首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Six mature Holstein bulls were each given 10 mg of phenylbutazone (PBZ)/kg of body weight, PO. Of the 6 bulls, 3 were given 10 mg of PBZ/kg by rapid IV administration 4 weeks later. Plasma concentration-vs-time data were analyzed, using nonlinear regression modeling (sum of exponential functions). The harmonic mean of the biologic half-life of PBZ was 62.6 +/- 12.9 hours after oral administration and 61.6 +/- 7.2 hours after IV administration. The mean residence time was 94.61 +/- 8.44 hours and 90.49 +/- 8.93 hours for oral and IV administration, respectively. The mean total body clearance was 0.0015 +/- 0.0003 L/h/kg, with the mean apparent volume of distribution 0.134 +/- 0.021 L/kg. Mean bioavailability was 73 +/- 2% after oral administration. Phenylbutazone was adequately absorbed from the gastrointestinal tract in bulls. The apparent volume of distribution was small, indicating that PBZ distributed mainly into plasma and extracellular fluid. The total body clearance was also small, which accounted for the long half-life of PBZ in bulls.  相似文献   

2.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

3.
A disposition and bioequivalence study with a suxibuzone granulated and a suxibuzone paste oral formulation was performed in horses. Suxibuzone (SBZ) is a nonsteroidal anti-inflammatory drug, which was administered to horses (n = 6) at a dosage of 19 mg/kg bwt by the oral route (p.o.) in a two period cross-over design. Suxibuzone is very rapidly transformed into its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ). Therefore plasma and synovial fluid concentrations of SBZ, PBZ and OPBZ were simultaneously measured by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Suxibuzone could not be detected in any plasma and synovial fluid samples (< 0.04 microgram/mL). Plasma PBZ and OPBZ concentrations were detected between 30 min and 72 h after granulate and paste administration. Mean plasma concentration of PBZ peaked at 5 h (34.5 +/- 6.7 micrograms/mL) and at 7 h (38.8 +/- 8.4 micrograms/mL), and mean area under the concentration-time curve (AUC0-->LOQ) was 608.0 +/- 162.2 micrograms.h/mL and 656.6 +/- 149.7 micrograms.h/mL after granulate and paste administration, respectively. Mean plasma concentration of OPBZ increased to 5-6.7 micrograms/mL, with the maximum concentration (Cmax) appearing between 9 and 12 h after administration of both formulations. The AUCs0-->LOQ for OPBZ were also similar (141.8 +/- 48.3 micrograms.h/mL granulate vs. 171.4 +/- 45.0 micrograms.h/mL paste). It was concluded that the suxibuzone products were bioequivalent with respect to PBZ. For OPBZ, the 95% confidence intervals of the pharmacokinetic parameters were within the acceptable range of 80-125%. The paste formulation provided greater bioavailability of PBZ and OPBZ.  相似文献   

4.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

5.
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares.  相似文献   

6.
Six healthy adult mixed breed dogs were each given 5 oral doses of trimethoprim (TMP)/sulfadiazine (SDZ) at 2 dosage regimens: 5 mg of TMP/kg of body weight and 25 mg of SDZ/kg every 24 hours (experiment 1) and every 12 hours (experiment 2). Serum and skin concentrations of each drug were measured serially throughout each experiment and mean serum concentrations of TMP and SDZ were determined for each drug for 24 hours (experiment 1) and 12 hours (experiment 2) after the last dose was given. In experiment 1, mean serum TMP concentration was 0.67 +/- 0.02 micrograms/ml, and mean skin TMP concentration was 1.54 +/- 0.40 micrograms/g. Mean serum SDZ concentration was 51.1 +/- 12.2 micrograms/ml and mean skin SDZ concentration was 59.3 +/- 9.8 micrograms/g. In experiment 2, mean serum TMP concentration was 1.24 +/- 0.35 micrograms/ml and mean skin TMP concentration was 3.03 +/- 0.54 micrograms/g. Mean serum SDZ concentration was 51.6 +/- 9.3 micrograms/ml and mean skin SDZ concentration was 71.1 +/- 8.2 micrograms/g. After the 5th oral dose in both experiments, mean concentration of TMP and SDZ in serum and skin exceeded reported minimal inhibitory concentrations of TMP/SDZ (less than or equal to 0.25/4.75 micrograms/ml) for coagulase-positive Staphylococcus sp. It was concluded that therapeutically effective concentrations in serum and skin were achieved and maintained when using the manufacturer's recommended dosage of 30 mg of TMP/SDZ/kg (5 mg of TMP/kg and 25 mg of SDZ/kg) every 24 hours.  相似文献   

7.
The pharmacokinetic disposition of theophylline was determined by high-performance liquid chromatographic analysis of plasma samples from six healthy, adult horses following the administration of intravenous aminophylline (dosed at 9.94 mg/kg as theophylline), immediate-release aminophylline tablets (dosed at 9.94 mg/kg as theophylline), and sustained-release theophylline tablets (dosed at 20 mg/kg). The elimination rate constant (lambda z), apparent volume of distribution (Vz), and clearance (Cl) determined by compartmental analysis of the intravenous data were 0.07 +/- 0.01 h-1, 0.80 +/- 0.06 l/kg, and 0.06 +/- 0.01 l/kg/h (mean +/- SD), respectively. Mean residence time determined by statistical moment theory of the oral data was different (P less than 0.05) for the immediate-release aminophylline (13.8 +/- 2.8 h) and sustained-release theophylline (18.2 +/- 2.3 h) formulation. Immediate-release aminophylline tablets quickly achieved peak theophylline plasma concentration of 11.51 +/- 1.4 micrograms/ml at 1.6 +/- 0.6 h while the sustained-release theophylline tablets were more slowly absorbed and achieved peak theophylline concentrations of 17.20 +/- 1.3 micrograms/ml at 7.3 +/- 1.0 h. Absolute bioavailability was 87% for the immediate-release and 97% for the sustained-release formulation. Using the principle of superposition, a loading dose of 20 mg/kg of the sustained-release formulation followed by maintenance doses of 15 mg/kg every 24 h was predicted to achieve trough-peak theophylline plasma concentrations between 6 and 17 micrograms/ml.  相似文献   

8.
Suxibuzone (SBZ), a nonsteroidal anti-inflammatory drug, was administered to 6 horses at a dose rate of 7.5 mg/kg bwt by intravenous (i.v.) route. Plasma and synovial fluid concentrations of suxibuzone and its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ), were measured simultaneously by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Plasma SBZ concentrations rapidly decreased and were not detectable beyond 20 min after treatment. The parent drug was not detected in any synovial fluid samples. Average maximum plasma concentrations of PBZ (16.43 microg/ml) and OPBZ (2.37 microg/ml) were attained at 0.76 and 7.17 h, respectively. The mean residence time (MRT) of PBZ was 6.96 h in plasma. Oxyphenbutazone plasma concentrations were below those reached by phenylbutazone during the first 12 h after suxibuzone administration, even though its values were detectable for at least 24 h (MRT = 10.65 h). Plasma concentrations of PBZ and OPBZ exceeding EC50 and IC50 of TXB2 and PGE2 were reached by at least 12 h. Synovial fluid concentrations of PBZ and OPBZ were 2.87+/-0.37 microg/ml and 0.97+/-0.08 microg/ml at 9 h after suxibuzone administration and exceeded IC50 of PGE2 for at least this time. In the present study, suxibuzone was well tolerated following i.v. injection.  相似文献   

9.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In a 4 x 4 crossover-design study, pharmacokinetic variables of 2 injectable formulations of netobimin (trisamine salt solution and zwitterion suspension) were compared after SC administration in calves at dosage of 12.5 mg/kg of body weight. Netobimin parent drug was rapidly absorbed, being detected between 0.25 and 12 hours after treatment, with maximal plasma drug concentration (Cmax) values of 2.20 +/- 1.03 micrograms/ml achieved at 0.75 +/- 0.19 hour (trisamine) and 1.37 +/- 0.59 micrograms/ml at 0.81 +/- 0.18 hour (zwitterion). Netobimin area under the plasma concentration-time curve (AUC) was 7.59 +/- 3.11 micrograms.h/ml (trisamine) and 6.98 +/- 1.60 micrograms.h/ml (zwitterion). Elimination half-life (t1/2 beta) was 2.59 +/- 0.63 hours (trisamine) and 3.57 +/- 1.45 hours (zwitterion). Albendazole was not detected at any time. Albendazole sulfoxide was detected from 4 hours up to 20 hours (trisamine) and from 6 hours up to 24 hours (zwitterion) after administration of the drug. The Cmax values were 0.48 +/- 0.16 micrograms/ml and 0.46 +/- 0.26 micrograms/ml for trisamine and zwitterion formulations, respectively, achieved at time to peak drug concentration (Tmax) values of 9.50 +/- 1.41 hours (trisamine) and 11.30 +/- 1.04 hours (zwitterion). Albendazole sulfoxide AUC was 3.86 +/- 1.04 micrograms.h/ml (trisamine) and 4.40 +/- 3.24 micrograms.h/ml (zwitterion); t1/2 beta was 3.05 +/- 0.75 hours (trisamine) and 3.90 +/- 1.44 hours (zwitterion). Albendazole sulfone was detected from 4 (trisamine) or 6 hours (zwitterion) to 24 hours after treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Theophylline was administered to six Beagles intravenously (Aminophyllin Injectable, Searle Laboratories) and orally as four sustained-release formulations (Choledyl -SA Tablets, Parke-Davis; Theo-Dur Tablets, Key Pharmaceuticals; Theo-24 Capsules, Searle Laboratories, and Slo-bid Gyrocaps, William H. Rorer, Inc.). Values were determined for mean residence time, mean absorption time, absolute bioavailability, time to peak plasma concentration, and peak plasma concentration normalized to a theophylline dose of 20 mg/kg. In this order the values found for each formulation were: Choledyl (10.2 +/- 1.8 h, 2.8 +/- 2.2 h, 63 +/- 10%, 3.9 +/- 1.0 h, 10 +/- 1.1 micrograms/ml), Theo-Dur (12.1 +/- 5.2 h, 4.9 +/- 5.3 h, 76 +/- 18% 4.7 +/- 3.1 h, 12 +/- 3.7 micrograms/ml), Theo-24 (15.6 +/- 8.9 h, 8.1 +/- 8.4 h, 30 +/- 16%, 3.6 +/- 1.7 h, 3.5 +/- 1.3 micrograms/ml), and Slo-bid (11.9 +/- 1.9 h, 4.4 +/- 1.3 h, 60 +/- 9%, 4 +/- 1.1 h, 8.6 +/- 0.8 micrograms/ml). Choledyl, Theo-Dur and Slo-bid appear to have absorption characteristics which, if given twice daily, would maintain therapeutic plasma concentrations of theophylline between 10 and 20 micrograms/ml in the dog. Of these, Theo-Dur was predicted to provide the least peak:trough fluctuation in theophylline plasma concentrations.  相似文献   

12.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
OBJECTIVE: To determine pharmacokinetics of single and multiple doses of rimantadine hydrochloride in horses and to evaluate prophylactic efficacy of rimantadine in influenza virus-infected horses. ANIMALS: 5 clinically normal horses and 8 horses seronegative to influenza A. PROCEDURE: Horses were given rimantadine (7 mg/kg of body weight, i.v., once; 15 mg/kg, p.o., once; 30 mg/kg, p.o., once; and 30 mg/kg, p.o., q 12 h for 4 days) to determine disposition kinetics. Efficacy in induced infections was determined in horses seronegative to influenza virus A2. Rimantadine was administered (30 mg/kg, p.o., q 12 h for 7 days) beginning 12 hours before challenge-exposure to the virus. RESULTS: Estimated mean peak plasma concentration of rimantadine after i.v. administration was 2.0 micrograms/ml, volume of distribution (mean +/- SD) at steady-state (Vdss) was 7.1 +/- 1.7 L/kg, plasma clearance after i.v. administration was 51 +/- 7 ml/min/kg, and beta-phase half-life was 2.0 +/- 0.4 hours. Oral administration of 15 mg of rimantadine/kg yielded peak plasma concentrations of < 50 ng/ml after 3 hours; a single oral administration of 30 mg/kg yielded mean peak plasma concentrations of 500 ng/ml with mean bioavailability (F) of 25%, beta-phase half-life of 2.2 +/- 0.3 hours, and clearance of 340 +/- 255 ml/min/kg. Multiple doses of rimantadine provided steady-state concentrations in plasma with peak and trough concentrations (mean +/- SEM) of 811 +/- 97 and 161 +/- 12 ng/ml, respectively. Rimantadine used prophylactically for induced influenza virus A2 infection was associated with significant decreases in rectal temperature and lung sounds. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of rimantadine to horses can safely ameliorate clinical signs of influenza virus infection.  相似文献   

14.
Pharmacokinetics of amikacin in cats   总被引:1,自引:0,他引:1  
Six mixed-breed adult cats were given 5 mg of amikacin sulfate/kg of body weight by rapid IV, IM, and SC routes of administration. The serum concentration-vs-time data were analyzed, using a noncompartmental model. The harmonic mean +/- pseudo-SD of the effective half-life of amikacin was 78.8 +/- 19.3 minutes after IV administration, 118.7 +/- 14.4 minutes after IM administration, and 117.7 +/- 12.8 minutes after SC administration. The arithmetic mean +/- SD of mean residence time was 118.3 +/- 21.7 minutes, 173.4 +/- 19.9 minutes, and 171.7 +/- 19.1 minutes after IV, IM, and SC drug administration, respectively. The mean apparent volume of distribution at steady state was 0.17 +/- 0.02 L/kg, and the mean total body clearance was 1.46 +/- 0.26 ml/min/kg. Mean bioavailability was 95 +/- 20% after IM administration and 123 +/- 33% after SC drug administration. A recommended dosage of 10 mg/kg, q 8 h can be expected to provide a therapeutic serum concentration of amikacin with a mean steady-state concentration of 14 micrograms/ml. The SC route of administration is preferred, because of rapid absorption, good bioavailability, and ease of administration.  相似文献   

15.
Oxytetracycline (OTC) concentration in plasma and tissues, plasma pharmacokinetics, depletion from tissue, and toxicity were studied in 30 healthy calves after IM administration of a long-acting OTC preparation (40 mg/kg of body weight) at double the label dosage (20 mg/kg). Plasma OTC concentration increased rapidly after drug administration, and by 2 hours, mean (+/- SD) values were 7.4 +/- 2.6 micrograms/ml, Peak plasma OTC concentration was 9.6 +/- 2.6 micrograms/ml, and the time to peak plasma concentration was 7.6 +/- 4.0 hours. Plasma OTC concentration decreased slowly for 168 hours (elimination phase) after drug administration, and the elimination half-life was 23.9 hours. Plasma OTC concentration exceeded 3.8 micrograms/ml at 48 hours after drug administration. From 168 to 240 hours after drug administration, plasma OTC concentration decreased at a slower rate than that seen during the elimination phase. This slower phase was termed the depletion phase, and the depletion half-life was 280.7 hours. Tissue OTC concentration was highest in kidneys and liver. Lung OTC concentration exceeded 4.4 micrograms/g of tissue and 2.0 micrograms/g of tissue at 12 and 48 hours after drug administration, respectively. The drug persisted the longest in kidneys and liver. At 42 days after drug administration, 0.1 micrograms of OTC/g of kidney was detected. At 49 days after drug administration, all OTC tissue concentrations were below the detectable limit. Reactions and toxicosis after drug administration were limited to an anaphylaxis-like reaction (n = 1) and injection site swellings (n = 2).  相似文献   

16.
The pharmacokinetics of amikacin were studied in healthy mature female chickens (n = 6). Single doses of amikacin were injected as an i.v. bolus (10 mg/kg) and i.m. (20 mg/kg) into the same birds with a 30-day rest period between treatments. Amikacin was determined by the fluorescence polarization immunoassay method. The i.v. pharmacokinetics could be described by a two-compartment model with a t1/2 alpha of 0.150 +/- 0.064 h and a t1/2 beta of 1.44 +/- 0.34 h. The total body clearance was 0.109 +/- 0.017 1/h/kg and the volume of distribution at steady-state was 0.193 +/- 0.060 l/kg. Following a single i.m. injection, the peak plasma concentration (Cmax) was 50.79 +/- 4.05 micrograms/ml and occurred at 0.50 +/- 0.26 h. The i.m. extent of absorption was 91.2 +/- 17.6%. Simultaneous modeling of i.v. and i.m. results provided estimates of an absorption half-life of 0.480 +/- 0.158 h. The i.m. pharmacokinetics after repeated administration were studied following the tenth dose (20 mg/kg, every 8 h). The Cssmax was 38.58 +/- 6.96 micrograms/ml and occurred at 0.79 +/- 0.37 h, and the biological half-life of amikacin was 1.86 +/- 0.47 h. The multiple dosing yielded peak concentrations of 39 micrograms/ml and trough concentrations of 3.26 micrograms/ml. Based on these data, the recommended amikacin dosage in chickens is 20 mg/kg body weight every 8 h.  相似文献   

17.
Ciprofloxacin, a fluoroquinolone antimicrobial agent, was administered orally to 4 healthy dogs at dosage of approximately 11 and 23 mg/kg of body weight, every 12 hours for 4 days, with a 4-week interval between dosing regimens. Serum and tissue cage fluid (TCF) concentrations of ciprofloxacin were measured after the first and seventh dose of each dosing regimen. The peak concentration was greatest in the serum after multiple doses of 23 mg/kg (mean +/- SEM; 5.68 +/- 0.54 micrograms/ml) and least in the TCF after a single dose of 11 mg/kg (0.43 +/- 0.54 micrograms/ml). The time to peak concentration was not influenced by multiple dosing or drug dose, but was longer for TCF (6.41 +/- 0.52 hour) than for serum (1.53 +/- 0.52 hour). Accumulation of ciprofloxacin was reflected by the area under the concentration curve from 0 to 12 hours after administration (AUC0----12). The AUC0----12 was greatest in the serum after multiple doses of 23 mg/kg (31.95 +/- 1.90 micrograms.h/ml) and least in the TCF after a single dose of 11 mg/kg (3.87 +/- 1.90 micrograms.h/ml). The elimination half-life was not influenced by multiple dosing or dose concentration, but was greater for TCF (14.59 +/- 1.91 hours) than for serum (5.14 +/- 1.91 hours). The percentage of TCF penetration (AUCTCF/AUCserum) was greater after multiple doses (95.76 +/- 6.79%) than after a single dose (55.55 +/- 6.79%) and was not different between doses of 11 and 23 mg/kg. Both dosing regimens of ciprofloxacin resulted in continuous serum and TCF concentrations greater than 90% of the minimal inhibitory concentration for the aerobic and facultative anaerobic clinical isolates tested, including Pseudomonas aeruginosa.  相似文献   

18.
Pharmacokinetics of phenobarbital in the horse   总被引:2,自引:0,他引:2  
Pharmacokinetics of phenobarbital was examined in 6 mature horses after 12 mg of phenobarbital/kg of body weight was infused over 20 minutes. Biexponential decrease in serum phenobarbital concentrations was observed with a distribution-phase half-life of 0.101 +/- 0.086 hour (mean +/- SD) and a terminal-phase elimination half-life of 18.3 +/- 3.65 hours. The volume of distribution at steady state was 0.803 +/- 0.070 L/kg. Total body clearance of phenobarbital was 30.8 +/- 6.2 ml/h/kg. The high clearance in the horse seems to explain the markedly shorter half-life of phenobarbital in this species. Seemingly, 6.65 mg of phenobarbital/kg as a 20-minute infusion given every 12 hours would provide approximate peaks of 29 micrograms/ml and troughs of 15 micrograms/ml. A loading dose of 12 mg of phenobarbital/kg would be appropriate for this regimen.  相似文献   

19.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

20.
Theophylline was administered in a three-way crossover design study to six cats intravenously (Aminophylline USP, Invenex Laboratories, Chagrin Falls, OH) and orally as two sustained-release formulations (Slo-bid Gyrocaps (SB), William H. Rorer, Inc., Fort Washington, PA; Theo-Dur Tablets (TD), Key Pharmaceuticals, Miami, FL). Values were determined for mean residence time (SB = 19.4 +/- 3.2 h; TD = 15.8 +/- 4.8 h), mean absorption time (SB = 8.0 +/- 2.3 h; TD = 4.8 +/- 2.3 h), absolute bioavailability (SB = 82 +/- 27%; TD = 76 +/- 38%), and time to peak plasma concentrations (SB = 8 h; TD = 8 h). After normalization to a dose of 25 mg/kg, the average peak plasma concentrations were also predicted (SB = 10.5 +/- 3.4 micrograms/ml; TD = 14.3 +/- 6.7 micrograms/ml). Slo-bid was predicted to provide the least peak:trough fluctuation in theophylline concentrations. Slo-bid and Theo-Dur appear to have pharmacokinetic characteristics which, if given once-daily, would maintain plasma theophylline concentrations of 5-20 micrograms/ml in the cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号