首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Juvenile gilthead sea bream were fed to visual satiety with isonitrogenous diets based on fish meal and different plant ingredients (33–35% replacement) supplemented with free amino acids to meet the desired indispensable amino acid (IAA) profile and dispensable amino acid (DAA) content. In diets M and WB, IAA profile and DAA content resemble that of the muscle or whole body, respectively. In diets MGlu and WBGlu, DAA content was increased by adding -glutamic acid (Glu) and thus the IAA/DAA ratio varied from 1.13 (diet M) to 0.80 (diet WBGlu). Growth rates were not significantly different among experimental groups, but feed conversion ratio and nitrogen retention were impaired by the decrease of dietary IAA/DAA ratio. Postprandial ammonia excretion increased with the increase of dietary DAA content irrespective of IAA profile. Conversely, hepatic activity of glutamate dehydrogenase (GDH) was lower in fish fed diet WBGlu than in fish fed diet M. Hepatic growth hormone (GH) binding was not significantly affected by the dietary treatment, but circulating levels of insulin-like growth factor-I (IGF-I) and GH were, respectively, down- and up-regulated in fish fed diet WBGlu, which suggests some defect in the transmission of GH receptor signal. Fat retention and hepatic activities of lipogenic enzymes (glucose-6-phosphate dehydrogenase, G6PD; malic enzyme, ME) were decreased in fish fed diet MGlu. Key metabolic enzymes of hepatic glycolysis (glucokinase, GK) and gluconeogenesis (phosphoenolpyruvate carboxykinase, PEPCK) were also altered in this group of fish. Since soybean meal concentration was highest in diet MGlu, results on lipid and carbohydrate metabolism can be primarily attributed to this component of the diet. In contrast, data on growth performance, ammonia excretion and GH axis mainly reflect changes in the dietary amino acid profile, which reveals that a muscle IAA profile and a high IAA/DAA ratio are important in feeds for gilthead sea bream.  相似文献   

2.
Four semi-purified diets, containing crystalline amino acids (CAAs), were fed to juvenile red sea bream, Pagrus major in order to ascertain the ideal dietary amino acid pattern for this species. A control diet containing 50% casein–gelatin as protein sources, but no CAAs were fed to the fish. The other diets contained 30% casein–gelatin and 20% CAAs. CAAs were added to diets to simulate with amino acid pattern of the red sea bream eggs protein (REP), red sea bream larvae whole body protein (RLP), red sea bream juvenile whole body protein (RJP), and brown fishmeal protein (BFP). The juveniles (average initial body weight, 1.58 ± 0.01 g) were maintained in triplicate tanks and fed twice daily for 30 days. The highest weight gain was observed in juveniles fed the RJP diet. No significant difference was observed in juveniles fed the RLP and BFP diet. Feed efficiency ratio, protein efficiency ratio and amino acid retention in the whole body were significantly (p < 0.05) affected by the simulated dietary amino acid patterns. The essential amino acid profile and A/E ratios of the whole body after the growth trial showed little difference among the dietary treatments. The results suggest that red sea bream juveniles are able to utilize high amounts of CAA in coated form. The amino acid pattern of RJP could be used as an appropriate of reference dietary amino acid for this species.  相似文献   

3.
Juvenile gilthead sea bream (initial body weight ca. 100 g) were reared in an indoor flow through marine water system for 1 year. Fish were fed two isoenergetic [19.2 kJ g−1 dry matter (DM)] and isoproteic (426 g kg−1 DM) diets either based on fish meal (diet FM) or on a mixture of plant protein sources (diet PP), replacing 75% of fish meal protein. The growth trial was conducted in duplicate, two tanks for each dietary treatment. Growth performance and feed utilization were registered. Fillet quality parameters were evaluated and sensory analyses on cooked fillet were performed. Both groups had similar weight gain and specific growth rates. Feed intake was higher in sea bream fed diet FM (0.48 versus 0.44), while feed efficiency and protein efficiency ratio were significantly higher in sea bream fed PP (0.83 versus 0.77 and 2.0 versus 1.76, respectively). Sea bream fed diet FM had a lower hepatosomatic index (0.80 versus 0.87%), and a higher fillet yield (45.9 versus 44.9%). The fillet from sea bream fed diet FM had higher moisture (696 versus 682 g kg−1), lower lipid levels (91 versus 100 g kg−1) with higher levels of n‐3 polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA), while the PP fed sea bream presented a higher level of PUFA n‐6. There were minor differences in muscle free amino acid levels between the two diet groups. As regards sensory evaluation of cooked fillet, the judges were unable to discriminate the two dietary groups of fish. Summarizing, the results demonstrate the possibility to use diets containing high levels (750 g kg−1) of plant ingredients in gilthead sea bream without affecting growth performance and with minor effects on quality traits of commercial size sea bream.  相似文献   

4.
《水生生物资源》1999,12(1):23-30
The common dentex (Dentex dentex) is a sparid fish which is considered a suitable candidate for Mediterranean aqua-culture. A seven-weeks feeding trial was conducted over the summer period with common dentex, sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). All three species were fed to visual satiety with two practical diets with varying crude protein and crude fat levels (55 % protein, 9 % lipids; 46 % protein, 17 % lipids). The initial body weights were 8.2, 11.6 and 17.3 g for common dentex, sea bass and sea bream, respectively. In all cases, specific growth rates were not significantly affected by dietary treatment, but they varied among species (sea bass 1.7–1.8 %; sea bream 2.1–2.3 %; common dentex 3.1–3.2 %). When comparisons between fish species were made, we observed that the increase in growth rates was linked to a decrease of the whole body fat content, as a consequence of a greater utilisation of dietary lipids as energy substrates. Furthermore, in common dentex, the 17 % lipid diet was able to improve protein retention, but this diet effect was less significant in sea bream and sea bass. In contrast to sea bream, the 17 % lipid diet did not up-regulate plasma GH levels in common dentex, which provides additional evidence for a more efficient utilisation of dietary lipids.  相似文献   

5.
Arginine was hypothesized to be a model compound in the present study on molecular forms of indispensable amino acid (IAA) dietary supplementation. Juvenile South American pacu (Piaractus mesopotamicus) were fed diets containing arginine in a protein base (casein‐wheat gluten or casein‐gelatin), or the casein‐wheat gluten base supplemented with dipeptide or free arginine at two levels (5 and 10 g kg?1). Growth and protein efficiency ratios were significantly affected by diets, but not by arginine molecular form. Three free dispensable amino acids (DAA) and four IAA in plasma were affected by diet, but plasma arginine concentrations did not differ. Plasma urea concentrations, being very low in the pacu, and hepatic arginase activities, were not affected by diet (P = 0.10–0.11), but together with plasma ornithine, mirrored the growth data. Molecular form of arginine supplementation, free or dipeptide, significantly changed several free IAA (Phe, Leu, Ile, His) and urea, with a higher mean plasma concentration in dipeptide fed fish. The dietary treatments, or molecular form of the arginine supplementation, did not change proximate composition, except that calcium levels decreased with higher dietary arginine supplementation level. The present study indicates that dipeptides can provide IAA to pacu, and that arginine supplemented in this form is utilized as efficiently as in free form.  相似文献   

6.
Two experiments were conducted to investigate the effect of dietary taurine and cystine on growth and body composition of juvenile red sea bream Pagrus major. In Experiment I, a casein-based semi-purified diet included a small amount of fish meal were supplemented with taurine at the levels of 0 (control) and 1.0%. The experimental diets in Experiment II were without fishmeal and supplemented with taurine at 0 (control), 0.5, 1.0 and 2.0% or cystine at 1.0 and 2.0%. These diets were fed three times a day for 6 weeks to fish (average body weight: 2.3 g in Experiment I and 2.5 g in Experiment II). In Experiment I, fish fed the taurine-supplemented diet showed significantly (P < 0.05) improved growth, feed efficiency and feed consumption relative to fish fed the unsupplemental diet. The whole body taurine content increased, whereas the non-essential amino acid contents decreased, in fish fed the taurine-supplemental diet compared to fish fed the unsupplemented diet. In Experiment II, the growth, feed efficiency and feed consumption of fish fed the taurine-supplemented diets, irrespective of the dietary taurine levels, were significantly higher than those of fish fed the control diet and the cystine-supplemented diets. Taurine content in the whole body increased with the dietary taurine level, while the taurine contents did not increase by the supplemental cystine. Other free amino acid contents in the taurine-supplemented diet groups followed similar trends to those in Experiment I. These results indicate that supplemental taurine to a casein-based semi-purified diet at more than 0.5% improved the growth and feed performance of juvenile red sea bream. It is also suggested that juvenile red sea bream cannot metabolize cystine into taurine.  相似文献   

7.
A feeding trial was conducted to evaluate the effect of replacing fish meal protein with fermented soybean meal (FSM) on the growth performance, feed utilization, amino acid profile, body composition, morphological parameters, activity of antioxidant and digestive enzymes of black sea bream (Acanthopagrus schlegeli) juvenile. Five isonitrogenic and isolipidic diets were prepared with levels of 0 (control), 80, 160, 240 and 320 g kg?1 FSM. Triplicate groups (40 fish per tank) of juvenile black sea bream with initial weight of 1.17 ± 0.04 g were hand‐fed to visual satiation at three meals per day for 8 weeks. The fish fed diets containing different levels of FSM had no significant differences regarding survival and specific growth rate compared with control group. Feed and protein efficiency ratios of fish fed diet containing 320 g kg?1 FSM were significantly lower than those of control group. Daily feed intake and daily protein intake of fish fed diet containing 240–320 g kg?1 were significantly higher than those of control group. Hepatosomatic index and condition factor of fish were not affected by different dietary FSM level. Fish fed diets containing 240–320 g kg?1 FSM had significantly higher visceral somatic index than control group. Whole body proximate and amino acid compositions of fish were not affected by dietary FSM level. The activity of digestive enzymes in the intestine was not affected by dietary FSM level. The activity of glutathione peroxidase in liver was significantly higher for fish fed the diet containing 160 g kg?1 FSM compared with control group. This study showed that up to 40% fish meal in the diets of juvenile black sea bream could be replaced by fermented soybean meal with supplementation of methionine, lysine and taurine.  相似文献   

8.
A feeding trial using five semi-purified diets (50% crude protein) was conducted to investigate the effects of different dietary amino acid patterns on growth and body composition of juvenile Japanese flounder. The control diet contained casein and gelatin as intact protein sources and four other diets contained 30% casein–gelatin (2:1, w/w) and 20% crystalline amino acids (CAA). CAA were added to the diets to simulate the amino acid pattern found in red sea bream egg protein (REP), Japanese flounder larvae whole body protein (FLP), Japanese flounder juvenile whole body protein (FJP), and brown fish meal protein (BFP), respectively. The test diets were fed to triplicate groups of juveniles (2.75±0.05 g) twice a day for 40 days to evaluate weight gain, survival, feed conversion efficiency (FCE), protein efficiency ratio (PER), and apparent protein utilization (APU). The apparent retention of total dietary amino acids in the whole body and A/E ratios of the whole body were also evaluated. The highest weight gain was observed in fish fed the diet containing the dietary amino acid pattern of BFP followed by fish fed the control, FJP, FLP and the REP diets. Percent survival, FCE, PER and APU were also significantly (P<0.05) affected by the amino acid pattern in the diets, indicating the highest value in fish fed the BFP diet. Except for a few amino acids, the amino acid composition of the whole body did not show marked differences with different dietary amino acid pattern. Results suggest that BFP could be more suitable as a reference amino acid pattern in the diet of juvenile Japanese flounder compared to the amino acid pattern of FLP, FJP or REP.  相似文献   

9.
Experimental diets were formulated to evaluate a “pure” poultry meat meal (PMM) source in diets formulated for juvenile gilthead sea bream (Sparus aurata L.). The digestible protein contribution of fish meal in a control diet was substituted by 25%, 50% and 75% of a processed poultry meat meal (PMM) on a digestible crude protein (DCP) basis and by 5% and 10% for an enzyme‐treated feather meal (EFM) and also a spray‐dried haemaglobin meal (SDHM), respectively. In a consecutive trial, diets were designed to assess the value of a “pure” (defatted) poultry protein substituting the fish meal (FM) protein content. Experimental diets included: a control diet, two test diets where 75% of FM was replaced by a full‐fat PMM (PMM75) or a defatted grade of PMM (dPMM75) and two test diets where 50% of FM was substituted for defatted PMM (dPMM50) or a 50:50 blend of soya bean meal and defatted PMM (SBM/dPMM) to produce a composite product. This soya bean/dPMM blend was tested to enhance the nutritional value of this key plant ingredient commonly employed in sea bream diets that can be deficient in specific amino acids and minerals. In the first trial, gilthead sea bream grew effectively on diets containing up to the 75% replacement of FM attaining a mean weight of 63.6 g compared to 67.8 g for the FM control fed group. For the consecutive trial, the fishmeal‐based control diet yielded the highest SGR followed by dPMM50 and SBM/dPMM blend inclusion but was not significant. Carcass FA profiles of gilthead sea bream conformed to the expected changes in relation to the dietary FA patterns, with the 18:1n‐9 representative of the poultry lipid signature becoming more apparent with PMM inclusion. The ratio of n‐3/n‐6 fatty acids was greatly affected in sea bream fed the full‐fat PMM at 75% inclusion due to fish oil exclusion. Defatted dPMM, however, allowed more of the fish oil to be used in the diet and reducing this latter effect in sea bream carcass, hence restoring the higher total omega‐3 HUFA fatty acids namely EPA and DHA and n‐3/n‐6 ratio. It is concluded that poultry meat meal can be modestly incorporated into formulated diets for sea bream and can be used in conjunction with soya bean meal without any fundamental changes in performance and feed efficiency.  相似文献   

10.
The effects of a double replacement of fish oil (FO) and fish meal (FM) by dietary vegetable ingredients in juvenile gilthead sea bream (Sparus aurata L. 1758) on some indices of lipid metabolism and plasma insulin levels were analysed. Four experimental diets with a replacement of 75% of FM by plant proteins (PP) were administered. Added oil was either FO (75PP/FO diet), or a vegetable oil mix (VO), replacing 33%, 66% or 100% of FO (75PP/33VO, 75PP/66VO, 75PP/100VO diets). Another diet with 50% of substitution of FM by PP and with 100% of VO was also tested (50PP/100VO diet). Final body weight was similar in all diet groups, except for the 75PP/100VO group, which presented lower values. Circulating insulin levels increased with feed administration in all groups and no differences between diets were observed, with the exception of the 75PP/FO group, which presented higher plasma insulin values. In adipose tissue, glucose‐6‐phosphate dehydrogenase and malic enzyme activities decreased with the inclusion of vegetable oil, especially 5 h after feeding. Diet had no significant effect on the hepatic activity of either enzyme. Lipoprotein lipase activity decreased in white muscle and adipose tissue with the replacement of fish oil in 75PP diets, 5 h after feeding. In conclusion, the use of a combined replacement of fish oil and fish meal by vegetable ingredients in gilthead sea bream permits satisfactory growth, with moderate changes in tissue lipogenesis and lipid uptake.  相似文献   

11.
Substitution of marine ingredients (FM‐FO) by plant protein and oil sources can modify selenium (Se) levels in feeds. Se plays an important role in the antioxidative defence by forming part of selenoproteins. Se requirements of gilthead sea bream are not accurately determined; therefore, this study was conducted to define Se supplementation levels in low FM‐FO practical diets for sea bream fingerlings. A plant‐based diet containing 0.45 mg Se/kg diet was used as the basal diet. Four other diets were supplemented to contain 0.68, 0.86, 1.00 or 1.70 mg Se/kg diet, supplied as sodium selenite. Sea bream, weighing 12.6 ± 1.4 g, were distributed in triplicate groups per diet and fed for 42 days. Se supplementation up to 1.00 mg Se/kg significantly improved the growth of sea bream, whereas further increase up to 1.70 mg Se/kg diet reduced growth. The results of this study suggest that the optimum dietary levels of sodium selenite in diets with low FM‐FO with basal levels of 0.45 mg Se/kg are around 0.94 mg Se/kg to promote growth of gilthead sea bream juveniles. On the contrary, dietary levels of 1.70 mg Se/kg were found to be excessive and caused growth reduction, increased catalase expression and hydropic degeneration in the liver.  相似文献   

12.
The aim of this study was to evaluate growth, biochemical composition and dietary nutrients utilization in Octopus vulgaris fed on four diets based on bogue Boops boops, from different origin and in two presentations: fresh discarded bogue (aquaculture by‐product) (DB‐f), fresh wild bogue (low price trash species) (WB‐f), discarded bogue agglutinated moist diet (DB‐m) and wild bogue agglutinated moist diet (WB‐m). Diets based on DB showed higher lipid content (19–26% dw) than those based on WB (5–6% dw). Octopuses fed on DB‐based diets showed higher growth (1.5–1.9% day?1) and higher protein efficiency ratio (0.64–0.69) than those fed on WB‐based diet (1.1–1.5% day?1 and 0.36–0.37 respectively), which suggests good utilization of dietary lipids and also a possible protein sparing effect by lipids in O. vulgaris. Octopuses fed on diets presented fresh showed a higher growth (1.9–1.5% day?1) and a higher feed efficiency (62–65%) than those fed on agglutinated diets (1.1–1.5% and 52–60% day?1 respectively). Regarding fatty acids, the digestive gland clearly reflected dietary lipid and fatty acid profile, while muscle showed a more stable composition. Low dietary ARA content reflected in octopus tissues, especially in specimens fed on DB‐based diets, which did not seem to affect growth during the experimental period.  相似文献   

13.
The optimum dietary essential amino acid (EAA) pattern for a given animal species is considered to be that EAA pattern which results in maximum nitrogen (N) retention for protein growth and minimum N excretion. In a series of two 8-week experiments, we investigated the optimum dietary EAA pattern for rainbow trout (Oncorhynchus mykiss). Experimental diets were fed to quadruplicate tanks of fish, using the equalized satiation feeding method. In the first experiment, we used the amino acid deletion method to arrive at an estimate of optimum dietary EAA pattern for rainbow trout. There were 11 dietary treatments: 1 diet with a control EAA pattern, and 10 other diets with 40% deletions of a single EAA from the control pattern. Based on N utilization data, an estimate of optimum dietary EAA pattern for rainbow trout was made. In the second experiment, we compared this dietary EAA pattern with three other estimates of optimum dietary EAA pattern for rainbow trout, based on 1) amino acid composition of rainbow trout whole-body protein, 2) EAA requirements for rainbow trout published by the National Research Council, and 3) EAA requirements for rainbow trout based on nonlinear regression analysis. Response variables included growth rate, feed efficiency ratio and N retention and excretion. The EAA pattern associated with EAA requirements as published by the National Research Council was found to result in the highest mean N retention and lowest mean N excretion, and so was considered the best estimate of optimum EAA pattern of those compared.  相似文献   

14.
A study was conducted to determine growth, body composition and heat increment (HI) of rainbow trout reared on isonitrogenous high digestible carbohydrate (HC) and high fat (HL) diets at 15°C. Trout reared on the HC diet had a significantly lower final body weight and carcass lipid content and a significantly higher feed:gain ratio and carcass protein content than trout reared on the HL diet after 12 weeks on the test diets. The lower carcass lipid composition indicates that trout do not readily convert dietary carbohydrates into fat. HI of trout reared on the HC diet was significantly higher than that of fish reared on the HL diet. Considering the poor utilization of dietary carbohydrates as an energy source and the apparently low conversion of dietary glucose into fat, the cause of the higher HI associated with the HC diet is not completely understood. However, it is possible the elimination of excess dietary glucose is an energy dependent process resulting in an increased heat production which would partly account for the increased HI. Furthermore, if the HC diet is a low net energy diet, then the metabolism and utilization of dietary and tissue proteins (amino acids) for energy by the trout may also be partly responsible for the increased HI of the trout reared on the HC diet.  相似文献   

15.
An 8‐week feeding trial was conducted to determine the dietary arginine requirement of juvenile black sea bream Sparus macrocephalus in 18 350 L indoors flow‐through circular fibreglass tanks. Six isonitrogenous and isoenergetic diets were formulated to contain graded levels of l ‐arginine (1.85%, 2.23%, 2.51%, 2.86%, 3.20% and 3.46% dry diet) from dietary ingredients and crystalline arginine. Each diet was randomly assigned to triplicate groups of 25 juvenile fish (10.51±0.15 g) twice daily (08:00 and 16:00 hours) to apparent satiation. Results showed that the specific growth rate (SGR) increased with increasing dietary arginine levels up to 2.51% and remained nearly the same thereafter. Feed efficiency ratio, protein efficiency ratio (PER) and protein productive value all showed an increasing tendency and then levelled off. Apparent digestibility coefficients of dry matter, crude protein and gross energy significantly improved up to 2.86% arginine diet and decreased at different extents thereafter. Fish fed 1.85% arginine diet had significantly lower protein content in the whole body and dorsal muscle than those fed diets supplemented with or >2.86% of arginine. Lipid content decreased and lower value occurred at 3.46% of dietary arginine. The dietary essential amino acid composition in the whole body of the black sea bream was significantly influenced by dietary arginine. Arginine retention increased with an increasing dietary arginine level from 1.85% to 3.20%, then declined slightly at 3.46% arginine diet. Serum biochemical parameters were significantly affected by the dietary arginine level except for the cholesterol content. Broken‐line regression based on SGR and second‐order polynomial regression based on PER indicated that the optimum dietary arginine requirements for juvenile black sea bream were 2.79% and 3.09% diet, corresponding to 7.74% and 8.13% of the dietary protein respectively.  相似文献   

16.
Juvenile cobia (Rachycentron canadum) (100 g) were fed four moist diets (447–476 g kg?1 dry wt) where 0, 130, 260 or 390 g kg?1 of concentrated lizardfish (Saurida undosquamis) silage replaced fresh lizardfish, respectively. Blood and livers were sampled at 0, 6, 12, 24 and 48 h postfeeding at the end of the 3‐week experiment. At 6 h postfeeding in all groups, maximum concentrations of most plasma essential amino acids were observed, while significantly lower levels of most non‐essential amino acid levels were recorded compared to the other sampled times. At 6 and 12 h after feeding, the concentration of most plasma free amino acid (FAA) increased with an increase in dietary fish silage levels. Most FAA in livers of all groups peaked at 12 and 24 h postfeeding. However, at 48 h postfeeding, concentrations of most plasma FAA were significantly higher in fish fed 0% silage‐based diet than in fish fed the other diets (4999 versus 3390–4339 nmol AA mL?1 plasma). Growth rates and feed utilization were significantly lower in cobia fed 26% or 39% silage‐based diets than in fish fed 0% or 13% silage‐based diets. Different levels of silage protein thus seemed to have effects on growth and feed utilization efficiency of juvenile cobia. Results from this study support the premise that fish silage can be included until 130 g kg?1 in cobia diets.  相似文献   

17.
Dietary mannanoligosaccharide (MOS) from commercial product, Bio‐Mos supplementation, has been examined for its effects on weight gain and feed conversion of domestic mammals and birds, but very few studies have evaluated the responses of aquacultural species to MOS. A feeding and digestibility trial was performed to asses the potential beneficial effect of two levels of Bio‐Mos on growth, feed utilization, survival rate and nutrients’ digestion of gilthead sea bream (Sparus aurata) with an initial average weight of 170 g. Bio‐Mos was added at 2 or 4 g kg?1 to a fish meal–based control diet, and each diet was fed to triplicate groups of 1‐year‐old gilthead sea bream. After 12 weeks, there were no differences in survival rate among fish fed experimental diets (P > 0.05). It was observed that a significant improvability existed for both growth and feed utilization in fish fed diets supplemented with Bio‐Mos (P < 0.05). Body proximate composition remained unaffected by Bio‐Mos supplementation in fish fed experimental diets (P > 0.05). Apparent digestibility values for protein, carbohydrate and energy were appreciably affected by the inclusion of two different levels of Bio‐Mos, only lipid digestibility was the exception. In conclusion, the results of this trial indicate that 2 g kg?1 dietary supplementation with BIO‐MOS seem to be most positive for gilthead sea bream production.  相似文献   

18.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

19.
A 309 days feeding experiment was carried out on gilthead sea bream fingerlings (initial weight 14.7±4.4 g) to evaluate effects of substitution of fish oil with soybean oil in diets on growth and sensory characteristics and muscle fatty acid composition. Duplicate groups of fish were hand fed with four isoenergetic and isonitrogenous diets (46% protein, 14% lipid and 22 MJ kg−1) in which 0%, 24%, 48% or 72% of the fish oil was replaced by soybean oil. Fish fed diet 72% reached a lower final weight (324 g) than fish fed diets 0%, 24% and 48% (349, 343 and 338 g respectively). Feed intake, protein efficiency ratio, body composition and economic profitability were not influenced by the amount of soybean oil in the diets, but muscle fatty acid composition differed with diets. Panellists observed significant sensory differences between fish fed diet 0% and diet 72%. These results verified the possibility of feeding sea bream until they reached commercial weight with a 48% dietary substitution of fish oil for soybean oil.  相似文献   

20.
Early weaning of marine fish larvae with dry diets delays gut maturation and reduces growth rates. In juvenile and adult forms of several marine fish species, inclusion of dietary mannan oligosaccharides (MOS) improves gut integrity and functionality, but the effects of MOS inclusion in gilthead sea bream (Sparus aurata, L.) larval diets have not been addressed yet. Thus, this study assesses the effects of dietary MOS inclusion on survival, growth performance, gut morphology, feed acceptance and quality of gilthead sea bream larvae. For that purpose, 16 days post‐hatched gilthead sea bream larvae were fed four graded levels of MOS (Biomos®, Alltech, Nicholasville, KY, USA) in weaning diets as follows: 0 g kg?1 MOS, 0.5 g kg?1 MOS, 1.5 g kg?1 MOS and 2 g kg?1MOS. Dietary MOS did not affect feed acceptance in gilthead sea bream larvae (P > 0.05). MOS supplementation was correlated in a dose‐dependent way with higher larval survival (P = 0.026). After 15 days of feeding, dietary MOS increased whole larvae (P < 0.01) arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Gilthead sea bream larvae fed 2 g kg?1 MOS presented higher gut occupation with goblet cells after feeding compared with larvae fed the other dietary treatments. Overall, the results suggest that inclusion of MOS in early weaning diets for gilthead sea bream improves essential fatty acid utilization and may promote growth and final survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号