(带芽根茬、带芽根茬+简易营养液、新鲜培养基)及不同激素组合进行芽诱导和植株再生。【结果】在芽诱导及植株再生培养过程中,以当地井水进行外植体培养的效果较好,虽然其诱导芽数、新增芽数、增殖倍数稍低于对照蒸馏水,但生根茎段数、生根率、平均根长、茎粗和株高均最高,其次为凉开水处理;自来水处理的生根茎段数、诱导芽数、新增芽数、增殖倍数、株高等均明显低于蒸馏水对照。在前茬培养基上添加10mL简易培养液对外植体培养20d,其诱导芽数、新增芽数、增殖倍数、株高均明显高于新鲜固体培养基处理,且叶色均浓绿。在不同激素组合中,随着6-BA、IAA浓度的增加,单芽茎段的诱导芽数、生根率、增殖倍数呈先降低后增加的趋势,其中以原继代培养的激素组合6一BA0.1mg/L+IAA0.2mg/L的诱导芽数、生根率、增殖倍数最高,其次为激素组合6-BA0.01mg/L+IAA0.02mg/L。【结论】在外植体诱导和植株再生培养中,可用当地井水、凉开水作为培养基介质取代蒸馏水;继续利用前代培养基并留茬、再适量添加简易培养液对外植体进行培养,可有效提高脱毒苗的增殖倍数,且再生苗质量不受影响;可使用含低浓度激素组合(6-BA0.01mg/L+IAA0.02mg/L)进行脱毒试管苗芽诱导和植株再生培养,从而节省生产成本。  相似文献   

18.
辣椒子叶和下胚轴的离体培养及高效再生体系的建立   总被引:13,自引:2,他引:13  
采用 9 个辣椒品种(Capsicum annuum L.)的子叶和下胚轴,分别离体培养在附加不同激素及化合物的MB5培养基上,对苗龄、基因型、不同外植体、激素组合和 AgNO3等对外植体不定芽诱导分化和芽伸长的影响进行研究。结果表明,苗龄对外植体不定芽分化的方式有直接影响;AgNO3的加入可使芽分化率平均提高 20 %~30 %,并缩短外植体再生时间;子叶的不定芽分化率高于下胚轴;B5维生素有利于芽的生长和芽伸长率的提高。通过结果比较,筛选出了辣椒子叶和下胚轴离体再生的较好芽分化培养基为 MB5+5 mg/L、6-BA+0.5 mg/L、IAA+4 mg/L、AgNO3+30 g/L、蔗糖+5 g/L 琼脂;芽伸长培养基为 MB5+3 mg/L、6-BA+1 mg/L、IAA+2 mg/L、GA3+4 mg/L、AgNO3+30 g/L、蔗糖+5 g/L 琼脂;生根培养基为 1/2 MS+0.2 mg/L、IAA+0.1 mg/L NAA。  相似文献   

19.
[目的]建立兰州百合鳞茎快繁体系,并测定丛芽与鳞茎的淀粉含量,为系统研究兰州百合鳞茎离体再生过程中淀粉的代谢奠定基础.[方法]以兰州百合鳞片为外植体,探讨不同消毒剂组合、激素与蔗糖用量对鳞茎诱导培养过程的影响.[结果]随着75%乙醇(10~30 s)与0.1%升汞消毒时间(7~10min)的延长,外植体鳞片污染数不断下降,但诱导芽数表现为先上升后下降的趋势,以75%乙醇消毒30 s+0.1%升汞消毒10 min组合的消毒效果最好,外植体污染率和芽诱导率分别为12.33%和91.00%.使用1000倍多菌灵处理10 min后,再使用75%乙醇30 s +0.1%升汞7~13 min组合进行消毒,可明显降低鳞片污染率3.00%~5.00%(绝对值).在MS+0.03 mg/L NAA+30.0 g/L蔗糖+5.0 g/L琼脂培养基中添加6-BA 0.5~1.0 mg/L,可显著提高平均芽诱导数;在MS+5.0 g/L琼脂培养基中添加30.0~60.0 g/L蔗糖,对外植体芽诱导无明显影响;培养基MS+1.0 mg/L 6-BA+0.03 mg/L NAA+30.0 g/L蔗糖+5.0 g/L琼脂是外植体芽诱导的最适培养基.MS+0.50 mg/L 6-BA+0.03 mg/L NAA+30.0 g/L蔗糖+5.0 g/L琼脂为适宜增殖培养基,芽增殖系数达最高,为3.67.在MS培养基中添加60.0~90.0 g/L蔗糖可明显促进鳞茎的形成,以添加90.0 g/L蔗糖处理的鳞茎重量最高(99.30mg).小鳞茎的淀粉质量分数比丛芽增加62.34%.[结论]以鳞片为外植体建立的兰州百合鳞茎再生繁殖体系具有可行性;在丛芽至小鳞茎形成阶段淀粉含量明显升高,小鳞茎的形成与淀粉含量升高密切相关.  相似文献   

20.
【目的】探讨不同灭菌剂对外植体的灭菌效果及不同激素浓度和组合对不定芽诱导和增殖的影响,建立龙选蕉的高频再生体系。【方法】以龙选蕉吸芽为外植体,以升汞和0.2%次氯酸钠对外植体灭菌;采用0~6.0mg/L6-BA、0.1~0.2mg/LNAA激素组合对不定芽进行诱导或增殖培养。【结果】相对于升汞,次氯酸钠对龙选蕉外植体灭菌的效果更理想,灭菌率达到90.47%,且外植体生长良好,无中毒现象。在不定芽诱导培养基中,随着6-BA浓度的升高,不定芽萌发率呈先增加后降低趋势,其中以添加6-BA3.0mg/L的诱导效果最理想,萌发率为66.67%;随着6-BA和NAA浓度的提高,不定芽的增殖系数也随之增加,其中以4.0mg/L6-BA+0.2mg/LNAA为最佳组合,不定芽增殖效果最理想,增殖系数为4.05,芽苗粗壮,叶片颜色正常。【结论】次氯酸钠对龙选蕉吸芽的消毒效果优于升汞,操作简便,易于获得无菌外植体并利于不定芽生长;不定芽诱导最佳培养基为MS+3.0mg/L6-BA;不定芽增殖最佳培养基为MS+4.0mg/L6-BA+0.2mg/LNAA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号