首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A rapid and comprehensive qualitative method has been developed to characterize the different classes of polyphenols, such as anthocyanins, flavonols, phenolic acids, and flavanols/proanthocyanidins, in grape products. The detection was achieved by two runs with the same LC gradient in different MS ionization modes and mobile phase modifiers (positive ionization mode and 0.4% trifluoroacetic acid for anthocyanins and flavonols; negative ionization mode and 0.1% formic acid for phenolic acids and flavanols). From an analysis of the MS and UV data and in comparison with the authenticated standards, a total of 53 compounds were identified, including 33 anthocyanins, 12 flavonols, 4 phenolic acids, and 4 flavanols/proanthocyanidins. With the method developed, a survey was then conducted to qualitatively assess the composition of polyphenols among 29 different grape products including original grape, grape juice, grape wine, and grape-derived dietary supplements, and their chemical profiles were systematically compared. This method provided a comprehensive qualitative insight into the composition of polyphenols in grape-derived products.  相似文献   

2.
Phenolic composition of grape stems   总被引:5,自引:0,他引:5  
Grape stems contain significant amounts of polyphenolic compounds, especially phenolic acids, flavonols, and flavanonols such as astilbin. The tannin content was characterized after the depolymerization reaction thiolysis. Tannins consisted of polymeric proanthocyanidins (up to 27 units) mainly consisting of (-)-epicatechin units along with smaller amounts of (+)-catechin, (-)-epicatechin gallate, and (-)-epigallocatechin. Flavanonols (astilbin) have been identified for the first time in stem and characterized by LC/MS and NMR. All phenolic compounds in grape stems were quantified by HPLC: quercetin 3-glucuronide was the most important, followed by catechin, caffeoyltartaric acid, and dihydroquercetin 3-rhamnoside (astilbin). Comparison was made of proanthocyanidin characteristics in different white and red grape varieties and also among parts of the cluster (skin, seed, and stem). Stem-condensed tannins were qualitatively intermediate between seed and skin but could not be differentiated between red and white varieties.  相似文献   

3.
Lentils (Lens culinaris L.) are a popular food in many countries. However, little is known about their phenolic composition. Because polyphenols in lentils are located essentially in their seed coat, the objective of this work was to study the composition of proanthocyanidins, the major group of polyphenols, in this part of the tissue. The use of C(18) Sep-Pak cartridges permitted the fractionation of lentil seed coat extract into monomer, oligomer, and polymer proanthocyanidin fractions. Subsequent thiolysis of oligomer and polymer fractions followed by HPLC analysis allowed the mean degree of polymerization (mDP) and the structural composition of proanthocyanidins to be determined. A fractionation of lentil seed coat extracts on a polyamide column followed by HPLC and HPLC-DAD-MS analyses was used to identify the individual proanthocyanidins. The results showed that the major monomeric flavan-3-ol was (+) catechin-3-glucose, with lesser amounts of (+)-catechin and (-)-epicatechin. In the oligomer fraction, various dimer, trimer, and tetramer proanthocyanidins constituted of catechin, gallocatechin, and catechin gallate units were identified, and several procyanidins and prodelphinidins from pentamers to nonamers constitute the polymer fraction. The most abundant proanthocyanidins in the seed coat of lentils are the polymers (65-75%), with a mDP of 7-9, followed by the oligomers (20-30%), with a mDP of 4-5.  相似文献   

4.
Walnuts ( Juglans regia L.), hazelnuts ( Corylus avellana L.), and almonds ( Prunus dulcis Mill.) are rich sources of ellagitannins and proanthocyanidins. Gut microbiota plays a crucial role in modulating the bioavailability of these high molecular weight polyphenols. However, to date there are no studies evaluating the capacity to produce nut phenolic metabolites in subjects with metabolic syndrome (MetS), a pathology associated with an altered gut bacterial diversity. This study applied a LC-MS targeted approach to analyze the urinary excretion of nut phenolic metabolites in MetS subjects following 12 weeks of nut consumption, compared to sex- and age-matched individuals given a nut-free control diet. Metabolites were targeted in both hydrolyzed and nonhydrolyzed urine by LC-PDA-QqQ-MS/MS analysis, and identification of metabolites lacking available standards was confirmed by LC-ESI-ITD-FT-MS. Ellagitannin-derived urolithins A and B significantly increased after the nut-enriched-diet, urolithins C and D were also detected, and a complex combination of urolithin-conjugated forms was observed in nonhydrolyzed urine, confirming an extensive phase II metabolism after absorption. In contrast, no significant increases in proanthocyanidin microbial metabolites were observed in urine following nut consumption. Because the intestinal microbiota of the subjects in this study could catabolize ellagitannins into a wide range of urolithins, further research is strongly warranted on the in vivo potential of these microbial metabolites in reducing cardiometabolic risk.  相似文献   

5.
Optimization of polyphenol extraction from grape skin, seed, and pulp was performed on Vitis vinifera L. cv. Pinot Noir, by response surface methodology using a Doehlert design. An acidified mixture of acetone/water/methanol was the best solvent for simultaneous extraction of major polyphenol groups from all berry parts, while optimum extraction times and solid-to-liquid ratios varied according to the part. The determined composition from the model agreed with independent experimental results. Analysis of the three Champagne grape varieties showed that proanthocyanidins were the major phenolic compounds in each part (60-93%). The total berry proanthocyanidin content was highest in Pinot Meunier (11 g kg(-1)) and lowest in Chardonnay (5 g kg(-1)), but Pinot Meunier pulp contained lower amounts of proanthocyanidins and phenolic acids (210 and 127 mg kg(-1) berry, respectively) than that of the other two varieties. The berry anthocyanin content was equivalent in both Pinot Noir and Pinot Meunier (632 and 602 mg kg(-1), respectively).  相似文献   

6.
Despite the promising antioxidant action of Lamiaceae herbs in vitro, human studies on these potential sources of dietary antioxidants have remained scarce. In this work, the phenolic acids recovered in human urine after single ingestion of Origanum onites extract were analyzed. The excretion was increased 4- and 2-fold during 0-24 and 24-48 h of the follow-up, respectively. The mean increase in the excretion of phenolic compounds exceeded the ingested amount of identified phenolic acids. The result can be partly explained by rosmarinic acid, the main identified phenolic constituent in the extract, as well as flavonoids present in minor amounts, presumably being metabolized into a double amount of simple phenolic metabolites. Furthermore, unidentified phenolic constituents in the extract partly contribute to the excretory increase. The main metabolite, p-hydroxybenzoic acid, was excreted rapidly. The results show that constituents of oregano extract and, in particular, their metabolites may contribute to the dietary intake of phenolic antioxidants.  相似文献   

7.
A method was developed for the fractionation of grape (seed or skin) proanthocyanidins according to their degree of polymerization. After precipitation in chloroform/methanol (75:25, v/v), the grape proanthocyanidins were deposited onto an inert glass powder column and sequentially dissolved in several fractions by increasing proportions of methanol in the solvent. Each fraction from each proanthocyanidin source was quantified and characterized after acidic degradation with phenylmethanethiol (i.e., thiolysis). The comparison of data from total extract and successive fractions showed that a quantitative separation was achieved so that estimation of polymer size distribution in relation to other compositional characteristics (proportions of prodelphinidin units, galloylation rate) was thus possible. Mean degree of polymerization of separated proanthocyanidins ranged increasingly from 4.7 to 17.4 in seed (8.1 for total extract) and from 9.3 to 73.8 in skin (34.9 for total extract). The method proposed is very interesting for the study of grape proanthocyanidins according to their degree of polymerization because it gives both qualitative and quantitative information especially on the highly polymerized forms, which were not fractionated by previous techniques.  相似文献   

8.
The effect of addition of grape seed tannins on the phenolic composition, chromatic characteristics, and antioxidant activity of red wine was studied. Two highly pure commercial grape seed tannins (GSE100 and GSE300) were selected, and their phenolic compositions were determined. Two types of red wines were made with Castela?o/Tinta Miu?da (3/2, w/w) grapevine varieties by fermentation on skin using two different maceration times, which correspond to the wines rich and poor in polyphenols, respectively. Each of these wines was used for experimentation with the addition of GSE100 and GSE300 before and immediately after alcoholic fermentation. Phenolic composition, chromatic characteristics, and antioxidant activity of the finished red wines were analyzed by HPLC-DAD, CIElab 76 convention, and DPPH radical test, respectively. The results showed that the addition of grape seed tannins had obvious effects of increasing color intensity and antioxidant activity only in the wines poor in polyphenols. Although GSE300 contained much higher amounts of di- and trimer procyanidins and a lower amount of polymeric proanthocyanidins, it provided effects of increasing the color intensity and antioxidant activity of the wines poor in polyphenols similar to those of GSE100. Furthermore, GSE100 released more gallic acid to wines than GSE300, although no gallic acid was detected in GSE100. Tannins added after alcoholic fermentation had a better effect on phenolic composition of red wine than tannins added before alcoholic fermentation.  相似文献   

9.
Grape seed extract (GSE) has been reported to exert protective effects on various forms of cardiac disorders. The cardiovascular protective effects of GSE are believed to be ascribed to its antioxidative properties. A series of studies have demonstrated that polyphenols are instrumental for the antioxidative properties of GSE. This study was undertaken to investigate whether two major polyphenols isolated from GSE (catechin and proanthocyanidin B4) could increase the endogenous antioxidant enzymes in cardiomyocytes, and whether such increased cellular defenses could provide protection against oxidative cardiac cell injury. Incubation of cardiac H9C2 cells with micromolar concentrations of catechin or proanthocyanidin B4 resulted in a significant induction of cellular antioxidant enzymes in a concentration-dependent fashion. Furthermore, catechine or proanthocyanidin B4 pretreatment led to a marked reduction in xanthine oxidase (XO)/xanthine-induced intracellular reactive oxygen species (ROS) accumulation and cardiac cell apoptosis. These results indicated that grape seed polyphenols (GSP) could protect against cardiac cell apoptosis via the induction of endogenous antioxidant enzymes. This may be an important mechanism underlying the protective effects of GSE observed with various forms of cardiovascular disorders.  相似文献   

10.
11.
The Saskatoon berry is currently cultivated in many parts of the world for its suitability for various food products and due to its high content of nutrients and polyphenols. To determine the phytochemical profile of a Saskatoon plant, polyphenols from leaves, stems, and berries were screened from four cultivars grown in Finland using HPLC-DAD and HPLC-ESI/MS. The phenolic composition and concentrations varied among plant parts and cultivars. The main berry components were cyanidin-based anthocyanins (63% of the phenols), quercetin-derived flavonol glycosides, and hydroxycinnamic acids. The total anthocyanin content varied between 258.7 and 517.9 mg/100 fresh weight among cultivars. Protocatechuic acid was found for the first time in Saskatoon berries. The leaves consisted of quercetin- and kaempferol-derived glycosides (41% of the phenols), hydroxycinnamic acids (36%), catechins, and some neolignans. Quercetin 3-galactoside and 3-glucoside, (-)-epicatechin, and chlorogenic acid were the main phenolics in the leaves of all cultivars. The stem components were flavanone and flavonol glycosides (55% of the phenols), catechins (38%), and hydroxybenzoic acids. Concentrations of the main compound, eriodictyol 7-glucoside, varied among cultivars from 3.3 to 6.5 mg/g of stem dry weight. Very high proanthocyanidin contents were found in stems and leaves (10-14% of dry biomass), whereas berries contained a low amount of proanthocyanidins (3% of dry biomass). The findings reveal that leaves and stems of Saskatoon cultivars possess high amounts of various phenolic compounds that may offer new functional raw materials for a wide range of food and health products.  相似文献   

12.
A method was developed for determining the amount of seed and skin proanthocyanidin extraction into wines by direct measurement. This method was based upon the analysis of proanthocyanidin cleavage products after acid catalysis in the presence of excess phloroglucinol. On the basis of the analysis of proanthocyanidin extracts from grape tissues, two observations were made as follows: (i) the seed and skin proanthocyanidin extension subunit compositions were considerably different from each other, and (ii) their composition did not vary with extraction time. Thus, by comparing the proportional extension subunit composition of proanthocyanidins in wine relative to their proportional composition in corresponding grape seed and skin, it was possible to determine the contribution of each to wine. To provide additional information, the procedure was used to investigate seed and skin proanthocyanidin extraction during commercial-scale fermentations that had undergone 4 or 10 day low temperature prefermentation skin contact prior to the onset of fermentation. The results for both fermentations indicated that the proportion of skin tannin declined during fermentation and also showed that at the end of fermentation the amount and proportion of skin tannin were the same.  相似文献   

13.
European, small-fruited cranberries (Vaccinium microcarpon) and lingonberries (Vaccinium vitis-idaea) were characterized for their phenolic compounds and tested for antioxidant, antimicrobial, antiadhesive, and antiinflammatory effects. The main phenolic compounds in both lingonberries and cranberries were proanthocyanidins comprising 63-71% of the total phenolic content, but anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and flavonols were also found. Proanthocyanidins are polymeric phenolic compounds consisting mainly of catechin, epicatechin, gallocatechin, and epigallocatechin units. In the present study, proanthocyanidins were divided into three groups: dimers and trimers, oligomers (mDP 4-10), and polymers (mDP > 10). Catechin, epicatechin, A-type dimers and trimers were found to be the terminal units of isolated proanthocyanidin fractions. Inhibitions of lipid oxidation in liposomes were over 70% and in emulsions over 85%, and in most cases the oligomeric or polymeric fraction was the most effective. Polymeric proanthocyanidin extracts of lingonberries and cranberries were strongly antimicrobial against Staphylococcus aureus, whereas they had no effect on other bacterial strains such as Salmonella enterica sv. Typhimurium, Lactobacillus rhamnosus and Escherichia coli. Polymeric fraction of cranberries and oligomeric fractions of both lingonberries and cranberries showed an inhibitory effect on hemagglutination of E. coli, which expresses the M hemagglutin. Cranberry phenolic extract inhibited LPS-induced NO production in a dose-dependent manner, but it had no major effect on iNOS of COX-2 expression. At a concentration of 100 μg/mL cranberry phenolic extract inhibited LPS-induced IL-6, IL-1β and TNF-α production. Lingonberry phenolics had no significant effect on IL-1β production but inhibited IL-6 and TNF-α production at a concentration of 100 μg/mL similarly to cranberry phenolic extract. In conclusion the phenolics, notably proanthocyanidins (oligomers and polymers), in both lingonberries and cranberries exert multiple bioactivities that may be exploited in food development.  相似文献   

14.
The relationships between variations in grapevine (Vitis vinifera L. cv. Pinot noir) growth and resulting fruit and wine phenolic composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved monitoring soil, vine growth, yield components, and fruit composition (soluble solids, flavan-3-ol monomers, proanthocyanidins, and pigmented polymers) on a georeferenced grid pattern to assess patterns in growth and development. Vine vigor parameters (trunk cross-sectional area, average shoot length, and leaf chlorophyll) were used to delineate zones within both blocks to produce research wines to investigate the vine-fruit-wine continuum. There was no significant influence of vine vigor on the amount of proanthocyanidin per seed and only minimal differences in seed proanthocyanidin composition. However, significant increases were found in skin proanthocyanidin (mg/berry), proportion of (-)-epigallocatechin, average molecular mass of proanthocyanidins, and pigmented polymer content in fruit from zones with a reduction in vine vigor. In the wines produced from low-vigor zones, there was a large increase in the proportion of skin tannin extracted into the wine, whereas little change occurred in seed proanthocyanidin extraction. The level of pigmented polymers and proanthocyanidin molecular mass were higher in wines made from low-vigor fruit compared to wines made from high-vigor fruit, whereas the flavan-3-ol monomer concentration was lower.  相似文献   

15.
Different barley varieties, consisting of hulled and hull-less types, of normal, waxy, and high amylose starch, as well as two-rowed and six-rowed types, were analyzed for their main proanthocyanidins and bound phenolic acids. Variations in proanthocyanidin and phenolic acid contents were studied in different barley types as well as inter-relationships between the phytochemicals and polysaccharides. The main flavanols found in the analyzed barley varieties were two dimeric as well as four trimeric forms in addition to catechin. The total amount of flavanols ranged from 325 to 527 microg/g of fresh weight of barley flour. No evident associations were found between variations in proanthocyanidin levels and different barley types. The total amount of phenolic acids ranged from 604 to 1346 microg/g of fresh weight of barley flour, with ferulic acid as the dominating acid. The amount of phenolic acids varied according to occurrence or lack of hull, with significantly higher levels in the hulled varieties.  相似文献   

16.
The composition of grape (Vitis vinifera L. cv. Shiraz) skin proanthocyanidins has been determined at different stages of berry development. Beginning approximately 3 weeks after fruit set and concluding at commercial ripeness, the composition of isolated skin proanthocyanidins was determined using the following analytical techniques: elemental analysis, UV-Vis absorption spectroscopy, reversed-phase HPLC after acid-catalysis in the presence of excess phloroglucinol, gel permeation chromatography, electrospray ionization mass spectrometry (ESI-MS), and (13)C NMR. On the basis of these analyses, berry development was correlated with an increase in proanthocyanidin mean degree of polymerization, an increase in the proportion of (-)-epigallocatechin extension subunits, and increases in the level of anthocyanins associated with the proanthocyanidin fraction. Additionally, data acquired from ESI-MS of the isolates following acid-catalysis in the presence of excess phloroglucinol is consistent with pectin-bound proanthocyanidins.  相似文献   

17.
Proanthocyanidins were isolated from the skins of Cabernet Sauvignon grapes at different stages of grape development in order to study the effect of proanthocyanidin modification on the interaction with grape cell wall material. After veraison, the degree of proanthocyanidin polymerization increased, and thereafter was variable between 24 and 33 subunits as ripening progressed. Affinity of skin cell wall material for proanthocyanidin decreased with proanthocyanidin ripeness following veraison. A significant negative relationship (R2=0.93) was found for average proanthocyanidin molecular mass and the proportion of high molecular mass proanthocyanidin adsorbed by skin cell wall material. This indicated that as proanthocyanidin polymerization increased, the affinity of a component of high molecular mass proanthocyanidins for skin cell wall material declined. This phenomenon was only associated with skin proanthocyanidins from colored grapes, as high molecular mass proanthocyanidins of equivalent subunit composition from colorless mutant Cabernet Sauvignon grapes had a higher affinity for skin cell wall material.  相似文献   

18.
Twenty-seven cultivars of mulberry fruits ( Morus atropurpurea Roxb) were analyzed for their total phenolic content, total anthocyanin content, and peroxyl radical scavenging capacities. The proanthocyanidin contents of the fruit were also quantified using 4-dimethylamino-cinnamaldehyde assay, and characterization was attempted using electrospray ionization mass spectra. The phenolic compounds of mulberry fruits were characterized using HPLC with ESI-MS and diode array detection. Results showed that the content of mulberry fruits varied with different cultivars with total phenolic content, total anthocyanin content, total proanthocyanidin content, and peroxyl radical scavenging capacities ranging from 0.060-0.244, 0.001-0.056, 0.001-0.015, and 0.301-1.728, respectively. Good correlations were observed among the phenolic, anthocyanin, and proanthocyanidin contents and the radical scavenging capacities of mulberry fruits. Mulberry fruits were found to contain low amount of proanthocyanidins. The high total phenolic content of mulberry fruits were mainly contributed by anthocyanins, rutin, and chlorogenic acids. The lipid soluble antioxidants are profiled by an HPLC method developed in-house, and the results of selected mulberry fruits revealed significant amounts of lutein and delta- and gamma-tocopherols but low alpha-tocopherol. Our results provide useful antioxidant nutritional information of a mulberry cultivar that has potential for large scale plantations.  相似文献   

19.
The effect of a single oral administration of proanthocyanidins, oligomeric and polymeric polyhydroxyflavan-3-ol units, on the antioxidative potential of blood plasma was studied in rats. Proanthocyanidin-rich extract from grape seeds was administered by intragastric intubation to fasted rats at 250 mg/kg of body weight. The plasma obtained from water- or proanthocyanidin-administered rats was oxidized by incubation with copper sulfate or 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) at 37 degrees C, and the formation of cholesteryl ester hydroperoxides (CE-OOH) was followed. The plasma obtained from proanthocyanidin-administered rats was significantly more resistant against both copper ion-induced and AAPH-induced formation of CE-OOH than that from control rats. The lag phase in the copper ion-induced oxidation of rat plasma was remarkably increased at 15 min after administration of proanthocyanidins and reached a maximum level at 30 min. When the plasma from proanthocyanidin-administered rat was hydrolyzed by sulfatase and beta-glucuronidase following analysis by high-performance liquid chromatography with electrochemical detection, metabolites of proanthocyanidins occurred in rat plasma at 15 min after administration, three peaks of which were identified as gallic acid, (+)-catechin, and (-)-epicatechin. These results suggest that the intake of proanthocyanidins, the major polyphenols in red wine, increases the resistance of blood plasma against oxidative stress and may contribute to physiological functions of plant food including wine through their in vivo antioxidative ability.  相似文献   

20.
Red wine and grape polyphenols are considered to promote cardiovascular health and are involved in multiple biological functions. Their overall impact on the human metabolome is not known. Therefore, exogenous and endogenous metabolic effects were determined in fasting plasma and 24 h urine from healthy male adults consuming a mix of red wine and grape juice extracts (WGM) for 4 days in a placebo-controlled, crossover study. Syringic acid, 3-hydroxyhippuric acid, pyrogallol, 3-hydroxyphenylacetic acid, and 3-hydroxyphenylpropionic acid were confirmed as the strongest urinary markers of WGM intake. Overall, WGM had a mild impact on the endogenous metabolism. Most noticeable were changes in several amino acids deriving from tyrosine and tryptophan. Reductions in the microbial metabolites p-cresol sulfate and 3-indoxylsulfuric acid and increases in indole-3-lactic acid and nicotinic acid were observed in urine. In plasma, tyrosine was reduced. The results suggest that short-term intake of WGM altered microbial protein fermentation and/or amino acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号