首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
选取纳帕海典型沼泽、沼泽化草甸和草甸为研究对象,研究纳帕海湿地土壤有机碳密度及碳储量特征。结果表明:沼泽和沼泽化草甸土壤剖面有机碳含量明显高于草甸土壤;沼泽、沼泽化草甸和草甸土壤剖面有机碳密度与有机碳含量变化趋势基本一致,沼泽和沼泽化草甸土壤剖面有机碳密度均在30kg/m3以上,草甸土壤0-40cm有机碳密度高于30kg/m3,40cm以下有机碳密度均低于30kg/m3;沼泽、沼泽化草甸和草甸土壤储碳层厚度分别为60,80,20cm,1m深度以内有机碳储量分别为393.53,458.81,305.78t/hm2。  相似文献   

2.
若尔盖高寒湿地蓄水能力评估   总被引:1,自引:0,他引:1  
[目的]评估若尔盖3种不同类型湿地的土壤蓄水能力,为湿地生态系统水文功能价值的评估提供科学依据。[方法]通过对若尔盖高寒湿地三种湿地类型的土壤采样分析,测量其土壤物理特性和土壤最大滞留贮水能力,进而对其土壤蓄水能力进行评估。[结果](1)在0—60cm深度范围内,3种湿地类型的土壤容重基本上随着深度的加深呈升高趋势,但草本沼泽在80—100cm处、沼泽化草甸和洪泛湿地在60—80cm处呈现出减小趋势。(2)在0—100cm深度范围内,沼泽化草甸的毛管孔隙度随深度增加呈减小趋势,而草本沼泽和洪泛湿地变化不明显。(3)在0—100cm深度范围内,3种湿地类型土壤容重的平均值大小表现为草本沼泽(0.46g/cm~3)沼泽化草甸(1.08g/cm~3)洪泛湿地(1.25g/cm~3)。3种湿地类型土壤最大滞留贮水能力的平均值大小表现为草本沼泽(239.40t/hm~2)沼泽化草甸(171.18t/hm~2)洪泛湿地(148.51t/hm~2)。[结论]草本沼泽贮水能力最强。因此在若尔盖区域实施湿地保护与恢复措施时,应将保护区外的草本沼泽分布的区域纳入重点计划。  相似文献   

3.
以甘南尕海湿地不同植被退化阶段的泥炭沼泽和沼泽化草甸为研究对象,通过2013,2014两年凋落物试验分析,研究了不同植被退化过程中凋落物的分解速率及有机碳动态变化特征。结果表明:随着植被退化演替,凋落物有机碳浓度、碳绝对含量和分解速率显著下降(p0.05)。分解速率从6—9月随时间变化均呈现下降趋势,相应的分解速率在0.001 3~0.009/d之间,分解速率最大的为2013年泥炭沼泽未退化PI(0.009/d),最小为2014年沼泽化草甸中度退化SⅢ(0.001 3/d)。泥炭沼泽凋落物中有机碳平均浓度未退化PI(515.07g/kg)退化PⅡ(489.62g/kg),沼泽化草甸凋落物有机碳平均浓度未退化SI(541.26g/kg)轻度退化SⅡ(488.28g/kg)中度退化SⅢ(456.01g/kg),且两年的凋落物碳绝对含量均减小,即发生净释放;凋落物分解速率及有机碳浓度、碳绝对含量都随植被退化加深而减小。  相似文献   

4.
研究了高寒草甸不同类型草地土壤养分与多样性—生产力之间的关系,即物种多样性对生产力的效应如何受到资源供给率等因素的影响。结果表明:以莎草类为优势种的藏嵩草沼泽化草甸群落其总生物量(包括地上和地下生物量)最高(13,196.96±719.69gm-2)、小嵩草草甸和金露梅灌丛群落为中等水平(2,869.58±147.52gm-2、2,672.94±122.49gm-2)、矮嵩草草甸群落为最低(2,153.08±141.95gm-2)。在藏嵩草沼泽化草甸群落中,总生物量和物种丰富度呈显著负相关(P<0.05);地上生物量与土壤有机质、土壤含水量和群落盖度显著正相关(P<0.05);地下生物量和土壤含水量显著正相关(P<0.05)。在矮嵩草草甸、小嵩草草甸、金露梅灌丛群落中,地上生物量与土壤有机质和土壤总氮显著正相关(P<0.05)。以上结果说明生物量的分布与土壤营养和水分变化相一致。在矮嵩草草甸、小嵩草草甸和金露梅灌丛中,多样性有随土壤养分的增加而增加的趋势;在藏嵩草沼泽化草甸中,则呈现负相关的关系。  相似文献   

5.
植物群落多样性与稳定性是群落生态学的核心内容,是现代生态学的热点问题,也是草地资源评价与管理的重要指标.青海湖流域是我国主要牧场之一,研究该地区草地利用现状和封育影响评价对草地可持续利用具有重要意义.本文利用Simpson,Shannon-wiener和Pielou物种多样性指数及改进后的Godron稳定性测定方法,分析了青海湖流域高寒草甸、高寒草原和温性草原三种草地群落的多样性、稳定性及二者之间的关系,比较了相同草地类型围栏内外的植物群落多样性和稳定性,及三种草地类型在围栏内外的情况.结果表明:(1)高寒草甸,多样性:围栏内>围栏外,稳定性:围栏外>围栏内;高寒草原,多样性:围栏外>围栏内,稳定性:围栏内>围栏外;温性草原,多样性:围栏外>围栏内,稳定性:围栏内>围栏外.(2)围栏外不同草地类型多样性大小:高寒草甸>高寒草原>温性草原,稳定性大小:高寒草原>温性草原>高寒草甸.(3)围栏内不同草地类型多样性大小:高寒草甸>高寒草原>温性草原,稳定性大小:温性草原>高寒草原>高寒草甸.在高寒草甸、高寒草原和温性草原中多样性与稳定性表现为负相关关系.  相似文献   

6.
[目的]分析植被退化对青藏高原东部尕海湿地枯落物分解的影响,为湿地生源要素生物地球化学循环过程研究提供基础依据。[方法]采用分解袋法,研究尕海泥炭沼泽和沼泽化草甸不同植被退化梯度湿地枯落物分解特征及其影响因素。[结果]各植被退化阶段湿地枯落物分解过程存在显著差异,植被退化总体抑制了枯落物分解,但不同湿地类型枯落物分解对植被退化响应有所不同;在生长季内(5—9月),沼泽泥炭植被未退化枯落物分解速率显著高于退化(p0.05);沼泽化草甸平均分解速率排序为:未退化(0.028 9g/d)中度退化(0.028 7g/d)轻度退化(0.028 0g/d);各植被退化阶段湿地的枯落物分解过程具有明显的年际变化特征,总体表现为2014年分解较快,2015,2016年相对较慢;温度和降雨对各退化阶段枯落物分解速率具有促进作用,但作用不显著。[结论]尕海湿地植被退化过程中枯落物分解动态受到枯落物自身性质、气候条件、土壤营养状况等自然环境条件的共同影响,相比而言,受枯落物性质的影响更大。  相似文献   

7.
利用黑龙江省科学院自然与生态研究所三江平原野外实验研究站内3个不同小叶章生态类型湿地土壤样品,直接提取土壤微生物总DNA,应用Miseq测序技术对16S rDNA进行序列测定和分析。结果表明:不同小叶章湿地土壤细菌群落结构发生了显著变化,土壤细菌多样性和丰富度随着土壤含水率的增加而降低。草甸化湿地和沼泽化草甸湿地优势种群为酸杆菌,变形菌次之;沼泽化湿地优势种群为变形菌,酸杆菌次之。土壤含水率的增加减少了酸杆菌的分布,而增加了变形菌的分布。16S rDNAheatmap分析则表明,湿地水位的变化对酸杆菌和变形菌的群落结构影响最大。  相似文献   

8.
人为活动对云南纳帕海湿地土壤碳氮变化的影响   总被引:22,自引:0,他引:22       下载免费PDF全文
以纳帕海湿地原生沼泽作为参照 ,选择人为干扰下的沼泽化草甸 ,草甸和排干湿地开垦的耕地作为研究对象 ,研究人为干扰对纳帕海湿地土壤碳氮变化的影响。两年的定位研究结果表明 :沼泽土壤C/N值较高 ;人为干扰下纳帕海湿地土壤空间结构上土壤有机质 0~ 2 0cm表层与 2 0~ 4 0cm下层相差 4倍 ,水平分布上则随人为干扰加强、沼泽化过程减弱而降低 ,下降幅度高达 2 2 .92 %~ 6 9.6 4 %;土壤全氮及其空间分布呈现与有机质相同趋势 ,两者相关系数r=0 .98;NH 4 N、NO-3 N与全氮和水解氮相关系数分别为r=- 0 .74、r=- 0 .6 5 ,r=- 0 .81、r=- 0 .76。表明了纳帕海湿地沼泽土壤较低的矿化量和对碳的固定及较大的氮累积量 ,以及人为活动干扰后湿地土壤碳氮养分的释放变化。  相似文献   

9.
湿地退化条件下土壤碳氮磷储量与生态化学计量变化特征   总被引:2,自引:1,他引:2  
为了研究湿地退化过程中土壤碳氮磷储量与生态化学计量变化,明确碳氮"汇"功能的变化和土壤碳、氮、磷的平衡关系,采用实地采样调查、室内分析与数理统计法,研究了若尔盖自然湿地保护区内未退化湿地沼泽(MA)、沼泽化草甸(MM)、草甸(ME)3种不同退化程度湿地的典型样地在碳氮磷含量、储量以及生态化学计量的变化特征。结果表明,草甸化沼泽土与草甸土全剖面总有机碳、全氮含量较沼泽土分别降低了29.55%,6.52%和67.53%,40.04%,碳氮储量分别降低了67.49%,60.10%和85.14%,54.47%;3种土壤全磷剖面含量大小顺序为MMMEMA,其储量高低顺序是MEMAMM。随着土层深度的增加,沼泽土的总有机碳、全氮含量明显升高,全磷含量与草甸化沼泽土、草甸土的总有机碳、全氮、全磷含量均呈现降低趋势;3种土壤碳氮磷储量40—100cm土层高于0—40cm土层。沼泽土、草甸化沼泽土、草甸土3种不同类型土壤C/N分别为40.38,31.70,23.26,C/P分别为409.52,247.46,113.07,N/P分别为10.43,7.90,5.02,土壤C/N、C/P、N/P均随湿地退化而减小,较高的C/P与N/P14揭示氮磷元素均是影响植物生长的限制性因素,且受氮素限制高于磷素。因此,若尔盖湿地退化导致土壤碳氮含量与储量降低,碳氮"汇"功能减弱,尤其是碳"汇"。  相似文献   

10.
[目的]探究青藏高原长期的冻融与水蚀造成的凹陷对高寒沼泽草甸土壤呼吸的影响,为探讨和评估高寒沼泽草甸碳循环过程提供一定的科学依据。[方法]以青海湖北岸冻融—水蚀凹陷的高寒沼泽草甸为研究对象,选取了非冻融—水蚀凹陷区和冻融—水蚀凹陷区,2019年5月监测土壤呼吸、5 cm土壤温度、5 cm土壤含水量及空气温度和空气相对湿度,2018年8月观察了植被群落特征(优势种、地上生物量、植物高度、群落盖度)。[结果]①冻融—水蚀凹陷区的平均土壤呼吸速率显著低于非冻融—水蚀凹陷样区。②冻融—水蚀造成地表下陷,下陷的洼地微生态系统具有类似盆地的聚温保湿效应,因此在凹陷样区中空气相对湿度显著增加,空气温度降低,5 cm土壤温度显著增加(p0.05),以上环境要素的变化深刻影响着土壤呼吸。[结论]青藏高原冻融—水蚀过程形成的凹陷改变了高寒沼泽草甸土壤环境,使原生系统的土壤呼吸发生变化,进而影响高寒沼泽草甸生态系统碳循环。  相似文献   

11.
若尔盖高原湿地资源及其保护对策   总被引:14,自引:0,他引:14  
若尔盖高原湿地在青藏高原湿地生物多样性保护中占有十分重要的地位 ,但其现状不清。卫星影像解译表明若尔盖高原湿地面积为 3 .94× 10 4 hm2 ,占土地总面积的 2 .2 %。在各种湿地中沼泽所占的比重最大。与 2 0世纪 5 0年代和 80年代初期相比 ,湿地面积大幅度减小而且退化严重 ,急需保护。目前应采取的保护措施有 :加强湿地自然保护区的建设与管理 ;探讨湿地退化机制与生态恢复措施 ;进行沼泽湿地草场生态牧业试验和示范研究 ;加强湿地保护立法与宣传教育。  相似文献   

12.
高寒矮嵩草草甸地面热源强度及与生物量关系的初步研究   总被引:1,自引:0,他引:1  
在青藏高原海北高寒矮嵩草草甸地区,依据2002年涡度相关法观测的能量平衡各分量资料和6-10月植物地上、地下生物量测定值,分析了高寒矮嵩草草甸近地表热量平衡、地面热源强度的变化特征,讨论了地面热源强度与植物生物量季节变化过程中的相互关系。结果表明:在青藏高原海北高寒矮嵩草草甸地区,年内地面均为热源,热源强度季节变化明显,地面热源强度年平均为88.5 W/m2;地上生物量季节变化与热源强度具有显著的正相关关系,而地下生物量季节变化与热源强度关系不明显。  相似文献   

13.
[目的] 定量分析青藏高原高寒草甸土壤侵蚀状况及其伴随的碳流失,为全面评估土壤侵蚀影响,实施有效水土保持措施提供参考。[方法] 结合137Cs示踪技术与前人研究,对青藏高原高寒草甸土壤的整体侵蚀水平及其土壤有机碳流失进行了估算。[结果] 未受人为扰动的高寒草甸土壤自上而下表现出3个层次(A,B和C层)的理化性质特征,其137Cs分布遵循显著指数递减模式。目前,高原草甸土壤年均侵蚀模数约为77~230 t/km2,推测其每年直接导致的土壤有机碳损失量平均不低于4.86 t/km2。[结论] 青藏高原高寒草甸土壤侵蚀水平整体较弱,但因土壤侵蚀流失的有机碳不容忽视。在未来气候变化背景下,升温导致的土壤湿度下降对植被生长的限制,以及人类活动的影响,较大可能成为诱使青藏高原草甸土壤退化和有机碳流失的潜在因素。  相似文献   

14.
The Zoige alpine peatlands cover approximately 4,605 km2 of the Qinghai–Tibetan Plateau and are considered to constitute the largest plateau peatland on the Eurasian continent. However, the Zoige alpine peatlands are undergoing major degradation because of human activities and climate change, which would cause uncertainty in the budget of greenhouse gases (CH4 and CO2) and carbon (C) storage in global peatlands. This study simultaneously investigates the CH4 and CO2 emission fluxes and C storage at three typical sites with respect to the peatland degradation gradient: peatland, wet meadow and dry meadow. Results show that peatland degradation would increase the CO2 emission and decrease the CH4 emission. Moreover, the average C emission fluxes were 66.05, 165.78 and 326.56 mg C m?2 hr?1 for the peatland, wet meadow and dry meadow, respectively. The C storage of the vegetation does not considerably differ among the three sampling sites. However, when compared with the peatland (1,088.17 t C ha?1), the soil organic C storage decreases by 420 and 570 t C ha?1 in case of wet and dry meadows, respectively. Although the C storage in the degraded peatlands decreases considerably, it can still represent a large capacity of C sink. Therefore, the degraded peatlands in the Zoige alpine area must be protected and restored to mitigate regional climate change.  相似文献   

15.
若尔盖高原高寒草甸生态系统是青藏高原能量和水分循环的重要组成部分,但该地区地面水热通量观测数据非常缺乏。本研究基于涡动相关法,于2013年11月1日−2014年10月31日,利用三维超声风温仪和红外开路二氧化碳/水汽分析仪在若尔盖高原一典型高寒草甸开展周年通量观测,以揭示其地表能量交换和蒸散特征及影响因素。结果表明:高寒草甸地表能量通量各组分呈显著的日变化和季节变化特征,净辐射通量、感热通量、潜热通量和土壤热通量的年均值分别为94.5、21.0、51.8和1.2Wm−2。非生长季感热稍占优势,生长季潜热占绝对主导地位,波文比全年平均值为0.70,能量平衡闭合率年平均值为0.77。辐射是感热通量的主要气象影响因子,潜热通量则受温度、辐射和饱和水汽压差共同影响。日蒸散量变化范围为0.12~5.09mmd−1,全年平均值为1.82mmd−1。非生长季蒸散主要受土壤表面导度因子控制,生长季则由辐射主导,土壤和植被表面导度因子为次要影响因素。在季节尺度上,蒸散的变化取决于降水分布,全年降水和蒸散量分别为682.7mm和673.6mm,其中生长季分别占全年总量的84%和82%。6−7月降水匮乏抑制了蒸散,此时土壤储水成为蒸散的主要水源,从全年看,降水基本都以蒸散的方式返回大气。与青藏高原上同类观测研究相比,地表能量通量和蒸散都有相似的季节变化趋势,但观测到的年平均波文比和年蒸散量最大,气温、降水、地表植被等因素的共同作用导致这一结果。研究数据可作为地面验证资料,用于若尔盖地区陆面模式参数化方案的优化和卫星遥感反演资料的校验。  相似文献   

16.
Alpine wetlands and meadows across the Three Rivers Source Region (TRSR) store high soil organic carbon (SOC). However, information on factors affecting SOC storage is scanty. Herein, we investigated SOC storage and explored factors affecting SOC storage, including climate, soil properties and above- and belowground biomass, using 50 soil profiles across the TRSR on the Tibetan Plateau. The SOC storage was 491.9 ± 158.5 Tg C and 545.2 ± 160.8 Tg C in the TRSR alpine wetlands and meadow, respectively. The SOC stock was positively correlated with the mean annual precipitation. However, no significant correlation between SOC stock and mean annual temperature was observed, as opposed to the global trend. In addition, SOC stock was positively correlated with both the aboveground biomass (AGB) and belowground biomass (BGB). Soil pH indirectly affected SOC stock, while SOC stock positively correlated with Al and Fe oxyhydroxides. Compared with vegetation biomass and climatic factors, soil properties, including soil pH and Al and Fe oxyhydroxides (Alo and Feo), affected not only SOC stock variation but also affected the impact of vegetation and climatic factors on SOC stock. Climate factors, AGB, BGB, soil pH, Alo and Feo jointly accounted for 59% of SOC stock variation in alpine wetlands and 64% of SOC stock variation in alpine meadow. This study suggests that soil properties are the dominant factors affecting SOC variation in alpine wetlands and meadow on the Tibetan Plateau.  相似文献   

17.
基于多源地空耦合数据的青藏高原冻融侵蚀强度评价   总被引:2,自引:1,他引:1  
[目的]分析和探讨青藏高原冻融侵蚀成因及其空间分布格局,为研究区水土保持研究和生态环境保护提供数据支撑和决策参考。[方法]引入冻融侵蚀动力因子(冻融期降雨侵蚀力和冻融期风场强度)和冻融期降水量(表征冻融期土壤相变水量)构建冻融侵蚀评价模型,进而对青藏高原冻融侵蚀状况开展了定量评价和空间格局分析。[结果]构建的冻融侵蚀评价模型在青藏高原地区具有较高的适用性,总体评价精度为92%;青藏高原冻融侵蚀面积分布广泛,占总面积的63.68%,而非冻融侵蚀区则主要分布于柴达木盆地、雅鲁藏布江流域下游以及横断山区;冻融侵蚀强度随着坡度的上升而增加,15°~24°和≥24°坡度带上冻融侵蚀剧烈,而≤3°坡度带冻融侵蚀强度相对较小;不同植被类型区的冻融侵蚀强度空间分布格局差异显著,其中草甸的冻融侵蚀强度最小。[结论]青藏高原冻融侵蚀状况总体上属于中度侵蚀,其空间分布格局受地形、植被类型和气候影响显著。  相似文献   

18.
[目的]探究科尔沁沙坨地—草甸地土壤温度与冻结深度的变化规律,为合理指导该区农工生产和建设提供支持。[方法]基于2007—2015年冻融期人工观测数据,对比分析科尔沁沙坨地与草甸地冻融期多年土壤温度与最大冻结深度变化规律。[结果]研究区100cm处沙坨地与草甸地多年土壤温度的标准差变化规律基本一致,草甸地要小于沙坨地,但融解后期由于草甸地融解期历时较长,其标准差大于沙坨地;同时考虑土壤温度和土壤水分对最大冻结深度的影响时,沙坨地在200cm处和草甸地在140cm处的R2分别为0.959和0.788。[结论]研究区内沙坨地先冻结与先融解,沙坨地最大冻结深度较草甸地深,同时考虑土壤温度与土壤水分的最大冻结深度的拟合优度最好,沙坨地与草甸地中最大冻结深度与土壤温度和土壤水分均呈负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号